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Abstract. This paper deals with the construction of numerical solution of the Black-Scholes

(B-S) type equation modeling option pricing with variable yield discrete dividend payment at

time td. Firstly the shifted delta generalized function δ(t− td) appearing in the B-S equation is

approximated by an appropriate sequence of nice ordinary functions. Then a semidiscretization

technique applied on the underlying asset is used to construct a numerical solution. The limit of

this numerical solution is independent of the considered sequence of the nice type. Illustrative

examples including the comparison with the exact solution recently given in [2] for the case of

constant yield discrete dividend payment are presented.

1. Introduction. The Black-Scholes model for pricing stock options, when there are
dividend payments D(S, t), is

∂V

∂t
+

1
2
σ2S2 ∂

2V

∂S2
+ (rS −D(S, t))

∂V

∂S
− rV = 0, 0 < S <∞, 0 < t < T. (1)

If a discrete dividend payment with dividend date td is considered, D(S, t) takes the
form

D(S, t) = Dδ(S)δ(t− td), 0 < td < T, (2)

where Dδ(S)
S is the dividend yield and δ(t− td) is the shifted Dirac delta function (see [7,

p. 140]). Recently, an explicit solution of (1) with a discrete dividend yield, independent
of S, and a general payoff function V (S, T ) = f(S), has been given (see [2]).
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This paper deals with the construction of numerical solutions of modified Black-
Scholes equation of the type

∂V

∂t
+

1
2
σ2S2 ∂

2V

∂S2
+ (rS −Dδ(S) δ(t− td))

∂V

∂S
− rV = 0, (3)

V (S, T ) = f(S), 0 < S <∞, 0 < td < T, 0 < t < T. (4)

In order to guarantee that S(t+d ) is not negative, a general realistic discrete dividend
yield has the property that ∫ S(t−

d
)

0

dS

Dδ(S)

is infinite for any positive value of S(t−d ), see [7, p. 142].
This paper is organized as follows. Section 2 deals with preliminary results about the

solution of the Black-Scholes equations without dividend payment as well as the approx-
imation of the generalized function δ(t − td) by means of ordinary functions sequence
gn(t). Furthermore, some previous results on matrix calculus are included.

Section 3 provides the numerical solution of the approximate problem

∂Vn
∂t

+
1
2
σ2S2 ∂

2Vn
∂S2

+ (rS −Dδ(S) gn(t))
∂Vn
∂S
− rVn = 0,

0 < S <∞, 0 < t < T,

Vn(S, T ) = f(S), 0 < S <∞,


(5)

by a semidiscretization technique.
Finally, in section 4, the numerical solution obtained in td taking limits as n tends to

infinity, is extended to the interval [0, td), and some illustrative examples are included.

2. Preliminaries. For clarity of presentation we recall some notation and results about
the solution of the Black-Scholes equation without dividend payment as well as the con-
cept and properties of the Dirac delta generalized function.

For η, ν ∈ R, with η < ν we define the set M(η, ν) as follows:

M(η, ν) =
{
f : (0,∞)→ R

∣∣∣∣∫ ∞
0

xα−1 |f(x)| dx < ∞, η < α < ν

}
.

If there exists η < ν such that f ∈ M(η, ν), then the solution of the Black-Scholes
equation

∂VBS
∂t

+
1
2
σ2S2 ∂

2VBS
∂S2

+ rS
∂VBS
∂S

− rVBS = 0,

VBS(S, T ) = f(S), 0 < S <∞, 0 < t < T,

 (6)

is given by

VBS(S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞
−∞

f(e−l)e−
[lnS+l+(T−t)(r−σ

2
2 )]2

2σ2(T−t) dl (7)

(see [1]).
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We denote by K the space of functions ϕ : R→ R in C∞(R) having a compact sup-
port. A generalized function g is defined as a continuous linear functional on K, and we
denote g(ϕ) = (g, ϕ) (see [5, p. 11]). The space of all generalized functions on K will be
called K ′. The Dirac delta function is defined as the generalized function which assigns
value ϕ(0) to each function ϕ(x) ∈ K, i.e., (δ, ϕ) = ϕ(0). Note that the shifted Dirac
delta function δ(t− td) acts on K in the form (δ(t− td), ϕ(t)) = ϕ(td), see [5, pp. 11-13].

A sequence of ordinary functions {gn(t)} converges in K ′ to the generalized function
g if for all ϕ ∈ K (see [5, p. 63]),

(g, ϕ) = lim
n→∞

(gn, ϕ) = lim
n→∞

∫ +∞

−∞
gn(t)ϕ(t) dt.

Definition 1. A sequence of ordinary functions {gn(t)} is said to be a very nice shifted
delta-defining sequence if for each n ≥ 0, gn(t) has support

[
td − 1

2n , td + 1
2n

]
, and is a

continuous nonnegative function that satisfies∫ td+
1
2n

td− 1
2n

gn(t) dt = 1.

Taking into account [5, p. 65], a very nice shifted delta-defining sequence converges
in K ′ to the generalized function δ(t− td). Concrete examples of such sequences may be
found in [5, p. 66].

Troughout this paper, ‖y‖2 denotes the usual Euclidean norm of a vector y. If A is a
matrix in Cp×p, its two-norm, denoted by ‖A‖ is defined as

‖A‖ = max{+
√
λ; λ ∈ σ(AHA)} (8)

where AH denotes the transconjugate of A and σ(M) is the set of all eigenvalues of a
matrix M ∈ Cp×p.

If A is a matrix in Cp×p, then

‖etA‖ ≤ et µ(A), t ≥ 0, (9)

where µ(A) is the logarithmic norm of A, defined by

µ(A) = max
{
λ; λ ∈ σ

(
A+AH

2

)}
. (10)

From [3, p. 110], [4], if A and B are matrices in Cp×p, the following properties hold true:

µ(A+B) ≤ µ(A) + µ(B), (11)

|µ(A)| ≤ ‖A‖, (12)

µ(cA) = |c| µ(sgn(c)A), c ∈ R. (13)

By [3, p. 112], the solution of the linear system

X ′(t) = P (t)X(t) + b(t), X(0) = X0 ∈ Cm, t ≥ 0 ,

satisfies

‖X(t)‖ ≤ ‖X0‖e
∫ t

0
µ(P (s))ds +

∫ t

0

e

∫ t
v
µ(P (z))dz‖b(v)‖2 dv , (14)

where P (t) and b(t) are continuous functions taking values in Cm×m and Cm respectively.
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3. Numerical solution of the approximate problem. Let us consider problem (5)
where {gn(t)} is an arbitrary very nice shifted delta defining sequence. Taking into ac-
count Definition 1, for td + 1

2n < t < T one gets

∂Vn
∂t

+
1
2
σ2S2 ∂

2Vn
∂S2

+ rS
∂Vn
∂S
− rVn = 0,

Vn(S, T ) = f(S), 0 < S <∞, td +
1

2n
< t < T,


that is, the Black-Scholes equation (6). Hence, the solution of (5) in the interval [td+ 1

2n , T [
is given by

Vn(S, t) = VBS(S, t), td +
1

2n
≤ t < T. (15)

Then, problem (5) in the interval td − 1
2n ≤ t < td + 1

2n can be written by

∂Vn
∂t

+
1
2
σ2S2 ∂

2Vn
∂S2

+ (rS −Dδ(S) gn(t))
∂Vn
∂S
− rVn = 0,

Vn

(
S, td +

1
2n

)
= VBS

(
S, td +

1
2n

)
, 0 < S <∞, td −

1
2n
≤ t < td +

1
2n
.

 (16)

We propose a semidiscretization method, see [6, p. 111], for solving (16). Let us consider
an interval [a, b] and h, an increment of S, 0 < a ≤ S ≤ b, where b−a = hN , Sj = a+jh,
j = 0, 1, . . . , N . We introduce the notation vnj(t) ≈ Vn(Sj , t) for j = 0, 1, . . . , N . Then
we replace the partial derivatives by finite expressions of the form

∂Vn
∂S

(Sj , t) ≈
vn j+1(t)− vn j−1(t)

2h
, j = 1, . . . , N − 1, (17)

∂2Vn
∂S2

(Sj , t) ≈
vn j+1(t)− 2vnj(t) + vn j−1(t)

h2
, j = 1, . . . , N − 1, (18)

From (16), (17) and (18), one gets

d vnj(t)
dt

= αjvn j−1(t) + βjvnj(t) + γjvn j+1(t)− dj gn(t)
2h

(vn j−1(t)− vn j+1(t)) ,

j = 1, . . . , N − 1 ,

 (19)

where
dj = Dδ(Sj)

αj = −1
2
σ2
S2
j

h2
+ r

Sj
2h

βj =
σ2S2

j

h2
+ r

γj = −1
2
σ2
S2
j

h2
− r Sj

2h



(20)

In order to link the boundary values vn0(t) and vnN (t) with the rest of the solution, let us



NUMERICAL SOLUTION FOR OPTION PRICING 41

assume a quadratic approximation given by interpolation Lagrange polynomial of second
degree to obtain auxiliary values vn−1(t) and vnN+1(t).

Taking into account

P (S) =
(S − S1)(S − S2)

(S0 − S1)(S0 − S2)
vn0(t)+

(S − S0)(S − S2)
(S1 − S0)(S1 − S2)

vn1(t)+
(S − S0)(S − S1)

(S2 − S0)(S2 − S1)
vn2(t)

(21)
one gets for S−1 = S0 − h

vn−1(t) = 3vn0(t)− 3vn1(t) + vn2(t),

and assuming equation (19) for j = 0, it follows that

d vn0(t)
dt

= (3α0 + β0) vn0(t) + (−3α0 + γ0) vn1(t) + α0vn2(t)

−d0 gn(t)
2h

(3vn0(t)− 4vn1(t) + vn2(t)) , (22)

where d0, α0, β0 and γ0 are given by (20) for j = 0.
Similarly one gets for vnN (t) the equation

d vnN (t)
dt

= γNvnN−2(t) + (αN − 3γN ) vnN−1(t) + (βN + 3γN ) vnN (t)

−dN gn(t)
2h

(−vnN−2(t) + 4vnN−1(t)− 3vnN (t)) , (23)

where dN , αN , βN and γN are given by (20) for j = N .
Let us denote

vn(t) =


vn0(t)
vn1(t)

...
vnN (t)

 ∈ R(N+1)×1. (24)

Taking into account equations (19), (22) and (23), one gets

d vn(t)
dt

= (M − gn(t)B) vn(t), td −
1

2n
≤ t < td +

1
2n
, (25)

where

M =



3α0 + β0 −3α0 + γ0 α0 0 0 · · · 0 0 0
α1 β1 γ1 0 0 · · · 0 0 0
0 α2 β2 γ2 0 · · · 0 0 0
...

...
. . . . . . . . .

...
...

...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 0 · · · αN−1 βN−1 γN−1

0 0 0 0 0 · · · γN αN − 3γN βN + 3γN


,

(26)
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B =
1

2h



3d0 −4d0 d0 0 0 · · · 0 0 0
d1 0 −d1 0 0 · · · 0 0 0
0 d2 0 −d2 0 · · · 0 0 0
...

...
. . . . . . . . .

...
...

...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 0 · · · dN−1 0 −dN−1

0 0 0 0 0 · · · −dN 4dN −3dN


. (27)

Note that M and B depend on Sj and h but not on t. The solution vector vn(t) must
satisfy the final condition

vn

(
td +

1
2n

)
=

 VBS
(
S0, td + 1

2n

)
...

VBS
(
SN , td + 1

2n

)
 ∈ R(N+1)×1. (28)

For problem (25)-(28) we do not have an explicit formula for the solution if M and B are
arbitrary noncommuting matrices. However, we are not interested in the explicit solution
but in the limit

v(t−d ) = lim
n→∞

vn

(
td −

1
2n

)
. (29)

Let us consider firstly the problem
d ṽn(t)
dt

= −gn(t)B ṽn(t), td −
1

2n
≤ t < td +

1
2n
,

ṽn

(
td +

1
2n

)
= vn

(
td +

1
2n

)
.

 (30)

The solution of (30) is given by

ṽn(t) = e
−
∫ t
td+1/2n

gn(s) dsB
vn

(
td +

1
2n

)
. (31)

Taking into account Definition 1, one gets

ṽn

(
td −

1
2n

)
= eB vn

(
td +

1
2n

)
(32)

and hence

ṽ(t−d ) = lim
n→∞

ṽn

(
td −

1
2n

)
= eB v(t+d ), (33)

where

v(t+d ) =

 VBS(S0, td)
...

VBS(SN , td)

 . (34)

In order to prove
v(t−d ) = ṽ(t−d ). (35)
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let us denote the error vector ϕn(t) such that

vn(t) = ṽn(t) + ϕn(t). (36)

It is easy to check that ϕn(t) satisfies the differential equation

dϕn(t)
dt

= (M − gn(t)B) ϕn(t) +M ṽn(t),

ϕn

(
td +

1
2n

)
= 0, td −

1
2n
≤ t < td +

1
2n
.

 (37)

Taking into account the substitution τ = td + 1
2n − t and denoting

Ψn(τ) = ϕn

(
td +

1
2n
− τ
)
,

hn(τ) = gn

(
td +

1
2n
− τ
)
,

w̃n(τ) = ṽn

(
td +

1
2n
− τ
)
,

problem (37) can be written in the form

dΨn(τ)
dτ

= (−M + hn(τ)B ) Ψn(τ) − M w̃n(τ),

Ψn(0) = 0, 0 ≤ τ ≤ 1
n
.

 (38)

From (14) and (38) it follows that

‖Ψn(τ)‖2 ≤
∫ τ

0

e

∫ τ
s
µ(−M+hn(z)B)dz‖M‖‖w̃n(s)‖2 ds. (39)

By (11), (13) and taking into account Definition 1 and (39), one gets∥∥∥∥Ψn

(
1
n

)∥∥∥∥
2

≤ e|µ(−M)|/n+|µ(B)|‖M‖
∫ 1

n

0

‖w̃n(s)‖2 ds. (40)

From (12), (31), (37), (38) and (40) it follows that∥∥∥∥Ψn

(
1
n

)∥∥∥∥
2

≤ k‖M‖e‖M‖/n+‖B‖
∫ 1

n

0

‖eB
∫ s

0
hn(z) dz‖ ds,

where
k = max

td≤t≤T
{ ‖(VBS(S0, t), . . . , VBS(SN , t))‖} .

Finally, taking into account (9) and (13), one gets∥∥∥∥Ψn

(
1
n

)∥∥∥∥
2

≤ k‖M‖e‖M‖/n+‖B‖
∫ 1

n

0

eµ(B) ds ≤ k‖M‖e‖M‖+2‖B‖ 1
n
.

We have proved that

lim
n→∞

∥∥∥∥Ψn

(
1
n

)∥∥∥∥
2

= 0,
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and by (33), (36), (37), one gets

lim
n→∞

∥∥∥∥vn(td − 1
2n

)
− eBv(t+d )

∥∥∥∥
2

≤ lim
n→∞

∥∥∥∥vn(td − 1
2n

)
− ṽn

(
td −

1
2n

)∥∥∥∥
2

+ lim
n→∞

∥∥∥∥ṽn(td − 1
2n

)
− eB v(t+d )

∥∥∥∥
2

= 0.

Then the following result has been established.

Theorem 1. Let {gn(t)} be a very nice shifted delta defining sequence given by Defini-
tion 1. Then the sequence of solutions

{
vn
(
td − 1

2n

)}
of the problems (25)-(28) converges

to
v(t−d ) = eB v(t+d ) (41)

where B and v(t+d ) are defined by (27) and (34) respectively.

4. Prolongation of the solution to [0, td) and examples. In order to construct the
numerical solution of (3)-(4) in the interval [0, td), we use also the semidiscretization
method proposed in section 3. Taking into account (41) and the differential system (25)
for gn(t) = 0, one gets

d v(t)
dt

= M v(t), 0 ≤ t < td ,

v(td) = eB v(t+d ),

 (42)

where M is defined by (26). Solving (42) it follows that

v(t) = e−M(td−t) eB v(t+d ), 0 ≤ t < td. (43)

The following example compares the exact solution of the valuation of a vanilla call option
with constant yield discrete dividend payment with the numerical solution constructed
using the previous approach.

Example 1. Let us consider the valuation problem of a call option with discrete dividend,
modeled by (3)-(4), where

Dδ(S) = Aδ(t− td)S, (44)

and
f(S) = max{S − E, 0}, 0 < S <∞. (45)

In this case the discrete dividend payment has got a constant dividend yield A. The
solution of (44)-(45) is given by (see [2])

V (S, t) =


Se−AN (d′1)− Ee−r(T−t)N (d′2) , 0 < t < td,

SN (d1)− Ee−r(T−t)N (d2) , td < t < T,

(46)

where

d1 =
1

σ
√
T − t

[
ln
S

E
+ (T − t)

(
r +

σ2

2

)]
,
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d2 =
1

σ
√
T − t

[
ln
S

E
+ (T − t)

(
r − σ2

2

)]
,

d′i = di −
A

σ
√
T − t

, i = 1, 2,

and
N(x) =

1√
2π

∫ x

−∞
e−

ξ2

2 dξ,

is the cumulative probability function for a standardized normal variable.
For A = 0.1, σ = 0.1, r = 0.08, T = 1, td = 0.5, E = 7, S0 = 3, N = 34 and h = 0.5,

one gets for the value at t = 0 the mean error
‖v(0)− V (0)‖

N + 1
= 0.000459,

where v(0) is obtained by using (43) and V (0) is the vector of the exact solutions given
by (46) valuating at grid points Si, 0 ≤ i ≤ 34, and time t = 0.

The continuous line, denoted by dividend type C, in figure 1 is the numerical valuation
of this call option at t = 0 for N = 100.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

S [3,53]

C
A
B

Fig. 1. Call options with strike price E and different dividend payments

The following examples deal with the application of the numerical method to variable
yield discrete dividend payment cases.

Example 2. Let us consider the valuation problem of a vanilla call option modeled by
(3)-(4), where

Dδ(S) = AS2,

and
f(S) = max{S − E, 0}, 0 < S <∞.

For A = 0.01, σ = 0.1, r = 0.08, T = 1, td = 0.5, E = 7, S0 = 3, N = 100 and h = 0.5, by
(43) one gets the numerical solution v(0), see the dashed line in figure 1, called dividend
type A.
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0 10 20 30 40 50 60
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

S [3,53]

h=2 vs h=1
h=1 vs h=0.5
h=0.5 vs h=0.25

Fig. 2. Different spatial semidiscretizations with Dividend Type A

3 4 5 6 7 8 9 10 11 12

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S [3,53]

td = 0.5
td = 0.75
td = 0.95

Fig. 3. Different dividend dates

Let us denote the numerical valuation of the call option at t = 0 by C(S, t = 0, h),
when a step size h is used. In order to estimate the stability of the method, we show the
difference C(S, t = 0, h/2) − C(S, t = 0, h), for various values of h for the data of this
example, see figure 2.

Figure 3 shows the valuation of the call option for different dividend payment dates.
Finally, figure 4 shows the valuation of the call option with strike price E = 27 for various
values of the volatility.

Example 3. Let us consider the valuation problem of a vanilla call option modeled by
(3)-(4), where

Dδ(S) = AS3,
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0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

s [3,53]

sigma = 0.1

sigma = 0.3

sigma = 0.6

Fig. 4. Different volatilities

and
f(S) = max{S − E, 0}, 0 < S <∞.

For A = 0.001, σ = 0.1, r = 0.08, T = 1, td = 0.5, E = 7, S0 = 3, N = 100 and h = 0.5,
by (43) one gets the numerical solution v(0), see the dotted line in figure 1, called dividend
type B.
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