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Abstract. In this paper we propose and study a continuous time stochastic model of optimal

allocation for a defined contribution pension fund in the accumulation phase. The level of wealth

is constrained to stay above a “solvency level”. The fund manager can invest in a riskless asset

and in a risky asset, but borrowing and short selling are prohibited. The model is naturally

formulated as an optimal stochastic control problem with state constraints and is treated by

the dynamic programming approach. We show that the value function of the problem is a

continuous viscosity solution of the associated Hamilton-Jacobi-Bellman equation. In the special

case when the boundary is absorbing we show that it is the unique viscosity solution of the

Hamilton-Jacobi-Bellman equation.

1. Introduction. In the paper [6] the authors propose and study a continuous time
stochastic model of optimal allocation for a defined contribution pension fund with min-
imum guarantee.

Their target is to maximize the expected utility from the current wealth over an infi-
nite horizon, whereas usually the portfolio selection models for pension funds maximize
the expected utility from the final wealth over a finite horizon (the retirement time). In
this model the dynamics of the wealth takes directly into account the flows of contribu-
tions and benefits; moreover the level of wealth is constrained to stay above a “solvency
level”. The fund manager can invest in a riskless asset and in a risky asset, but borrow-
ing and short selling are prohibited. The model is formulated as an optimal stochastic
control problem with constraints and is treated by the dynamic programming approach,
showing that the value function of the problem is a regular solution of the associated
Hamilton-Jacobi-Bellman equation. Then they apply verification techniques to get the
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optimal allocation strategy in feedback form and to study its properties, giving finally
a special example with explicit solution. Nevertheless the aim of the authors is to study
the problem starting from the time when the first retirements of contributors occur (in
this case the contribution flow becomes constant and the state equation homogeneous
with respect to time), leaving out the accumulation phase and the optimization problem
in the first period.

In our paper we describe the model and the problem in the accumulation phase, when
the state equation is time-dependent. We will show that the value function is continuous
and that it solves the associated Hamilton-Jacobi-Bellman equation in a viscosity sense.
When the boundary is absorbing the value function is explicitally computable on this
boundary and so a Dirichlet type condition is available for the boundary differential
problem. In this case we will show that it is the unique viscosity solution of the Hamilton-
Jacobi-Bellman equation.

2. The model. In this section we give a brief survey of the model described in [6],
focusing on the topics in which we are involved.

Over an infinite continuous-time model it is considered a financial market competi-
tive1, frictionless2, viable3, default free4 and continuously open5.

The investor is a price taker6 and faces the following trading constraints: borrowing
and short positions7 are not allowed and the pension fund wealth must be above a suitable
positive function called solvency level. The investor maximizes the expected utility from
the fund wealth over a finite horizon.

2.1. Demography of the fund. It is supposed a demographic stationarity hypothesis, i.e.
that the flow of people who enter in the fund starts at time t = 0 and is constant over
time and that there is an exogenous constant T > 0 which is the time during which
the members adhere to the pension fund. Therefore the exit flow of people is null in the
interval [0, T ] and is constant after time T , balancing exactly the entrance flow. Observe

1Investor’s behavior is optimizing: he optimizes his utility function on the whole time horizon
and believes his actions cannot affect the probability distribution of returns of the available
assets (i.e. the investor is price taker).

2All assets are perfectly divisible and there are no transaction costs or taxes.
3There is no opportunity to gain without assuming risk with not null probability, i.e. the

market is arbitrage free.
4Financial institutions issuing assets cannot default.
5The investor can continuously trade in the market: he can buy or sell assets at any time.
6The hypothesis that the investor is a price taker is usual in the literature regarding financial

management models of pension funds and it is realistic if the single agent does not invest a big
amount of money. As a matter of fact, the volume of assets exchanged by pension funds is such
that they could affect the price of assets (i.e. the investor may be price maker), but we do not
deal with this fact here.

7Borrowing position means that the investor borrows the riskless asset (paying the risk free
rate of return as remuneration) to buy risky assets. In a short selling position the investor sells
risky assets without owning it in his portfolio.
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that T is not necessarily the time of retirement8. Of course there is a fixed number N of
fund members at time T : therefore we can say that in each unit of time (e.g. year) N/T
new members enter in the fund.

2.2. The wealth dynamics. We focus our analysis on the accumulation phase [0, T ], when,
by demographic hypothesis, nobody leaves the fund and so the benefits are still not paid.
To set up the mathematical model consider a complete probability space (Ω, F , P ) on
which a standard one-dimensional Brownian motion (B(t))t∈[0,T ] is defined. The filtra-
tion (Ft)t∈[0,T ], representing the information available while time goes on, will be the
completion of the natural filtration induced by the Brownian motion; this is a continu-
ous filtration with respect to which B is still a Brownian motion (see [12] for a detailed
discussion).

The financial market is composed of two kinds of assets: a riskless asset and a risky
asset.

Hypothesis 2.1. The price of the riskless asset, denoted by S0(t), t ∈ [0, T ], evolves
according to the equation

dS0(t)
S0(t)

= rdt, S0(0) = 1,

where r ≥ 0 is the instantaneous spot rate of return.

Hypothesis 2.2. The price of the risky asset S1(t), t ∈ [0, T ], follows an Itô process and
satisfies the equation

dS1(t)
S1(t)

= µdt+ σdB(t),

where µ ≥ r is the instantaneous rate of expected return and σ > 0 is the instantaneous
rate of volatility.

The drift µ can be expressed by the relation µ = r+ σλ, where λ ≥ 0 is the instanta-
neous risk premium of the market, i.e. the price that the market assigns to the randomness
expressed by the standard Brownian motion B.9 The aim is to find an optimal portfolio
allocation strategy of a defined contribution pension fund.

It is also supposed that the pension fund is related to a homogeneous class of work-
ers.10

The optimal allocation policy is determined applying the expected utility criterium:
the fund manager invests the pension fund wealth between the two alternative investments
maximizing his utility. Then the decision variable is represented by the proportion of
wealth that the manager can invest respectively in the two assets offered by the market.

Let X(t) be, for t ∈ [0, T ], the (Ft)t∈[0,T ]-progressively measurable process that de-
scribes the amount of the pension fund wealth at any time. It is supposed the pension

8We can think that T is the average time that the members spend in the fund, taking into
acconut also the fraction of participants that decide to transfer their positions to another pension
fund before their retirement.

9The assumption λ > 0 means that the investor is risk adverse.
10A class of people that have the same characteristics (same age at the entry date, same

professional qualification, same level of skill, and so on).
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fund starts its activity at the date t = 0 and that at this time it owns a starting amount
of wealth x0 > 0. Let θ(t) be, for t ∈ [0, T ], the (Ft)t∈[0,T ]- progressively measurable
process representing the proportion of fund wealth to invest in the risky asset (so that
θ(t) ∈ [0, 1] for every t ∈ [0, T ], due to the borrowing and short selling constraints). Then
the dynamics of wealth is expressed by the following state equation{

dX(t) = θ(t)X(t)
S1(t) dS1(t) + [1−θ(t)]X(t)

S0(t) dS0(t) + c(t)dt,

X(0) = x0,
(1)

where θ(t)X(t)/S1(t) and [1− θ(t)]X(t)/S0(t) are respectively the quantities in the port-
folio of risky and riskless asset, while the non-negative progressively measurable process
c(t) indicates the contribution flow at time t ∈ [0, T ].

As said in the introduction, a solvency constraint must be respected:

Hypothesis 2.3. The process X describing the fund wealth is subject to the following
constraint

X(t) ≥ l(t) P -a.s., ∀t ∈ [0, T ], (2)

where the positive deterministic process l(t), t ∈ [0, T ], is a given datum which represents
the solvency level.

This hypothesis is important since it prevents improper behavior of the fund manager.
If this assumption is not held, he could keep the fund wealth at a too low level for long
periods.

The state equation (1) can be rewritten in the following way:{
dX(t) = [(r + σλθ(t))X(t) + c(t)]dt+ σθ(t)X(t)dB(t), t ∈ [0, T ],

X(0) = x0 ≥ l0 ≥ 0,
(3)

with the constraint that X(t) ≥ l(t) P -a.s., for any t ∈ [0, T ], and where l0 := l(0).

2.3. Contributions. The demographic hypothesis leads to assume the following:

Hypothesis 2.4. The payment of aggregate contributions occurs at any time t ∈ [0, T ]
according to the following relation

c(t) := αNw(t) · (t/T ),

where α ∈ (0, 1) represents the average contribution rate and w(t) ≥ 0, the average per
capita wage bill earned by the fund members at time t ∈ [0, T ]. The function w(·) is taken
equal to a constant w > 0 for simplicity and we set k := αNw

T .

The above hypothesis is a bit restrictive because the stochastic wage is an important
and additional source of uncertainty for the fund manager. We observe that the intro-
duction of an extra source of risk renders the market incomplete, as discussed and solved
in [2] in absence of guarantee. Here the constant w is considered as a real wage, i.e. the
nominal wage discounted from a constant inflation rate, therefore we assume a point of
view essentially in line with [1] where the (nominal) wage is a deterministic function of
the time and continuously increasing at a constant inflation rate.
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2.4. The solvency level. Usually a solvency level is imposed by law; without imposing
this constraint the fund manager is allowed to use too risky strategies for the fund.

In our case we assume that:

• at the beginning the company should hold a given minimum startup level l0 ≥ 0;
• for t ∈ [0, T ], the solvency level is the capitalization at a rate β ≤ r 11 of l0 and of

the contributions paid up to time t; therefore,

l(t) = l0 e
βt +

∫ t

0

k s eβ(t−s)ds.

Remark 2.5. The solvency level introduced in [6] is

l(t) = l0 + ζ

∫ t

0

keδ(t−s)du, t ∈ [0, T ],

and l(t) = l(T ) for t ≥ T ; here 0 ≤ ζ ≤ 1 and δ ≤ r is the rate corresponded to the fund
members who are leaving the fund (after time T ) as minimum guarantee; in this case l0
represents only a minimum startup level for the fund to begin the financial operations,
which does not need to be capitalized whereas k represents the contribution rate of new
members per unit of time, so that the capitalization is computed only on this term (in that
context this makes the problem autonomous after time T and a suitable assumption on
the startup level guarantees that the fund is always able to pay the minimum guarantee to
its members in retirement). We point out that almost all we prove in this paper holds also
for this form of solvency level. Our solvency level seems to be more reasonable and more
convenient in our setting, which focuses on the optimization problem in the interval [0, T ].

2.5. The objective functional. We study a finite horizon optimization problem in the
interval [0, T ] related to an objective functional with this form:

E

[ ∫ T

0

e−ρtU(t,X(t))dt+ f(X(T ))
]
. (4)

Thus in our problem the fund manager does not care about the future of the fund after
time T . So we concentrate our analysis on the interval [0, T ], when both the solvency
level and the state equation are time-dependent.

3. The stochastic control problem. Now we formulate and study our problem as a
stochastic optimal control problem. First of all we observe that the initial time t = 0 has
been chosen as the first time of operation of the fund. However it also makes sense to
look to a pension fund that is already running after a given amount of time s ∈ [0, T ], in
order to establish an optimal decision policy from s on.

On the probability space of the previous section let (Fst )t∈[s,T ] be the completion of
the filtration generated by the process (Bs(t))t∈[s,T ] := (B(t) − B(s))t∈[s,t]; the control
process (θ(t))t∈[s,T ] is an (Fst )-progressively measurable process with values in [0, 1].

Now set an initial time s ∈ [0, T ] and a given amount of wealth x at time s. In the
interval [0, T ] the state equation becomes, according to (3) and with the hypotheses just

11This rate could be chosen, for example, by an authority with regard to the market’s param-
eters.
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stated on the contribution term,{
dX(t) = [θ(t)σλ+ r]X(t) dt+ kt dt+ θ(t)σX(t)dB(t), t ∈ [s, T ],

X(s) = x;
(5)

this equation, for any {Fst }t∈[s,T ]-progressively measurable process θ(·), has a unique
strong mean-square continuous solution12 on the filtered probability space (Ω,F ,
{Fst }t∈[s,T ], P ) in the interval [0, T ] (see, e.g., Problem 6.15 in [12], pp. 360–361). We
denote its value at time t ∈ [s, T ] by X(t; s, x, θ(·)).

For x ≥ l(s), the problem is to maximize, over the set of the admissible strategies,
which in our framework is given by

(6) Θad(s, x) = {θ : [s, T ]×Ω→ [0, 1] prog. meas. w.r.t. {Fst }t∈[s,T ] |
X(t; s, x, θ(·)) ≥ l(t), t ∈ [s, T ]},

the functional

J(s, x; θ(·)) = E

[ ∫ T

s

e−ρtU(t,X(t; s, x, θ(·)))dt+ f(X(T ; s, x, θ(·)))
]
,

where ρ > 0 is the individual discount factor and where the fund manager’s utility
function U and the exit function f satisfy the following assumptions:

Hypothesis 3.1. The utility function U is such that:

(i) U : C = {(s, x) ∈ R2 | x ≥ l(s)} → R.
(ii) U(s, x) = u(x− l(s)), where u : [0,+∞)→ R.
(iii) u ∈ C([0,+∞); R) and it is increasing and concave.

Hypothesis 3.2. The exit function f is such that:

(i) f : [l(T ),+∞)→ R.
(ii) f ∈ C([l(T ),+∞); R) and it is increasing and concave.

Remark 3.3. Let us give some comment on the above Hypotheses 3.1 and 3.2.

• The utility function and the exit function are defined where the wealth process X(·)
must live.

• All utility functions of the form u(x) = (x− x0)γ/γ, for x0 ≤ 0, γ ∈ (0, 1), always
satisfy Hypothesis 3.1.

3.1. The set of admissible strategies. As we said, in our framework the set of admissible
strategies is given by (6). We show that the set Θad(s, x), s ∈ [0, T ], x ≥ l(s), is not
empty:

Proposition 3.4. Let s ∈ [0, T ], x ≥ l(s) and let X(t) := X(t; s, x, 0); then

X(t)− l(t) ≥ (x− l(s)) er(t−s), t ∈ [s, T ]. (7)

In particular, for each s ∈ [0, T ], x ≥ l(s), the null strategy belongs to Θad(s, x), so that
Θad(s, x) is not empty.

12Actually the solution belongs to C([s, T ];Lp(Ω, P )) for any p ∈ [1,+∞).
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Proof. Let s ∈ [0, T ], x ≥ l(s) and let X(t) := X(t; s, x, 0) be the state trajectory associ-
ated with the null startegy; the dynamics of X(·) is given by{

dX(t) = rX(t) dt+ kt dt,

X(s) = x;

the ”dynamics” of the solvency level l(·) is given by{
dl(t) = βl(t) dt+ kt dt,

l(s) = l(s).

The claim follows taking in account that β ≤ r.

Remark 3.5. Notice that we have to distingush the cases β < r, β = r. In the first
case, looking at the proof of the previous proposition, we see that the null strategy, for
the initial starting point (s, l(s)), s ∈ [0, T ), leads to the interior part of the set C, so
that the boundary {(s, l(s)), s ∈ [0, T ]} is not absorbing for the problem. In the second
case this boundary is absorbing; indeed let s ∈ [0, T ), θ(·) ∈ Θad(s, l(s)) and consider
X(t) := X(t; s, l(s), θ(·)); under the probability P̃ given by the Girsanov transformation
the dynamics of X(t) is given by{

dX(t) = rX(t) dt+ kt dt+ σθ(t)X(t)dB̃(t),

X(s) = l(s),
(8)

where B̃(t) := B(t) + λt is a Brownian motion under P̃ in the interval [s, T ]. Since
X ∈ C([s, T ];Lp(Ω, P )) for any p ≥ 1, we also have

Ẽ

[ ∫ T

s

|X(t)|2dt
]
< +∞,

so that

Ẽ

[ ∫ t

s

X(r)dr
]

= 0, for any t ∈ [s, T ].

Thus we can pass (8) to the expectations getting{
dẼ[X(t)] = rẼ[X(t)] dt+ kt dt,

Ẽ[X(s)] = l(s);
(9)

since by assumption X(t) ≥ l(t) for t ∈ [s, T ] and by (9) Ẽ[X(t; s, x, θ(·))] = l(t) for
t ∈ [s, T ], we get that X(t) = l(t) and that θ(·) ≡ 0, i.e. that the only admissible strategy
starting from (s, l(s)) is the null one and that the corresponding state trajectory remains
on the boundary, i.e. the boundary is absorbing.

3.2. The value function. The stochastic control problem consists in studying, for s ∈
[0, T ], x ≥ l(s), the value function

V (s, x) := sup
θ(·)∈Θad(s,x)

E

[ ∫ T

s

e−ρtU(t,X(t; s, x, θ(·)))dt+ f(X(T ; s, x, θ(·))
]
, (10)

and, when possible, in finding an optimal pair (X∗, θ∗) (if it exists) for the problem,
i.e. a strategy θ∗(·) ∈ Θad(s, x) such that for the corresponding trajectory X∗(t) :=
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X(t; s, x, θ∗(·)) we have

V (s, x) = J(s, x; θ∗(·)) = E

[ ∫ T

s

e−ρtU(t,X∗(t))dt+ f(X∗(T ))
]
.

It makes sense, for technical reasons, to give also a definition of ε-optimal strategy:

Definition 3.6. Let s ∈ [0, T ], x ≥ l(s); for fixed ε > 0, a control θε(·) ∈ Θad(s, x) is
called ε-optimal if

J(s, x; θε(·)) ≥ V (s, x)− ε. (11)

Proposition 3.7. Let us suppose that Hypotheses 3.1 and 3.2 hold true and let s ∈ [0, T ],
x ≥ l(s), θ(·) ∈ Θad(s, x); then setting X(t) := X(t; s, x, θ(·)), we have

E

[ ∫ T

s

e−ρt[U(t,X(t))]dt+ f(X(T ))
]
< +∞.

Proof. By Hypotheses 3.1-(iii), 3.2, we have, for some C > 0, U(t, x) ≤ C(1 +x) for each
t ∈ [s, T ] and f(x) ≤ C(1 + x). Thus

E

[ ∫ T

s

e−ρt[U(t,X(t))]dt+ f(X(T ))
]
≤ C E

[ ∫ T

s

e−ρt(1 +X(t))dt+ (1 +X(T ))
]
.

Taking into account that X(t) ≥ l0 ≥ 0 and that X ∈ C([s, T ];L2(Ω)), we have

E

[ ∫ t

s

θ(r)X(r)dB(r)
]

= 0, ∀t ∈ [s, T ].

Therefore we can pass to the expectations in the state equation getting{
dE[X(t)] = rE[X(t)]dt+ kt dt+ σλE[θ(t)X(t)]dt ≤ (r + σλ)E[X(t)]dt+ kT dt,

E[X(s)] = x;

thus, for some C > 0,

E[X(t)] ≤
(
x+

kT

r + σλ

)
e(r+σλ)(t−s) − kT

r + σλ
≤ C(1 + x); (12)

therefore the claim easily follows.

From the proof of Proposition 3.7 (the estimate (12) does not depend on the control)
we have directly the following result:

Corollary 3.8. There exists a constant C > 0 such that V (s, x) ≤ C(1 + x) for all
s ∈ [0, T ], x ≥ l(s).

3.3. Properties of the value function. In this section we investigate some qualitative
properties of the value function. We start by analyzing the finiteness of the value function
from below:

Proposition 3.9. Let s ∈ [0, T ], x ≥ l(s); then

V (s, x) ≥ u(x− l(s))
ρ

e−ρs(1− e−ρ(T−s)) + f(l(T ) + x− l(s)).
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Proof. By (7) and by monotonicity of u, f , we can deduce that

J(s, x; 0) ≥
∫ T

s

e−ρtu(x− l(s))dt+ f(l(T ) + x− l(s))

=
u(x− l(s))

ρ
e−ρs(1− e−ρ(T−s)) + f(l(T ) + x− l(s))

and thus the claim follows.

We have also:

Proposition 3.10. Let s ∈ [0, T ]; the function x 7→ V (s, x) is concave on [l(s),+∞).

Proof. Fix x, x′ ≥ l(s); set also xγ := γx + (1− γ)x′, γ ∈ [0, 1]; of course xγ ≥ l(s). We
have to prove that

V (s, xγ) ≥ γV (s, x) + (1− γ)V (s, x′). (13)

Take θ(·) ∈ Θad(s, x) and θ′(·) ∈ Θad(s, x′) ε-optimal for x, x′ respectively and X(·), X ′(·)
the corresponding trajectories; then

γV (s, x) + (1− γ)V (s, x′) ≤ γ[J(s, x; θ(·)) + ε] + (1− γ)[J(s, x′; θ′(·)) + ε]

= ε+ γJ(s, x; θ(·)) + (1− γ)J(s, x′; θ′(·))

= ε+ γE

[ ∫ T

s

e−ρtU(t,X(t))dt+ f(X(T ))
]

+(1− γ)E
[ ∫ T

s

e−ρtU(t,X ′(t))dt+ f(X ′(T ))
]

= ε+ E

[ ∫ T

s

e−ρt[γU(t,X(t)) + (1− γ)U(t,X ′(t))]dt
]

+E[γf(X(T )) + (1− γ)f(X ′(T ))].

The concavity of u, f implies that

γU(t,X(t)) + (1− γ)U(t,X ′(t)) ≤ U(t, γX(t) + (1− γ)X ′(t)), ∀t ∈ [s, T ],

γf(X(t)) + (1− γ)f(X ′(t)) ≤ f(γX(t) + (1− γ)X ′(t)), ∀t ∈ [s, T ].

Consequently, if we set Xγ(·) := γX(·) + (1− γ)X ′(·), we get

γV (s, x) + (1− γ)V (s, x′) ≤ ε+ E

[ ∫ T

s

e−ρtU(Xγ(t))dt+ f(Xγ(T ))
]
.

If there exists θγ(·) ∈ Θ(s, xγ) such that Xγ(·) ≤ X(·; s, xγ , θγ(·)), then we would have

ε+ E

[ ∫ T

s

e−ρtU(Xγ(t))dt+ f(Xγ(T ))
]
≤ ε+ J(s, xγ ; θγ(·)) ≤ ε+ V (s, xγ),

i.e.
γV (s, x) + (1− γ)V (s, x′) ≤ ε+ V (s, xγ)

and therefore, by the arbitrariness of ε, the claim (13) would be proved. We will show
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that θγ(t) := a(t)θ(t) + d(t)θ′(t), where a(·) = γ X(·)
Xγ(·) and d(·) = (1 − γ)X

′(·)
Xγ(·) , is good.

The admissibility of θγ is clear since:

(i) for any t ∈ [s, T ] we have θ(t), θ′(t) ∈ [0, 1], and a(t) + d(t) = 1, so that by
convexity of [0, 1] we get θγ(t) ∈ [0, 1];

(ii) by construction Xγ(t) ≥ l(t) for any t ∈ [s, T ].

Note that actually we will prove that Xγ(·) = X(·; s, xγ , θγ(·)).
The equation satisfied by Xγ(·) in the interval [s, T ] is

dXγ(t) = γ dX(t) + (1− γ) dX ′(t)

= γ[[(r + σλθ(t))X(t) + kt]dt+ σθ(t)X(t)dB(t)]

+(1− γ)[[(r + σλθ′(t))X ′(t) + kt]dt+ σθ′(t)X ′(t)dB(t)]

= [rXγ(t) + σλ(γθ(t)X(t) + (1− γ)θ′(t)X ′(t)) + kt]dt

+σ[γθ(t)X(t) + (1− γ)θ′(t)X ′(t)]dB(t)

= [rXγ(t) + kt]dt+ σλ

[
γθ(t)

X(t)
Xγ(t)

+ (1− γ)θ′(t)
X ′(t)
Xγ(t)

]
Xγ(t) dt

+σ
[
γθ(t)

X(t)
Xγ(t)

+ (1− γ)θ′(t)
X ′(t)
Xγ(t)

]
Xγ(t)dB(t)

= [(r + σλθγ(t))Xγ(t) + kt]dt+ σθγ(t)Xγ(t)dB(t)

and the claim follows.

Now we can give a monotonicity result:

Proposition 3.11. Let u or f be strictly increasing and let s ∈ [0, T ]. Then the function
x 7→ V (s, x) is strictly increasing on [l(s),+∞).

Proof. Let l(s) ≤ x ≤ x′; by comparison criterion, see e.g. Proposition 2.18 in [12], we
have X(t; s, x, θ(·)) ≤ X(t; s, x′, θ(·)) for all θ(·) ∈ Θad(s, x) and in particular Θad(s, x) ⊂
Θad(s, x′). Therefore by monotonicity of u, f we get J(s, x; θ(·)) ≤ J(s, x′, θ(·)) for all
θ(·) ∈ Θad(s, x), so that V (s, ·) is increasing.

Now we prove that this function is strictly increasing. We can note that, if a concave
and increasing function is not strictly increasing, then such a function must be eventually
constant on a right half line [x̄,+∞); we show that this is not our case.

If limx→∞ u(x) = +∞ or limx→∞ f(x) = +∞, then, by Proposition 3.9, we have also
limx→+∞ V (s, x) = +∞ and the claim follows. Instead let us suppose that limx→+∞ u(x)
= ū < +∞ and limx→∞ f(x) = f̄ < +∞ and suppose by contradiction that V (s, ·) is
constant on [x̄,+∞) for some x̄ ≥ l(s). Again by Proposition 3.9 we must have

V (s, x̄) = lim
x→+∞

V (s, x) ≥ ū

ρ
e−ρs(1− e−ρ(T−s)) + f̄ ;

on the other hand, taking into account (12), the concavity and the monotonicity of u, f ,
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we can write, for any θ(·) ∈ Θad(s, x̄), setting X(t) := X(t; s, x̄, θ(·)),

J(s, x̄; θ(·)) =
∫ T

s

e−ρtE[u(X(t)− l(t))]dt+ E[f(X(T ))]

≤
∫ T

s

e−ρtu(E[X(t)]− l(t))dt+ f(E[X(T )])

≤
∫ T

s

e−ρtu(C(1 + x̄))dt+ f(C(1 + x̄))

=
u(C(1 + x̄))

ρ
e−ρs(1− e−ρ(T−s)) + f(C(1 + x̄)),

i.e. since u or f is strictly increasing,

V (s, x) ≤ u(C(1 + x̄))
ρ

e−ρs(1− e−ρ(T−s)) + f(C(1 + x̄))

<
ū

ρ
e−ρs(1− e−ρ(T−s)) + f̄ ;

thus a contradiction arises and the claim is proved.

3.4. Continuity of the value function. In this section we will prove that the value function
is continuous on C = {(s, x) ∈ R2 | x ≥ l(s)}; we will prove this result by some lemmata.

Lemma 3.12. Let s ∈ [0, T ], ε > 0; the function [l(s) + ε,+∞)→ [0,+∞), x 7→ V (s, x)
is Lipschitz continuous.

Proof. The claim follows by the fact that the function [l(s),+∞) → R, x 7→ V (s, x) is
concave and increasing. This implies that this function is continuous in the interior part
of its domain (l(s),+∞) and Lipschitz continuous on [l(s) + ε,+∞) for any ε > 0.

Let us define, for a ≥ 0, the curves

La := {(s, l(s) + a) | s ∈ [0, T ]}.
Lemma 3.13. Let u(0) ≥ 0, a ≥ 0; then the value function is decreasing along the curve
La, i.e. the function [0, T ]→ R, s 7→ V (s, l(s) + a) is decreasing.

Proof. Let s ∈ [0, T ], s′ ∈ (s, T ] and let x, x′ be such that (s, x), (s′, x′) ∈ La, for some
a ≥ 0; let us consider X(t) := X(t; s, x, 0); we get

V (s, x) ≥ E
[ ∫ s′

s

e−ρtU(t,X(t))dt
]

+ V (s′, X(s′)) ≥ V (s′, x′)

where the first inequality follows by Dynamic Programming Principle (see Theorem 4.1
and Remark 4.2), the second one follows taking into account (7), which gives that X(s′) ≥
x′ and that the utility function u is positive, and by Proposition 3.11.

Remark 3.14. Let 0 ≤ s ≤ s′ ≤ T ; by Theorem 2.10 (chapter 1) of [18] we can map in a
natural way a strategy starting at time s to a strategy starting at time s′; to make this
point more clear, consider the measurable space (C[s, T ],B(C[s, T ])), with the filtration
(Bt(C[s, T ]))t∈[s,T ] defined in the following way: (Bt(C[s, T ])) is the σ-algebra on C[s, T ]
induced by the projection

π : C[s, T ]→ (C[s, t],B(C[s, t])), ζ(·) 7→ ζ(·)|[s,t],
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i.e. the smallest σ-algebra which makes π measurable; intuitively a measurable map with
respect to Bt(C[s, T ]) is a map which does not distinguish between two functions of
C[s, T ] which coincide on [s, t]. If (θs(t))t∈[s,T ] is a strategy starting from s, there exists
a process ψ on (C[s, T ],B(C[s, T ])), adapted with respect to (B(C[s, T ]))t∈[s,T ] such that

θs(t) = ψ(t, Bs(·)), t ∈ [s, T ];

then we can consider the strategy

θs′(t) = ψ(t− s′ + s,Bs
′
(·)), t ∈ [s′, T ],

starting from s′; we denote by Γs,s′ the map θs 7→ θs′ .

The following lemma is the crucial key to proving the continuity of the value function:

Lemma 3.15. Let u(0) ≥ 0; then the value function is continuous along the curves La
for any a ≥ 0.

Proof. Fix a ≥ 0 and s ∈ [0, T ), let s′ ∈ (s, T ] and let x, x′ be such that (s, x), (s′, x′) ∈
La, i.e x′ − x = l(s′) − l(s); take a generic control θs(·) ∈ Θad(s, x), set ε := s′ − s

and consider, for t ∈ [s, T ], the process Xs(t) := X(t; s, x, θs(·)) and, for t ∈ [s′, T ], the
process Ys′(t) given by{

dYs′(t) = (r + σλθs′(t))Ys′(t)dt+ k(t− ε)dt+ σθs′(t)Ys′(t)dB(t),

Ys′(s′) = x,

where θs′(·) = Γs,s′(θs(·)). Of course Xs(t − ε)
L= Ys′(t) and, by the assumption θ(·) ∈

Θad(s, x), we get Ys′(t) ≥ l(t − ε) on [s′, T ] almost surely. Define the ”semi-feedback”
strategy θ̃s′(·) starting from s′ by

θ̃s′(t) = θs′(t)
Ys′(t)
Xs′(t)

,

where Xs′(·) denotes the solution of the state equation starting from x′ at time s′ un-
der the strategy θ̃s′(·); we will show that θ̃s′(·) takes values in [0, 1] and that θ̃s′(·) ∈
Θad(s′, x′). The dynamics of Xs′(·)− Ys′(·) is given by{

d(Xs′(t)− Ys′(t)) = r(Xs′(t)− Ys′(t)) dt+ εk dt

Xs′(s′)− Ys′(s′) = l(s′)− l(s);
(14)

the dynamics for l(t)− l(t− ε) is given by{
d(l(t)− l(t− ε)) = β(l(t)− l(t− ε)) dt+ εk dt

l(s′)− l(s′ − ε) = l(s′)− l(s);
(15)

comparing (14), (15) and taking into account that β ≤ r, we get

Xs′(t)− Ys′(t) ≥ l(t)− l(t− ε);

this shows that θ̃s′(·) takes values in the set [0, 1] and, since Ys′(t) ≥ l(t − ε), that
θs′(·) ∈ Θ(s′, x′).

We have proved that Xs′(t) ≥ Ys′(t)
L= Xs(t − ε), for t ∈ [s′, t]; thus, taking into

account that u is increasing and uniformly continuous, if δ is the modulus of uniform
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continuity of u and δ′ is the modulus of uniform continuity of l, we have

E

[ ∫ T

s′
e−ρtU(t,Xs′(t))dt

]
≥ E

[ ∫ T

s′
e−ρtU(t,Xs(t− ε))dt

]
= E

[ ∫ T−ε

s

e−ρ(t+ε)U(t+ ε,Xs(t))dt
]

= e−ρεE

[ ∫ T−ε

s

e−ρtu(Xs(t)− l(t+ ε))dt
]

≥ e−ρεE
[ ∫ T−ε

s

e−ρtu(Xs(t)− l(t)− δ′(ε))dt
]

≥ e−ρεE
[ ∫ T−ε

s

e−ρtu(Xs(t)− l(t))dt
]
−Cδ(δ′(ε)), (16)

for a suitable constant C > 0, where δ(δ′(ε))→ 0, when ε→ 0.
Of course, by the square-mean continuity of Xs and by the uniform continuity of u,

E

[ ∫ T

T−ε
e−ρtU(t,Xs(t))dt

]
→ 0. (17)

In the same way
E[f(Xs′(T ))] ≥ E[f(Xs(T − ε))]; (18)

moreover, by the mean-square continuity of Xs and by the uniform continuity of f ,

E[|f(Xs(T − ε))− f(Xs(T ))|2]→ 0, (19)

when ε→ 0, so that, combining (18) and (19),

E[f(Xs′(T ))] ≥ E[f(Xs(T ))]− η(ε), (20)

with η(ε)→ 0, when ε→ 0.
Fix s ∈ [0, T ]; combining (16), (17) and (20), for any ε > 0 and any control θs(·) ∈

Θad(s, x), we can find a control θ̃s′(·) ∈ Θad(s′, x′) such that

J(s′, x′; θ̃s′(·)) ≥ e−ρεJ(s, x; θs(·))− ω(ε), (21)

where ω(ε) → 0, when ε → 0; this is enough to guarantee that the value function is
lower semicontinuous from the right along La and, since it is decreasing by Lemma 3.13,
that it is continuous from the right. Instead, if we fix s′, by the above argument, for any
ε > 0 and any control θs(·) ∈ Θad(s, x), we can find a control θ̃s′(·) ∈ Θad(s′, x′) such
that (21) holds with ω(ε) → 0, when ε → 0; this shows that the value function is upper
semicontinuous from the left along La and, again since it is decreasing, continuous from
the left and so the proof is complete.

Let us define, for ε > 0, the sets

Sε := {(s, x) ∈ R2 | x ≥ l(s) + ε}.

Lemma 3.16. Let u(0) ≥ 0; then the value function is continuous on the sets Sε for any
ε > 0.

Proof. Let s ∈ [0, T ], ε > 0 and consider the function [l(s) + ε) → R, x 7→ V (s, x);
by Lemma 3.12 this function is Lipschitz continuous: we want to estimate its Lipschitz
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constant. The function [l(s),+∞)→ R, x 7→ V (s, x) is concave (so that the incremental
ratios are decreasing) and increasing (so that the incremental ratios are positive); thus,
if we set

Ms,ε :=
V (s, l(s) + ε)− V (s, l(s))

ε
,

we get that Ms,ε is good as Lipschitz constant for the function [l(s) + ε,+∞) → R,
x 7→ V (s, x). By Lemma 3.15 there exists

Mε := max
s∈[0,T ]

Ms,ε = max
s∈[0,T ]

V (s, l(s) + ε)− V (s, l(s))
ε

;

thus the functions [l(s) + ε,+∞) → [0,+∞), x 7→ V (s, x), s ∈ [0, T ], are Lipschitz
continuous with respect the same Lipschitz constant Mε. Thus, for any δ > 0, we can find
η > 0 such that, if |x− y| < η (with x, y ∈ [l(s) + ε,+∞)), then |V (s, x)− V (s, y)| < δ/2
and η does not depend on s ∈ [0, T ], due to the uniform Lipschitz continuity. Now fix
(s̄, x̄) ∈ S2ε and define x̄(s) := l(s) + x̄ − l(s̄), so that s 7→ x̄(s) is the curve La passing
through (s̄, x̄) and through x̄(s̄) = x̄. By the continuity of s 7→ V (s, x̄(s)), for a given
δ > 0, we can find η′ > 0 such that, if |s − s̄| < η′, then |V (s, x̄(s)) − V (s̄, x̄)| < δ/2.
Therefore, for a given δ > 0, we can find η, η′ > 0 such that, if

(s, x) ∈
⋃

s∈(s̄−η′,s̄+η′)

{s} × (x̄(s)− η, x̄(s) + η),

then |V (s, x)− V (s̄, x̄)| < δ and so the claim is proved.

Lemma 3.17. Let u(0) ≥ 0, s ∈ [0, T ]; the function [l(s),+∞)→ [0 +∞), x 7→ V (s, x)
is continuous at l(s).

Proof. Of course the function is lower semicontinuous at l(s), since it is increasing; we
will prove that it is also upper semicontinuous at l(s). We have to distinguish the two
cases when the boundary is absorbing or not, i.e. when β < r or β = r (see Remark 3.5).

Case 1: β < r. Let s ∈ (0, T ] and s′ ∈ [0, s); consider Xs′(t) := X(t; s′, l(s′), 0); then
the function t 7→ V (t,Xs′(t)) is decreasing by Dynamic Programming Principle (Theo-
rem 4.1), since u is positive; moreover, looking at the proof of Proposition 3.4, we see that
Xs′(s) > l(s), due to the assumption β < r, and that Xs′(s) ↓ l(s), when s′ ↑ s, because
of continuous dependence on the initial datum s′ of the state equation. Consider also the
value function along L0 in the time interval [s′, s]; by Lemma 3.15 it is continuous; thus

lim sup
x↓l(s)

V (s, x) = lim sup
s′↑s

V (s,Xs′(s)) ≤ lim sup
s′↑s

V (s′, l(s′)) = V (s, l(s)),

where the inequality holds since t 7→ V (t,Xs′(t)) is decreasing and the last equality holds
since the value function is continuous along L0; therefore the claim is proved for s ∈ (0, T ].
In the case s = 0, we can argue as well as before by extending also for s < 0 the problem
with k = 0, setting the solvency level l(s) ≡ l0 and defining the value function in the
obvious way.

Case 2: β = r. In this case we proceed directly with estimates on the state equation. Let
x > l(s), ε > 0 and let D be the density of P with respect to the probability measure P̃
given by the Girsanov transformation, which belongs to Lp(Ω, P̃ ), for any p ∈ [1,+∞).
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For any θ(·) ∈ Θad(s, x), t ∈ [s, T ], we have, by the Hölder and Markov inequalities

P{X(t; s, x, θ(·))− l(t) > ε} = E[I{X(t;s,x,θ(·))−l(t)>ε}] = Ẽ[I{X(t;s,x,θ(·))−l(t)>ε}D]

≤ (Ẽ[D2])1/2 (Ẽ[I{X(t;s,x,θ(·))−l(t)>ε}])1/2

= (Ẽ[D2])1/2 (P̃{X(t; s, x, θ(·))− l(t) > ε})1/2

≤ (Ẽ[D2])1/2

ε1/2
(Ẽ[X(t; s, x, θ(·))− l(t)])1/2.

Let us estimate Ẽ[X(t; s, x, θ(·))−l(t)]; we have, arguing as in the proof of Proposition 3.4,{
dẼ[X(t)] = rX(t)dt+ ktdt,

Ẽ[X(s)] = x,

and {
dl(t) = rl(t)dt+ ktdt,

l(s) = l(s),

so that
Ẽ[X(t; s, x, θ(·))− l(t)] = (x− l(s)) er(t−s);

let (εn, δn) be a sequence; we have shown that, for any n ∈ N, we can find xn such that
l(s) < xn < l(s) + 1/n and

P{X(t; s, xn, θ(·))− l(t) > εn} < δn, ∀θ(·) ∈ Θad(s, xn), ∀t ∈ [s, T ].

Moreover we can estimate E[(X(t; s, x, θ(·)) − l(t))2] uniformly with respect to t, x, θ(·)
varying in the sets [s, T ], [l(s), l(s) + 1], Θad(s, x); indeed, by the Dynkin formula applied
with the function ψ(t, x) = (x− l(t))2, we have

E[(X(t; s, x, θ(·))− l(t))2] = (x− l(s))2 + E

[
− 2

∫ t

s

(X(r)− l(r))l′(r)dr
]

+E
[
2
∫ t

s

(X(r)− l(r))((r + σλθ(r))X(r) + kr)dr
]

+E
[ ∫ t

s

σ2θ(r)2X(r)2dr

]
and the right-hand side is dominated by a constant C (not dependent on t ∈ [s, T ],
x ∈ [l(s), l(s) + 1], θ(·) ∈ Θad(s, x)) by the mean-square continuity of X(·) and since
θ(·) ∈ [0, 1]. Thus we can split the expectation and write, again by the Hölder inequality,

E[X(t; s, xn, θ(·))− l(t)] ≤ εn + E[I{X(t;s,xn,θ(·))−l(t)>εn}(X(t; s, xn, θ(·))− l(t))]

≤ εn + Cδ1/2
n ,

for some constant C not dependent on n; therefore, for such a point xn > l(s), it follows,
by the concavity and the monotonicity of u, f and by the Jensen inequality, that

V (s, xn) ≤
∫ T

s

u(εn + Cδ1/2
n )dt+ f(εn + Cδ1/2

n + l(T )).

If we take (εn, δn) such that (εn, δn)→ 0 when n→∞, the right-hand side in the previous
inequality tends to V (s, l(s)) and so the claim is proved.
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Lemma 3.18. Let u(0) ≥ 0; then the value function is continuous on C.

Proof. It remains only to prove the continuity at the boundary (on the interior part it
was proved in Lemma 3.16). By Lemma 3.17 we know that

V (s, l(s) + ε) ↓ V (s, l(s)), for any s ∈ [0, T ],

(when ε ↓ 0) and moreover, by Lemma 3.15, we know that s 7→ V (s, l(s)) is continuous.
Therefore by Dini’s lemma, V (·, l(·) + ε)→ V (·, l(·)) uniformly when ε ↓ 0. This conver-
gence, together with the continuity of s 7→ V (s, l(s)), is enough to prove the claim.

In order to conclude we have to remove the assumption u(0) ≥ 0:

Proposition 3.19. The value function is continuous on C.

Proof. Let u(0) = −c < 0; consider the function uc(·) := u(·) + c and let V c be the value
function associated with this utility function; by Lemma 3.18 V c is continuous on C.
Moreover V (s, x) = V c(s, x)− c

ρ (e−ρs − e−ρT ) and so the claim follows.

4. Dynamic programming. We study the optimization problem following a dynamic
programming approach. The core of the dynamic programming is the Dynamic Program-
ming Principle, which can be stated as follows:

Theorem 4.1. The value function V satisfies the dynamic programming equation, i.e. for
every s ∈ [0, T ], x ∈ [l(s),+∞) and τ ∈ [s, T ] a stopping time, the following functional
equation holds true:

V (s, x) = sup
θ(·)∈Θad(s,x)

E[
∫ τ

s

e−ρtU(t,X(t; s, x, θ(·)))dt+ V (τ,X(τ ; s, x, θ(·)))]. (22)

Remark 4.2. We do not give the proof of the previous theorem, but we want to comment
about it: in [18], Chapter 4, Theorem 3.3, there is a proof of this statement when the
value function is continuous: therein the state is unconstrained, but the argument can
be easily adapted to our case. A general proof of this statement, where the continuity of
the value function is not required, is contained in [17]; it requires a measurable selection
result.

However we want to point out that we have proved the continuity of our value function
using in Lemma 3.13 and in Lemma 3.17 only the inequality

V (s, x) ≥
∫ s′

s

e−ρtU(t,X(t; s, x, 0))dt+V (s′, X(s′; s, x, 0)), 0 ≤ s ≤ s′ ≤ T, x ≥ l(s),

which can be proved without any measurable selection argument, because in this case we
are on a deterministic trajectory. Therefore we can use the argument of [18] in order to
prove the Dynamic Programming Principle without loss of generality.

In general the dynamic programming equation is hard to treat. Then one usually
studies its differential form, i.e. the Hamilton-Jacobi-Bellman (hereafter HJB) equation.
We introduce the following Hamiltonian function

H(s, x, p,Q) = sup
θ∈[0,1]

Hcv(s, x, p,Q; θ), s ∈ [0, T ], x ∈ [l(s),+∞), p,Q ∈ R,
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where
Hcv(s, x, p,Q; θ) = e−ρsU(s, x) + p([θσλ+ r]x+ ks) +

1
2
θ2σ2x2Q (23)

The HJB equation on the domain C associated with our problem is then the following
one: {

−vs(s, x)−H(s, x, vx(s, x), vxx(s, x)) = 0, (s, x) ∈
◦
C,

v(T, x) = f(x), x ∈ [l(T ),+∞);
(24)

calling

H0
cv(x, p,Q; θ) = θσλxp+

1
2
θ2σ2x2Q,

we can write

H(s, x, p,Q) = e−ρsU(s, x) + p(rx+ ks) + sup
θ∈[0,1]

H0
cv(x, p,Q; θ).

To calculate the Hamiltonians we can observe that the function

H0
cv(x, p,Q; θ) = pθσλx+

1
2
θ2σ2x2Q,

when p ≥ 0, Q ≤ 0, p2 +Q2 > 0, has a unique maximum point over θ ∈ [0, 1] given by

θ∗ = − λp

σxQ
∧ 1

(where we mean that, for Q = 0, θ∗ = 1) and

H0(x, p,Q) = sup
θ∈[0,1]

H0
cv(x, p,Q; θ) =

{
−λ

2p2

2Q , if θ∗ < 1,

pσλx+ 1
2σ

2x2Q, if θ∗ = 1.

When p = Q = 0 each θ ∈ [0, 1] is a maximum point and H0(x, p,Q) = 0.

4.1. The HJB equation: viscosity solutions. Let us consider HJB equation (24) on C. Let
us define the sets

Int∗(C) := Int(C) ∪ {{0} × (l0,+∞)}, ∂∗C := {(s, x) ∈ C | s ∈ [0, T ), x = l(s)}.

Next we give the definition of viscosity sub(super)-solution on Int∗(C) and of viscosity
subsolution on ∂∗C (see, e.g., [4] for a survey on viscosity solutions of second order PDE’s).

Definition 4.3. (i) A continuous function v : C → R is called a viscosity subsolution
(respectively supersolution) of the HJB equation (24) on Int∗(C) if v(T, x) ≤ f(x) (re-
spectively v(T, x) ≥ f(x)), for x ∈ [l(T ),+∞), and if, for any couple ψ ∈ C2(C; R) and
(sM , xM ) ∈ Int∗(C) such that (sM , xM ) is a local maximum for v−ψ on Int∗(C) (respec-
tively (sm, xm) ∈ Int∗(C) such that (sm, xm) is a local minimum for v − ψ on Int∗(C)),
we have

−ψs(sM , xM )−H(sM , xM , ψx(sM , xM ), ψxx(sM , xM )) ≤ 0.

(respectively

−ψs(sm, xm)−H(sm, xm, ψx(sm, xm), ψxx(sm, xm)) ≥ 0.)

(ii) A continuous function v : C → R is called a viscosity solution of the HJB equation (24)
on Int∗(C) if it is both a viscosity subsolution and a viscosity supersolution on Int∗(C).
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(iii) A continuous function v : C → R is called a viscosity subsolution of the HJB equa-
tion (24) on ∂∗C if v(T, x) ≤ f(x), for x ∈ [l(T ),+∞), and if, for any couple ψ ∈ C2(C; R)
and (sM , xM ) ∈ ∂∗C such that (sM , xM ) is a local maximum for v − ψ on C, we have

−ψs(sM , xM )−H(sM , xM , ψx(sM , xM ), ψxx(sM , xM )) ≤ 0.

(iv) A continuous function v : C → R is called a constrained viscosity solution of the HJB
equation (24) on C if it is a viscosity solution on Int∗(C) and a viscosity subsolution on
∂∗C.

Now we can state and prove the following result:

Theorem 4.4. The value function V is a constrained viscosity solution of the HJB equa-
tion (24) on C.

Proof. (i) Let ψ ∈ C2(C; R) and let (sm, xm) ∈ Int∗(C) be such that (sm, xm) is a local
minimum point for V − ψ. We can assume without loss of generality that

V (sm, xm) = ψ(sm, xm) and V (s, x) ≥ ψ(s, x), ∀(s, x) ∈ C. (25)

Let θ ∈ [0, 1] and set X(t) := X(t; sm, xm, θ). Let us define τθ = inf{t ≥ sm | (t,X(t)) /∈
Int∗(C)}, with the convention inf ∅ = T ; of course τθ is a stopping time and τθ > sm
almost surely. By (25) we get, for any t ∈ [sm, τθ],

V (t,X(t))− V (sm, xm) ≥ ψ(t,X(t))− ψ(sm, xm).

Let h ∈ (sm, T ] and set τθh := τθ ∧h; by the dynamic programming principle (22) we get,
for any θ ∈ [0, 1],

0 ≥ E
[ ∫ τθh

sm

e−ρtU(t,X(t))dt+ V (τθh , X(τθh))− V (sm, xm)
]

≥ E
[ ∫ τθh

sm

e−ρtU(t,X(t))dt+ ψ(τθh , X(τθh))− ψ(sm, xm)
]
.

(26)

Applying the Dynkin formula to the function ψ(t, x) with the process X(t), we get

E[ψ(τθh , X(τθh))− ψ(sm, xm)] = E

[ ∫ τθh

sm

[
ψs(t,X(t)) + [(r + σλθ)X(t) + kt]ψx(t,X(t)).

+
1
2
σ2θ2X(t)2ψxx(t,X(t))

]
dt

]
and thus by (26) we have

0 ≥ E
[ ∫ τθh

sm

[e−ρtU(t,X(t))dt+ ψs(t,X(t)) + [(r + σλθ)X(t) + kt]ψx(t,X(t))

+
1
2
σ2θ2X(t)2ψxx(t,X(t))]dt

]
;

Thus, for any θ ∈ [0, 1], we get

0 ≥ E
[ ∫ τθh

sm

[ψs(t,X(t)) +Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ)]dt
]
;
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thus we can write, for θ ∈ [0, 1],

0 ≥ E
[

1
h− sm

∫ h

sm

I[sm,τθ](t)[ψs(t,X(t)) +Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ)
]
dt];

now, by the continuity properties of ψ and Hcv, passing to the limit for h→ sm, we get
by dominated convergence

−ψs(sm, xm)−Hcv(sm, xm, ψ′(sm, xm), ψ′′(sm, xm); θ) ≥ 0.

By the arbitrariness of θ we have proved that V is a supersolution on Int∗(C).
(ii) Let ψ ∈ C2(C; R) and (sM , xM ) ∈ Int∗(C) such that (sM , xM ) is a local maximum

point for V − ψ. We can assume, without loss of generality, that

V (sM , xM ) = ψ(sM , xM ) and V (s, x) ≤ ψ(s, x), ∀(s, x) ∈ C. (27)

We must prove that

−ψs(sM , xM )−H(sM , xM , ψx(sM , xM ), ψxx(sM , xM )) ≤ 0.

Let us suppose by contradiction that this relation is false. Then there exists ν > 0 such
that

0 < ν < −ψs(sM , xM )−H(sM , xM , ψx(sM , xM ), ψxx(sM , xM ))

By the continuity properties of U,ψ,H, there exists ε > 0 such that, if (t, x) ∈ B :=
B((sM , xM ), ε) ∩ Int∗(C), we have, for any θ ∈ [0, 1],

0 <
ν

2
< −ψs(s, x)−H(s, x, ψx(s, x), ψxx(s, x))

≤ −ψs(s, x)−Hcv(s, x, ψx(s, x), ψxx(s, x); θ) (28)

Let us consider any admissible control strategy θ(·) ∈ Θad(sM , xM ) and let X(t) :=
X(t; sM , xM , θ(·)). Define the stopping time τθ := inf{t ≥ sM | (t,X(t)) /∈ B}, with the
convention inf ∅ = T ; of course τθ > sM almost surely. Now we can apply (28) to X(t),
for t ∈ [sM , τθ], getting

0 <
ν

2
< −ψs(t,X(t))−Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ(t)); (29)

integrating (29) on [sM , τθ] and taking the expectations we get

0<
ν

2
E[τθ−sM ]≤−E

[ ∫ τθ

sM

ψs(t,X(t))+Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ(t)) dt
]
;

we claim that there exists a constant δ > 0, independent of the control θ(·), such that
ν
2E[τθ − sM ] ≥ δ; we will prove this fact in the lemma below. Thus, assuming the claim,
we can write, for any θ(·) ∈ Θad(sM , xM ),

δ ≤ −E
[ ∫ τθ

sM

(ψs(t,X(t)) +Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ(t))) dt
]
;

applying the Dynkin formula to X on [sM , τθ] we get

ψ(sM , xM )− E[ψ(τθ, X(τθ))] ≥ δ + E

[ ∫ τθ

sM

e−ρtU(t,X(t)) dt
]
;
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from (27) we get

V (sM , xM )− E[V (τθ, X(τθ))] ≥ δ + E

[ ∫ τθ

sM

e−ρtU(t,X(t)) dt
]
;

on the other hand, if we choose a δ/2 optimal control θ(·) ∈ Θad(sM , xM ), we get

V (sM , xM )− δ/2 ≤ E
[ ∫ τθ

sM

e−ρtU(t,X(t)) dt+ V (τθ, X(τθ))
]
.

So a contradiction arises and we have proved that V is a subsolution on Int∗(C).
(iii) Let ψ ∈ C2(C)→ R and (sM , xM ) ∈ ∂∗C such that (sM , xM ) is a local maximum

in C for V − ψ. Let us suppose by contradiction that, for some ν > 0,

ν < −ψs(sM , xM )−H(sM , xM , ψx(sM , xM ), ψxx(sM , xM )).

By the continuity properties of U,ψ,H, there exists ε > 0 such that, for any (t, x) ∈
B((sM , xM ), ε) ∩ C, we have

0 <
ν

2
< −ψs(t, x)−H(t, x, ψx(t, x), ψxx(t, x)). (30)

Then, arguing as in (ii), it is possible to prove that this leads to a contradiction and
therefore that V is also a viscosity subsolution on ∂∗C.

Lemma 4.5. Let τθ be the stopping time defined in the part (ii) of the proof of the previous
theorem; then there exists δ > 0 such that, for each θ(·) ∈ Θad(sM , xM ),

E[τθ − sM ] ≥ δ.

Proof. For θ(·) ∈ Θad(sM , xM ), let X(t) := X(t; sM , xM , θ(·)) and apply the Dynkin
formula to the process X(·) with the function ϕ(t, x) = (t−sM )2 +(x−xM )2 on [sM , τθ];
we get

E[(τθ − sM )2 + (X(τθ)− xM )2]

= E

[ ∫ τθ

sM

[2(t− sM ) + 2(X(t)− xM )[(r + σλθ(t))X(t) + kt] + σ2θ(t)2X(t)2] dt
]
.

So, considering that τθ ≤ T and θ(t) ∈ [0, 1] and that, for t ∈ [sM , τθ], we have |X(t)| ≤
xM + ε, we can find K > 0 such that

(T − sM )2∧ ε2 ≤ P{τθ = T}(T − sM )2 +P{τθ < T}ε2 ≤ E
[ ∫ τθ

sM

K dt

]
= KE[τθ− sM ];

this estimate does not depend on θ(·) and therefore the claim is proved.

Remark 4.6. In the definition 4.3 of constrained viscosity solution we could replace
the requirement that V − ψ has a local maximum (resp. minimum) at (sM , xM ) (resp.
(sm, xm)) with the requirement that it has a right (with respect to the time variable)
local maximum (resp. local minimum) at (sM , xM ) (resp. (sm, xm)), i.e., for some ε > 0,

V (sM , xM )− ψ(sM , xM ) ≥ V (s, x)− ψ(s, x),

for (s, x) ∈ {[sM , sM + ε]× [xM − ε, xM + ε]} ∩ C



A PENSION FUND IN THE ACCUMULATION PHASE 81

(resp. the analogous for the minimum). Then we could prove exactly as in the proof of
Theorem 4.4 that V is a constrained viscosity solution also in this stronger sense13.

4.2. The HJB equation: comparison and uniqueness. The definition 4.3 of constrained
viscosity solution which we have given is the natural version in the parabolic case of
a quite standard definition of constrained viscosity solution for HJB elliptic equations
arising in optimal control problems with infinite time horizon and state constraints. In
particular the condition in Definition 4.3-(iii) plays the role of a boundary condition.
This boundary condition was introduced by Soner in [16] in the deterministic case. In
the stochastic case it was used by Katsoulakis in [13], Zariphopoulou in [20] and Ishii &
Loreti in [11]. For the study of viscosity solutions of second order fully nonlinear equations
with boundary conditions see [10]. In particular in [16] and [11] this boundary condition
turns out to be strong enough to guarantee, under a cone-like condition for the state
equation at the boundary (see in particular assumption (A4) in [11]), the uniqueness for
the solution of the HJB equation. The natural version of this cone-like condition in the
parabolic context holds true in our case when β < r; for this reason we have chosen this
boundary condition for the equation. However in the cited references the optimal control
problem is time-homogeneous and over an infinite time-horizon, so that the associated
PDE problem is elliptic. Our problem is instead strongly time-dependent, because both
the state equation and the state constraint depend on time, and this leads to a parabolic
PDE problem. To our knowledge a comparison principle for parabolic equations with this
kind of boundary condition still misses in the literature. There are instead many results
in the case of Dirichlet type condition at the boundary and we use a result contained in
[9] to show in a particular case that our value function is the unique viscosity solution of
(24) on Int∗(C), satifying a Dirichlet type condition at the boundary.

Now let β = r; as we showed in Remark 3.5, in this case the boundary is absorbing
and the only admissible strategy for the initial point (s, l(s)), s ∈ [0, T ), is the null one;
thus in this case the value function is explicitly computable on the ”lateral” boundary
∂∗C, i.e. V (s, l(s)) = g(s), where g : [0, T ]→ R is a known function.

Notice that, if u, f are bounded, then V is obviously bounded. Moreover it is straight-
forward to see that, thanks to Proposition 3.9, V is uniformly continuous.

Theorem 4.7. Let β = r, let u be Lipschitz continuous and let u, f be bounded. Then
the value function V is the unique bounded and uniformly continuous viscosity solution
of (24) on Int∗(C) which satisfies the boundary condition v(s, l(s)) = g(s), s ∈ [0, T ].

Proof. We only sketch the proof. The complete proof can be found in [8]. We transform
the equation in order to simplify the term corresponding to the drift of the state equation
and make the constraint nicer (not time-dependent). So let v be a bounded and uniformly
continuous viscosity solution of (24) on Int∗(C) and define w : [0, T ]× [l0,+∞)→ R by

w(t, x) := v (t, h(t, x)) ,

13The test functions ψ on which the HJB equation is tested are in this case more numerous
than in the case of Definition 4.3.
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where

h(t, x) := xert +
∫ t

0

ks er(t−s)ds.

It is straightforward to prove, taking into account that l′(t) = rl(t) + kt, that v is
a bounded and uniformly continuous viscosity solution of (24) on Int∗(C) with lateral
boundary condition v(t, l(t)) = g(t), t ∈ [0, T ], and terminal boundary condition v(T, x) =
f(x) if and only if w is a bounded viscosity solution on [0, T ) × (l0,+∞), with lateral
boundary condition w(t, l0) = g(t), t ∈ [0, T ], and terminal boundary condition w(T, x) =
f (h(T, x)), of

−ut(t, x)− H̃(t, x, ux(t, x), uxx(t, x)) = 0, (31)

where

H̃(t, x, p,Q) := e−ρtU (t, h(t, x)) +H0(t, x, p,Q), t ∈ [0, T ), x ∈ (l0,+∞), p, Q ∈ R.

Therefore uniqueness for bounded and uniformly continuous viscosity solutions of (24)
on Int∗(C) holds with lateral boundary condition v(t, l(t)) = g(t), t ∈ [0, T ], and terminal
boundary condition v(T, x) = f(x), if and only if uniqueness for bounded and uniformly
continuous viscosity solutions of (31) on [0, T )×(l0,+∞) holds with lateral boundary con-
dition w(t, l0) = g(t), t ∈ [0, T ], and terminal boundary condition w(T, x) = f (h(T, x)).

Now the setting is very similar to Theorem V.8.1 in [9], but here we have to work with
an unbounded domain. So the proof is a suitable modification of the proof of Theorem
V.8.1 of [9]. The main feature of this modification consists in adding to the test function
Φ (appearing in the cited reference) the term −ε log(x+ y + 1).

5. Conclusions. We have partially investigated a problem strictly related to that one
studied in [6]. In the context of [6] the problem was homogeneous over time and with
an infinite time horizon, therefore it was possible to get rid of the time variable and to
reduce the problem to an elliptic one. Here there are some intrinsic difficulties related to
the dependence on the time variable of the state equation and of the state constraint,
so that the problem has higher difficulties. The main feature of this work is the proof of
the continuity of the value function in this different context; this proof required a new
argument with respect to that used to prove the continuity of the value function in [6].
Instead the argument used to prove that the value function is a viscosity solution of the
HJB equation is a suitable modification of that one contained in [6]. The uniqueness
result when the boundary is absorbing is essentially a consequence of [9]. Of course the
aim of future works is to improve the study of the problem proving a uniqueness result
in the case β < r and proving regularity properties for the value function (which again
would require more subtle arguments than the ones used in [6]) in order to be able to
prove a verification theorem giving optimal feedback strategies also in this case.
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