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Abstract. Parameter sensitivities of prices for derivative contracts play an important role in

model calibration as well as in quantification of model risk. In this paper a unified approach to

the efficient numerical computation of all sensitivities for Markovian market models is presented.

Variational approximations of the integro-differential equations corresponding to the infinites-

imal generators of the market model differentiated with respect to the model parameters are

employed. Superconvergent approximations to second and higher derivatives of prices with re-

spect to the price process’ state variables are extracted from approximate, computed prices with

low, C0 regularity by postprocessing. The extracted numerical sensitivities are proved to con-

verge with optimal rates as the mesh width tends to zero. Numerical experiments for uni- and

multivariate models with sparse tensor product discretization confirm the theoretical results.

1. Introduction. A key task in financial engineering is the fast and accurate calcula-
tion of sensitivities of market models with respect to model parameters. This becomes
necessary for example in model calibration, risk analysis and in the pricing and hedging
of certain derivative contracts. Classical examples are variations of option prices with re-
spect to the spot price or with respect to time-to-maturity, the so-called “Greeks” of the
model. For classical, diffusion type models and plain vanilla type contracts, the Greeks
can be obtained analytically (see [21]). With the trends to more general market mod-
els of jump-diffusion type and to more complicated contracts, closed form solutions are
generally not available for pricing and calibration. Thus, prices and model sensitivities
have to be approximated numerically. As model sensitivities are generally derivatives of
the computed prices with respect to model input parameters, a naive approach consists
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in numerically differentiating computed prices by, e.g., Finite Difference formulas. This
results in extra work (e.g. due to multiple ‘forward’ pricing runs) and, due to the gen-
erally low regularity of Finite Difference or Finite Element approximations to prices of
derivative contracts, in substantial loss of accuracy in the computed sensitivities.

To obtain stable numerical procedures yielding approximate, numerically computable
sensitivities for general Markovian market models and for general contracts which con-
verge at the same rate as the computed option prices, additional analytical considerations
are necessary.

Most work in this direction has been devoted to Monte-Carlo methods (see [8, 13]
and references therein) for diffusion and jump-diffusion models. This paper is focused
on a more general class of Markov processes X, including stochastic volatility and mul-
tidimensional Lévy models. A mesh-based approach is used to solve the corresponding
partial integro-differential equation (PIDE). A mesh-based approach is also described in
[1] where automatic differentiation of a Finite Element code is used to approximate the
Greeks.

In our approach, we distinguish between two classes of sensitivities. The sensitivity
of the solution u to variation of a model parameter, like the Greek Vega (∂σu) and
the sensitivity of the solution u to a variation of state spaces such as the Greek Delta
(∂xu). We show that an approximation for the first class can be obtained as a solution
of the pricing PIDE with a right hand side depending on u. For the second class, a
finite difference like differentiation procedure is presented which allows to obtain the
sensitivities from the Finite Element forward price without additional forward solver.

The outline of the paper is as follows. We start by describing the problem setup.
First we explain the abstract framework and the variational discretization of the forward
Kolmogorov equation by Finite Element methods. Then, we derive for both classes of
sensitivities an algorithm to compute these by postprocessing the Finite Element solu-
tion. It is shown that approximation of the sensitivities converge with the same rate as
the approximation of the option price. Finally, we give numerical examples for different
dimensions and models.

2. Variational option pricing

2.1. Parametric Markovian market models. Let (Ω,F , (Ft)t≥0,P) be a filtered proba-
bility space satisfying the usual hypotheses. We consider the process X to model the
dynamics of a single underlying, a basket or a underlying and its “background” volatility
drivers in case of stochastic volatility models. For notational simplicity only we assume
that the interest rate is zero. Let g be the payoff, T > 0 the maturity and Q an equiv-
alent martingale measure (EMM) to P, i.e. Q ∼ P such that the process (Xt)t≥0 is a
Q-martingale.

Since X is Markovian, the fair price of a European style contingent claim with un-
derlying X is given by

u(t, x) = EQ[ g(XT ) | Xt = x
]
.

If the function value u is sufficiently smooth, it is known to solve the backward Kol-
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mogorov equation

−∂tu+Au = 0 in (0, T )× Rd, (1)

u(T, x) = g(x) in Rd, (2)

where A denotes the infinitesimal generator of X. We consider processes X where A
splits into the diffusive part AW , the drift part Aδ and the jump part AJ given by

A = AW +Aδ +AJ , where

AW [ϕ](x) = −1
2
Q(x)D2ϕ(x),

Aδ[ϕ](x) = 〈b(x), Dϕ(x)〉, (3)

AJ [ϕ](x) = −
∫
E

(
ϕ(x+ ζ(x, z))− u(x)− 〈ζ(x, z), Dϕ(x)〉1|z|≤1

)
ν(dz).

Here, Q : Rd → Rd×d, b : Rd → Rd and ζ : Rd×E → Rd with the set of admissible jumps
E ⊂ Rd \ {0}. Furthermore, D and D2 are the differential operators D = (∂xi)1≤i≤d, and
D2 = (∂xixj )1≤i,j≤d and ν denotes the compensator of a Poisson random measure on E

satisfying
∫
E

min{1, |z|2}ν(dz) <∞.

Definition 1. We call a process X a parametric Markovian market model with admis-
sible parameter set Sη if

(i) for all η ∈ Sη X is a strong Markov process with respect to a stochastic basis
(Ω,F , (Ft)t≥0,P),

(ii) the infinitesimal generator A of the semigroup generated by X has the form (3),
and the mapping Sη 3 η → {Q, b, ν, ζ} is infinitely differentiable.

In (3), we assume that the coefficients Q, b, ζ and ν do not depend on time t. Recently,
Carr et al. [10] considered Sato processes (self-similar additive processes) as drivers for the
underlying X. The authors introduce R-valued pure jump processes with Lévy measure ν
which has time-inhomogeneous Lévy density k(z, t). Our approach to compute prices and
sensitivities is not restricted to time independent coefficients but naturally extends to the
case when the coefficients are time-inhomogeneous. We give some examples of Markov
processes X and their infinitesimal generators covered by our approach.

Example 1 (Multidimensional Lévy model [16, 22]). The Markov process is given by
the d dimensional Lévy process X = (X1, . . . , Xd) with characteristic triplet (Q, νQ, γ)
under the EMM Q. We assume that the Lévy measure satisfies

∫
|z|>1

eziνQ(dz) < ∞,
i = 1, . . . , d. Then, the coefficients are given by

Q(x) = (Qij)1≤i,j≤d , b(x) = (γi)1≤i≤d , ζ(x, z) = z, (4)

with γi = 1
2Qii +

∫
Rd
(
ezi − 1− zi1|z|≤1

)
ν(dz). The dependence structure of the Brow-

nian motion part of X is characterized entirely by its covariance matrix Q. The de-
pendence structure of the purely discontinuous part of X can be described using Lévy
copulas. These were introduced in Tankov [22] and developed in Kallsen and Tankov [16].
Analytic properties and wavelet discretization of the copula process’ generator were dis-
cussed by Farkas et al. [11]. For the Clayton Lévy copula with CGMY [9] margins the
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multidimensional Lévy density is given by

k(x1, . . . , xd) = ∂1 . . . ∂dF |ξ1=U1(x1),...,ξd=Ud(xd)k1(x1) . . . kd(xd),

with marginal Lévy densities

ki(z) = Ci

(
eGiz

|z|1+Yi
1{z<0} +

e−Miz

|z|1+Yi
1{z>0}

)
, Ci, Gi > 0,Mi > 1, Yi < 2, (5)

marginal tail integrals

Ui(x) = CiM
Yi
i Γ(−Yi,Mix) 1{x>0} − CiGYii Γ(−Yi,−Gix) 1{x<0},

and Lévy copula

F (x1, . . . , xd) = 22−d
( d∑
i=1

|xi|−θ
)− 1

θ (
η1{x1···xd≥0} − (1− η)1{x1···xd≤0}

)
,

where i = 1, . . . , d, θ > 0 and η ∈ [0, 1]. The Clayton copula density blends for xi ≥ 0,
i = 1, . . . , d the complete independence density (θ = 0) and the complete dependence
density (θ →∞).

Example 2 (Stochastic volatility model of Heston [14]). The Markov process X is of the
form X = (S, Y ), where the R-valued process S describes the dynamics of the underlying
and the R-valued process Y its volatility. Under a EMM Q, X satisfies the stochastic
differential equation dXt = b(Xt)dt+ Σ(Xt)dWt where (Wt) denotes a two dimensional
Brownian motion and the coefficients b,Σ are (see [14])

b =
(

0
α(m− Yt)− λ(t, St, Yt)

)
, Σ =

( √
YtSt 0

βρ
√
Yt β

√
1− ρ2

√
Yt

)
,

with α > 0 the rate of mean reversion, m > 0 the long-run mean level of volatility, β ∈ R
and ρ ∈ [−1, 1] the instantaneous correlation. The function λ : [0, T ] × R+ × R+ → R
appearing in the second component of the drift b represents the price of volatility and
reflects the incompleteness of this market model. The infinitesimal generator A of X is
as in (3) where for x := (S, y) := (x1, x2) ∈ R+ × R+

b(x) =
(

0
α(m− x2)− λ(t, x1, x2)

)
, Q(x) = ΣΣ> =

(
x2

1x2 βρx1x2

βρx1x2 β2x2

)
, ν = 0.

Example 3 (Stochastic volatility model of BNS). This stochastic volatility model sug-
gested by Barndorff-Nielsen and Shephard [3] specifies the volatility (of the underlying)
as an Ornstein-Uhlenbeck process driven by a Lévy subordinator L. The Markov process
X = (S, Y ) = (eZ , σ2) under an EMM Q satisfies the SDE (see [3, 19])

dZt =
(
−λκ− 1

2
σ2
t

)
dt+ σtdWt + ρ dLλt,

dσ2
t = −λσ2

t dt+ dLλt,

where (Wt) is a Q-Brownian motion and (Lλt) is a Q-Lévy process. The parameters
satisfy β, µ, ρ, λ ∈ R, λ > 0, ρ ≤ 0 and the cumulant transform κ is κ(ρ) =

∫
R+

(eρz −
1)w(z)k(z)dz. Here, w : R+ → R+ satisfies

∫
R+

(
√
w(z) − 1)2k(z)dz < ∞, and k is

the density of the Lévy measure of L under the historical measure P. The infinitesimal
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generator A of X has the form as in (3), where for x := (x1, x2) ∈ R × R+ and z ∈ R+

the coefficients are given by (with c :=
∫
z≤1

zν(dz))

b(x) =
(
−λκ− ρc− 1

2x2

−λx2 − c

)
, Q(x) =

(
x2 0
0 0

)
,

ζ(x, z) =
(
ρ

1

)
z, ν(dz) = λw(z)k(z)dz, E = R+ .

Note that the term 〈ζ(x, z), Dϕ(x)〉1|z|≤1 appearing in AJ can be omitted here, since Lt
is a subordinator and hence has sample paths of finite variation.

We calculate the sensitivities of the solution u of (1)–(2) with respect to parameters
in the infinitesimal generator A and with respect to solution arguments x and t. We write
A(η0) for a fixed parameter η0 ∈ Sη to emphasize the dependence of A on η0 and change
the time to time-to-maturity t → T − t in (1)–(2). For sensitivity computation (as well
as for domain truncation, cf. [18]), it will be crucial below to admit a non-trivial right
hand side. Accordingly, we consider from now on the forward parabolic problem

∂tu+A(η0)u = f in (0, T ]× Rd, (6)

u(0, x) = u0 in Rd, (7)

with u0 = g. For the numerical implementation we truncate the parabolic PIDE (6)–(7)
to a bounded domain G ⊂ Rd and impose boundary conditions on ∂G. Typically, G is a d-
dimensional hypercube, i.e. G =

∏d
k=1(ak, bk) for some ak, bk ∈ R, bk > ak, k = 1, . . . , d.

We approximate the solution to (6)–(7) by the Finite Element method, which is based
on the variational formulation of (6)–(7).

2.2. Variational setting. With a parametric Markovian market model X in the sense of
Definition 1 with parameter set Sη and infinitesimal generator A(η0) as in (3), η0 ∈ Sη,
we associate to A(η0) the Dirichlet form a(η0; ·, ·) : V × V → R via

a(η0;u, v) := 〈A(η0)u, v〉V ∗×V , u, v ∈ V,

with domain V
d
↪→ H (dense embedding). We identify H with its dual H∗ and denote by

V ∗ the dual of V so that V
d
↪→ H ∼= H∗

d
↪→ V ∗. We denote by ‖ · ‖, ‖ · ‖V the norms in

H,V , by (·, ·) the inner product in H and by 〈·, ·〉V ∗×V the duality pairing between V and
its dual V ∗. L(V,W ) is the vector space of linear and continuous operators A : V →W .

We assume A(η0) ∈ L(V, V ∗) to be an elliptic, spatial operator given in weak form
where the Dirichlet form a(·; ·, ·) : Sη × V × V → R satisfies: there exist non-negative
constants α(η0), β(η0), γ(η0) such that

|a(η0;u, v)| ≤ α(η0)‖u‖V ‖v‖V , ∀u, v ∈ V, η0 ∈ Sη (continuity), (8)

a(η0; v, v) ≥ β(η0)‖v‖2V − γ(η0)‖v‖2H , ∀v ∈ V, η0 ∈ Sη (G̊arding inequality). (9)

Remark 1.

(i) In general, the space V may depend on the parameter η0 and we should write Vη0 .
For notational simplicity, we drop the subscript η0.
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(ii) We can assume without loss of generality that γ(η0) = 0 in (9) since by the expo-
nential shift w := e−γ(η0)τu we obtain ∂tw +A(η0)w + γ(η0)u = e−γ(η0)tf and the
operator A(η0) + γ(η0)I is coercive on V .

Denote by J the time interval J := (0, T ). For f ∈ L2(J ;V ∗) and u0 ∈ H the weak
formulation to the problem (6)–(7) is given by:

Find u ∈ L2(J ;V ) ∩H1(J ;V ∗) such that

(∂tu(t, ·), v) + a
(
η0;u(t, ·), v

)
= 〈f(t), v〉V ∗×V , ∀v ∈ V, (10)

u(0, ·) = u0.

Under the assumption (8)–(9) the operator A(η0) +γ(η0)I ∈ L(V, V ∗) defines an isomor-
phism and (10) admits a unique solution.

We assume that V is Sobolev-type space with smoothness index r, i.e.

V = H̃r, H̃0 = H = L2. (11)

Note that r depends on the order of the operator A(η0). We also assume that the solution
u(η0) to (10) has higher regularity in space, u(η0)(t) ∈ Hs ⊂ H̃r for t ∈ (0, T ], where Hs
is again a Sobolev-type space with smoothness index s.

Example 4. Consider the multivariate Lévy copula model from Example 1.

(i) It can be shown similar to [18] that V = H̃r(G) with r = 1, if Q > 0. Here, for
r ≥ 0, the space H̃r(G) is given by H̃r(G) = {u|G | u ∈ Hr(R), u|R\G = 0}.

(ii) Now let Qij = bi = 0, 1 ≤ i, j ≤ d, and marginal Lévy densities ki, 1 ≤ i ≤ d, as in
(5). In [11] it was proved that for multivariate barrier contracts V is the anisotropic
Sobolev space V = H̃r(G), with r = (Y1/2, . . . , Yd/2). Here, for r = (r1, . . . , rd),
ri ≥ 0, i = 1, . . . , d, we denote the space H̃r(G) by H̃r(G) = {u | u ∈ C∞0 (G)}
where u is the zero extension of u to Rd and the closure is taken with respect to
the norm given by ‖u‖2Hr(Rd) =

∑d
j=1 ‖u‖2Hrjj (Rd)

.

2.3. Variational discretization. Let Vh be a finite dimensional subspace Vh ⊂ V consist-
ing of continuous piecewise polynomials of degree p ≥ 1 with dimVh = N < ∞. The
Finite Element semi-discretization in (log) price space of (10) reads:

Find uh ∈ L2(J ;Vh) ∩H1(J ; (Vh)∗) such that

(∂tuh(t, ·), vh) + a(η0;uh(t, ·), vh) = 〈f(t), vh〉V ∗×V ∀ vh ∈ Vh, (12)

uh(0, ·) = u0,h, (13)

where u0,h is an approximation of u0 in Vh. The Finite Element formulation (12)–(13)
is equivalent to a large, but finite system of ODEs to be solved numerically on the time
interval J . To this end, we fix a basis B := {Φj}Nj=1 of Vh and let u denote the coefficient
vector of uh with respect to the basis B. Then, (12)–(13) is equivalent to:

Find u(t) ∈ RN such that
Mu̇+ Au = f(t),

where M and A are the so-called mass and stiffness matrices given by
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M = ((Φi,Φj))1≤i,j≤N , A = (a(η0; Φj ,Φi))1≤i,j≤N , (14)

as well as f(t) = 〈f(t),Φj〉1≤j≤N .
For the convergence analysis of the Finite Element based pricing algorithms, we

assume the following approximation property of the space Vh: For all u ∈ Hs with
r ≤ s ≤ p+ 1 there exists a uh ∈ Vh such that for 0 ≤ τ ≤ r (with r as in (11))

‖u− uh‖ eHτ ≤ Chs−τ‖u‖Hs (15)

We further assume the existence of a projector or an interpolant Ph : V → Vh which
satisfies (15) with uh = Phu.

We give examples for the space Vh. In dimension d = 1, we consider Vh to be the
wavelet Finite Element space on a uniform mesh with mesh width h on G as proposed
e.g. in [18]. In this setting, the projector Ph is defined by truncating the wavelet expansion
of u ∈ V . For problems in dimension d ≥ 2, consider the sparse tensor space V̂h as defined
e.g. in [26].

To discretize in time, we use the θ-scheme. For M ∈ N define the time step ∆t = T
M

and tm = m∆t, m = 0, . . . ,M . The fully discrete scheme reads: Find um+1
h ∈ Vh,

m = 0, 1, . . . ,M − 1 such that(
∆t−1(um+1

h − umh ), v
)

+ a(η0;um+θ
h , vh) = (fm+θ, v), ∀v ∈ Vh, (16)

with u0
h = u0,h. Here um+θ

h := θum+1
h + (1− θ)umh and fm+θ := θf(tm+1) + (1− θ)f(tm).

In matrix form, (16) reads(
∆t−1M + θA

)
um+1 =

(
∆t−1M− (1− θ)A

)
um + fm+θ, m = 0, 1, . . . ,M − 1,

where um is the coefficient vector of umh with respect to the basis B of Vh.

3. Sensitivity analysis. For a parametric Markovian market model X in the sense of
Definition 1 we distinguish two classes of sensitivities.

1. The sensitivity of the solution u to a variation Sη 3 ηs := η0+sδη, s > 0, of an input
parameter η0 ∈ Sη. Typical examples are the Greeks Vega (∂σu), Rho (∂ru) and
Vomma (∂σσu). Other sensitivities which are not so commonly used in the financial
community are the sensitivity of the price with respect to the jump intensity or the
order of the process that models the underlying. We show that the Finite Element
approximation to such sensitivities satisfies again the scheme (16) with a right hand
side fm+θ which depends on the approximation um+θ

h of the pricing function u. We
also show that the approximation of these sensitivities converge with the same rate
as uh.

2. The sensitivity of the solution u to a variation of arguments t, x. Typical examples
are the Greeks Theta (∂τu), Delta (∂xu) and Gamma (∂xxu). Higher derivatives
like ∂xxxu are used in [12, Chapter 5] to approximate prices of European options
under stochastic volatility models. We show that these sensitivities can directly
be obtained by postprocessing the Finite Element solution uh (12)–(13) without
additional runs. Again our numerical approximations of these sensitivities converge
with the same rate as uh.
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3.1. Sensitivity with respect to model parameters. Let C be a Banach space over a domain
G ⊂ Rd. C is the space of parameters or coefficients in the operatorA and Sη ⊆ C is the set
of admissible coefficients. We denote by u(η0) the unique solution to (10) and introduce
the derivative of u(η0) with respect to η0 ∈ Sη as the mapping Dη0u(η0) : C → V

ũ(δη) := Dη0u(η0)(δη) := lim
s→0+

1
s

(
u(η0 + sδη)− u(η0)

)
, δη ∈ C.

We also introduce the derivative of A(η0) with respect to η0 ∈ Sη

Ã(δη)ϕ := Dη0A(η0)(δη)ϕ := lim
s→0+

1
s

(
A(η0 + sδη)ϕ−A(η0)ϕ

)
, ϕ ∈ V, δη ∈ C.

We assume that Ã(δη) ∈ L(Ṽ , Ṽ ∗) with Ṽ a real and separable Hilbert space satisfying

Ṽ ⊆ V d
↪→ H ∼= H∗

d
↪→ V ∗ ⊆ Ṽ ∗.

We further assume that there exists a real and separable Hilbert space V ⊆ Ṽ such that
Ãv ∈ V ∗, ∀v ∈ V .

We have the following relation between Dη0u(η0)(δη) and u.

Lemma 1. Let Ã(δη) ∈ L(Ṽ , Ṽ ∗), ∀δη ∈ C and u(η0) : (0, T ]→ V , η0 ∈ Sη be the unique
solution to

∂tu(η0) +A(η0)u(η0) = 0 in (0, T )× Rd, (17)

u(η0)(0, ·) = g(x) in Rd. (18)

Then ũ(δη) solves

∂tũ(δη) +A(η0)ũ(δη) = −Ã(δη)u(η0) in (0, T )× Rd, (19)

ũ(δη)(0, ·) = 0 in Rd. (20)

Proof. Since u(η0)(0) = g does not depend on η0 its derivative with respect to η is 0. Now
let ηs := η0+sδη, s > 0, δη ∈ C. Subtract from the equation ∂tu(ηs)(t)+A(ηs)u(ηs)(t) = 0
equation (17) and divide by s to obtain

∂t
1
s

(
u(ηs)(t)− u(η0)(t)

)
+

1
s

(
A(ηs)−A(η0)

)
u(ηs)(t)

+
1
s
A(η0)

(
u(ηs)(t)− u(η0)(t)

)
= 0.

Taking lims→0+ gives equation (19).

We associate to the operator −Ã(δη) the Dirichlet form ã(δη; ·, ·) : Ṽ × Ṽ → R which
is given by

−ã(δη;u, v) = −
(
Ã(δη)u, v

)
.

The variational formulation to (19)–(20) reads: Find ũ(δη) ∈ L2(J ;V ) ∩H1(J ;V ∗) such
that ũ(δη)(0, ·) = 0 in H and such that

(∂tũ(δη)(t, ·), v) + a
(
η0; ũ(δη)(t, ·), v

)
= −ã

(
δη;u(η0)(t, ·), v

)
, ∀v ∈ V. (21)

Note that (21) has a unique solution ũ(δη) ∈ V due to the assumptions on a(η0; ·, ·), Ã
and u(η0) ∈ V .
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Example 5 (CGMY model). We consider a one-dimensional Lévy process X with
CGMY density k as in (5). According to (3)–(4), the infinitesimal generator A has the
form

A[ϕ] = −1
2
σ2∂xxϕ+

(
1
2
σ2 + c

)
∂xϕ−

∫
R

{
ϕ(x+ z)− ϕ(x)− z1{|z|≤1}∂xϕ(x)

}
k(z)dz

where the constant c depends only on k via c :=
∫

R
(
ez − 1− z1{|z|≤1}

)
k(z)dz to ensure

that eX is a martingale. The weak formulation for the price of European style contingent
claim is as in (10) with f = 0.

For the sensitivity of the price with respect to the volatility σ the set of admissible
parameters Sη is Sη = R+ with η = σ. We have

Ã(δσ)ϕ = −δσσ0∂xxϕ+ δσσ0∂xϕ ∈ L(V, V ∗),

with δσ ∈ R = C. The Dirichlet form ã(δσ; ·, ·) appearing in the weak formulation (21) of
ũ(δσ) is given by

ã(δσ;ϕ,ψ) = δσσ0(∂xϕ, ∂xψ) + δσσ0(∂xϕ,ψ).

For the sensitivity of the price with respect to the jump intensity parameter Y of the
Lévy process X we let 0 < Y < 2. Then, we have Sη = (0, 2) with η = Y and

Ã(δY )ϕ = −δY
∫

R

{
ϕ(x+ z)− ϕ(x)− z∂xϕ(x)

}
k̃(z)dz ∈ L(Ṽ , Ṽ ∗)

where the kernel k̃ is given by

k̃(z) := − ln |z|k(z).

It is easy to check that due to Y < 2 in (5)∫
|z|≤1

z2k̃(z)dz <∞,
∫
|z|>1

k̃(z)dz <∞.

In this setting, Ṽ = V = H̃1(G), if σ > 0, and Ṽ = H̃Y/2+ε(G) ⊂ H̃Y/2(G) = V , ∀ε > 0,
if σ = 0 and if the drift has been removed by a change of variables as in [18].

The fully discrete scheme to find an approximation to ũ(δη) in (21) is:
Given ũ0

h = 0, for m = 0, 1, . . . ,M − 1 find ũm+1
h ∈ Vh such that(

∆t−1(ũm+1
h − ũmh ), v

)
+ a(η0; ũm+θ

h , vh) = −ã
(
δη;um+θ

h , v
)
, ∀v ∈ Vh (22)

or in matrix form(
∆t−1M + θA

)
ũm+1 =

(
∆t−1M− (1− θ)A

)
ũm − Ã

(
θum+1 + (1− θ)um

)
,

where Ã is the matrix of the Dirichlet form ã(δη; ·, ·) in the basis B,

Ã = (ã(δη; Φj ,Φi))1≤i,j≤N . (23)

The resulting algorithm is illustrated as pseudo code in Table 1. Here, we denote by
y ← solve(B, x) the output of a generic solver for a linear system Bx = y.
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Choose η0 ∈ Sη, δη ∈ C.
Calculate the matrices M, A and Ã according to (14) and (23).
Let u0 be the coefficient vector of u0

h in the basis B of Vh.
Set ũ0 = 0.
For j = 0, 1, . . . ,M − 1

u1 ← solve
(
∆t−1M + θA, (∆t−1M− (1− θ)A)u0

)
Set f := Ã(θu1 + (1− θ)u0)
ũ1 ← solve

(
∆t−1M + θA, (∆t−1M− (1− θ)A)ũ0 − f)

)
Set u0 := u1, ũ0 := ũ1

Next j

Table 1. Algorithm to compute sensitivities with respect to model parameters

3.2. Convergence rates for sensitivities with respect to model parameters. In this section
we establish convergence rates for the sequence {ũm}M−1

m=0 of sensitivities with respect to
model parameters as the discretization parameter h in (12)–(13) tends to zero. We show
that the computed sensitivities converge essentially at the same rate as the computed
prices. For notational simplicity the subscript η0 is omitted. We define the energy norm

‖u‖a :=
√
a(u, u) ∼ ‖u‖V

which is, by (8) and (9), equivalent to the norm ‖ · ‖V . For f ∈ V ∗h , we let

‖f‖∗ := sup
06=vh∈Vh

(f, vh)
‖vh‖a

.

The main result of this section is the following Theorem. The proof is given in Ap-
pendix A.1.

Theorem 2. Let the assumptions of Lemma A.5 and Lemma A.1 be fulfilled. Then

‖ũM − ũMh ‖2 + ∆t
M−1∑
m=0

‖ũm+θ − ũm+θ
h ‖2V

≤ C
∑

v∈{u,eu}
{

(∆t)2
∫ T
0
‖v̈(τ)‖2∗dτ θ ∈ [0, 1]

(∆t)4
∫ T
0
‖...v (τ)‖2∗dτ θ = 1

2

+ Ch2(s−r)
∑

v∈{u,eu}
∫ T

0

‖v̇(τ)‖2Hs−rdτ

+ Ch2(s−r) max
0≤t≤T

‖u(t)‖2Hs .

Theorem 2 shows that if the error between the exact and the approximate price
satisfies ‖um−umh ‖ = O(hs−r) +O((∆t)κ), the error between the exact and approximate
sensitivity preserves the same convergence rates both in space and time, i.e. ‖ũm− ũmh ‖ =
O(hs−r) +O((∆t)κ).

3.3. Sensitivity with respect to solution arguments. Let u be the solution of the vari-
ational problem (10). We discuss the computation of Dαu = ∂|α|

∂
α1
x1 ···∂

αd
xd

u for arbitrary

multi-index α ∈ Nd0. The approximation of derivatives of solutions to elliptic and parabo-
lic partial differential equations in the context of Finite Elements is well studied [2, 5, 6,
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7, 20, 23, 24]. In these papers, derivatives are approximated by applying difference opera-
tors or local averaging operators to the Finite Element solution of the problem. We follow
this approach. For µ ∈ Zd a multi-integer and h ∈ R+ we define the translation operator
Tµh ϕ(x) = ϕ(x+µh) and the forward difference quotient ∂h,jϕ(x) = h−1(T ejh ϕ(x)−ϕ(x)),
where ej , j = 1, . . . , d, denotes the j-th standard basis vector in Rd. For α ∈ Nd0 we denote
∂αhϕ = ∂α1

h,1 · · · ∂
αd
h,dϕ and by Dα

h the difference operator of order n ≥ 0

Dα
hϕ :=

∑
γ,|α|=n

Cγ,αT
γ
h ∂

α
hϕ.

Definition 2. The difference operator Dα
h of order |α| = n and mesh width h is called

an approximation to the derivative Dα of order s ∈ N0 if for any G0 ⊂ G,

‖Dαϕ−Dα
hϕ‖ eHr(G0)

≤ Chs‖ϕ‖Hs+r+n(G), ∀ϕ ∈ Hs+r+n. (24)

Given a basis B := {Φj}Nj=1 of Vh, the action of Dα
h to vh ∈ Vh can be realized as

matrix-vector multiplication vh 7→ Dα
hvh, where

Dα
h =

(
Dα
hΦ1, . . . , D

α
hΦN

)
∈ RN×N (25)

and vh is the coefficient vector of vh with respect to the basis B.

Example 6. Let Vh = span{ϕj(x) | 1 ≤ j ≤ N}, ϕj(x) = max{0, 1 − h−1|x − jh)|},
h = 1

N+1 , be the space of piecewise linear continuous functions on [0, 1] vanishing at the
end points 0, 1. For α, β, γ ∈ R and µ ∈ N0 we denote by diag±µ(α, β, γ) the matrices

diag−µ(α, β, γ) =

 · · · 0 α β γ 0 · · ·
α β γ

. . . . . . . . .


↑

µ+ 1-th column

and diagµ(α, β, γ) = (diag−µ(α, β, γ))>. Then the matrices Qh of the forward difference
quotient ∂h and Tµ of the translation operator Tµh are given by

Qh = h−1diag0(0,−1, 1), Tµ = diagµ(0, 1, 0).

Hence, for example, we have for the centered finite difference quotient

D2
hϕ(x) = h−2(ϕ(x+ h)− 2ϕ(x) + ϕ(x− h))

of order 2 in one dimension D2
h = T−1Q2

h = h−2diag0(1,−2, 1).
Now let Vh = Vh ⊗ · · · ⊗ Vh be the d-fold tensor product of Vh. Then the matrix Dα

h

is given by
Dα
h =

∑
γ,|α|=n

Cγ,αTγ1 ⊗ · · · ⊗TγdQ
α1
h ⊗ · · · ⊗Qαd

h .

In Table 2 the algorithm to obtain an approximation to the derivative Dαu(T, x) at
maturity T is illustrated. The vector v ∈ RN is the coefficient vector of Dα

hu
M
h in the

basis B of Vh.
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Choose η0 ∈ Sη.
Calculate the matrices M, A and Dα

h according to (14) and (25).
Let u0 be the coefficient vector of u0

h in the basis B of Vh.
For j = 0, 1, . . . ,M − 1

u1 ← solve
(
∆t−1M + θA, (∆t−1M− (1− θ)A)u0

)
Set u0 := u1

Next j
Set v := Dα

hu
1

Table 2. Algorithm to compute with respect to arguments of solution

3.4. Convergence rates for sensitivities with respect to solution arguments. For simplic-
ity, we shall assume in this section that the function ζ : Rd × E → Rd appearing in (3)
depends only on z, i.e. ζ : E → Rd.

We have the following convergence result for the approximation of sensitivities with
respect to solution arguments. Its proof can be found in the Appendix A2.

Theorem 3. Let the assumptions of Lemma A.1 be fulfilled and assume that u(x, t) is
sufficiently smooth in [0, T ] × G. Assume that the approximation ∂βhu

0
h is quasi-optimal

in L2(G) for all β ≤ α. Assume further that Dα
h approximates Dα in the sense of Defi-

nition 2. Then

‖DαuM −Dα
hu

M
h ‖2 + ∆t

M−1∑
m=0

‖Dαum+θ −Dα
hu

m+θ
h ‖2V

≤ C

{
(∆t)2

∫ T
0
‖ü(τ)‖2∗dτ, θ ∈ [0, 1]

(∆t)4
∫ T
0
‖...u (τ)‖2∗dτ, θ = 1

2

+ Ch2(s−r)
∫ T

0

‖u̇(τ)‖2Hs−rdτ

+ Ch2(s−r) max
0≤t≤T

‖u(t)‖2Hs .

Remark 2.

(i) Note that we cannot get higher convergence rates than s− r, even if u has higher
regularity (u(t) ∈ Hs+r+n).

(ii) Theorem 3 shows that arbitrary derivatives of u can be approximated with the
same rate as u itself, provided u is sufficiently smooth.

4. Numerical examples. In this section we compute various sensitivities for different
models. We mainly choose models where the price is known in closed form such that
we are able to compute the errors between the exact price/sensitivities and their Finite
Element approximations. In Theorems 2 and 3 these discretization errors are estimated
in the energy norm. In the numerical examples, however, we measure the errors in the
L∞ norm since the above mentioned closed form solutions are not given explicitly as
functions of x and t. This makes the computation of ‖u(T, x)−uMh ‖V very expensive and
only approximative.

We measure the L∞ norm of the error on a subset G0 of the computational domain G
at time to maturity t = T . In all computations, we choose wavelet Finite Element spaces
spanned by continuous wavelets of polynomial degree p = 1. For problems in dimension
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d ≥ 2, we choose the sparse grid spaces V̂h to reduce the computational complexity of the
approximations. In the θ-scheme, we let θ = 1

2 and choose the time step ∆t sufficiently
small.

The experimental convergence rates are obtained by the least square method applied
to the data (log h, log eh), where eh := ‖u(T, x)− uMh ‖L∞(G0).

4.1. One-dimensional models. We consider Example 1 with d = 1 for two models: (i) the
Black-Scholes model [4] and (ii) Variance Gamma model [17] with parameters (σ, ν, ϑ),
i.e one has in (5) Y = 0, C = ν−1, M = (νµ+)−1 and G = (νµ+)−1 where µ+ =
1
2

√
ϑ2 + 2σ2ν−1 + ϑ

2 , µ− = µ+ − ϑ. For both models, we consider a European put with
strike K = 1 and maturity T = 0.1, and we calculate the Greeks Delta, ∆ = Du = ∂u

∂S ,
and Gamma, Γ = D2u = ∂2u

∂S2 . For the Black-Scholes model we additionally compute the
Vega, V = ũ(δσ) = ∂u

∂σ . We choose for both models the parameter σ = 0.4 as well as
ν = 0.04, ϑ = −0.2 for (ii). Using the analytic solution for the Black-Scholes model [4]
and the Variance Gamma model [17], we can compute the error of the Finite Element
solution. The convergence rates in ‖·‖L∞([0.5,2]) are shown in Figure 1.
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Fig. 1. Convergence rates of Greeks for a European put in the Black-Scholes (left) and Variance
Gamma (right) model
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Y in the CGMY model
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As predicted in Theorem 2 and 3, all Greeks convergence with the same rate as the
price u itself. Here, since the degree of polynomials in Vh is p = 1, the rate is s = p+1 = 2,
even when the error is measured in the L∞-norm.

As a further illustration of the method, we compute the sensitivity with respect to
the order Y ũ(δY ) = ∂u

∂Y as explained in Example 5. We consider a European call with
strike K = 1 and maturity T = 0.5 and choose the model parameters C = 1, G = 12,
M = 10 and η0 = Y = 1. The functions u(T, S) and ũ(δY )(T, S) for δY = 1 are shown
in Figure 2.

4.2. Multi-variate models. We consider the Heston stochastic volatility model and a
three dimensional basket option.

4.2.1. Heston model. We calculate the sensitivities ũ(δρ) and ũ(δα) with respect to
correlation ρ of the Brownian motions that drive the underlying and the volatility and
the rate of mean reversion α (see Example 2). To this end, we consider a European call
with strike K = 1 and maturity T = 1

2 . The model parameters for both sensitivity runs
are λ = 0, σ = 0.5 and m = 0.06. Additionally, for the sensitivity with respect to ρ we
let ρ0 = −0.5, δρ = 1 and α = 2.5. For the sensitivity with respect to α we set α0 = 2.5,
δα = 1 and ρ = −0.5. We compare the Finite Element solution with the closed form
solution given in [14]. The convergence rates in ‖·‖L∞([e−0.25,e0.75]×[0.24,1.2]) are shown in
Figure 3.
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Fig. 3. Convergence rates of sensitivities eu(δρ), eu(δα) for a European call in the Heston stochas-
tic volatility model

The experimental convergence rate s is s ≈ 1.36 for u and ũ(δρ) and s ≈ 1.43 for
ũ(δα). This confirms the theoretical finding of Theorem 2 that computed prices and
sensitivities converge with the same rate. In Figure 4 the sensitivities with respect to ρ
and α are shown.
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Fig. 4. Computed sensitivities for a European call with respect to model parameters ρ and α:eu(δρ) (left) and eu(δα) (right) in the Heston stochastic volatility model

4.2.2. Basket option. We again need an analytic solution to compare our Finite Element
solution with. Therefore, we choose g(S) = (

∏d
i=1 Si −K)+ where for the multidimen-

sional Black-Scholes model analytic solutions can be found by reducing the problem to
a one-dimensional problem [15, Section 7.5]. We consider the dimension d = 3, strike
K = 1 and maturity T = 0.1, and we calculate the Greeks Delta, ∆1 = ∂u

∂S1
, and

Gamma, Γ11 = ∂2u
∂S2

1
. The parameters are σ = 0.4 and ρ = 0. The convergence rates in

‖·‖L∞([0.5,2]3) are shown in Figure 5.
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Fig. 5. Convergence rates of Greeks of a basket option in a three dimensional Black-Scholes
model

The experimental convergence rate s is s ≈ 1.82 for ∆1 and s ≈ 1.56 for Γ11.

A. Appendix

A.1. Proof of Theorem 2. We first recall the following stability result for the θ-scheme
from [25, Proposition 4.1]. We denote by λ the constant

λ := sup
06=vh∈Vh

‖vh‖2

‖vh‖2∗
.
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Lemma A.1. If 1
2 ≤ θ ≤ 1, assume that 0 < C1 < 2, C2 ≥ (2 − C1)−1. If 0 ≤ θ < 1

2

assume that

σ := ∆t(1− 2θ)λ < 2, 0 < C1 < 2− σ, C2 ≥
1 + (4− C1)σ

2− σ − C1
.

Then the sequence {umh }Mm=0 generated by the θ-scheme (16) satisfies the stability estimate

‖uMh ‖2 + C1∆t
M−1∑
m=0

‖um+θ
h ‖2a ≤ ‖u0

h‖2 + C2∆t
M−1∑
m=0

‖fm+θ‖2∗. (26)

We will also need the following convergence result proved in [25, Theorem 5.4].

Lemma A.2. Let the assumptions of Lemma A.1 be fulfilled. Assume that u(x, t) is suf-
ficiently smooth in [0, T ] × G and assume that the approximation property (15) holds.
Assume further that the approximation u0,h = u0

h ∈ Vh of u0 is quasi-optimal in L2(G).
Then the sequence {umh }

M−1
m=0 in (16) satisfies

‖uM − uMh ‖2 + ∆t
M−1∑
m=0

‖um+θ − um+θ
h ‖2V

≤ C

{
(∆t)2

∫ T
0
‖ü(τ)‖2∗dτ, θ ∈ [0, 1]

(∆t)4
∫ T
0
‖...u (τ)‖2∗dτ, θ = 1

2

+ Ch2(s−r) max
0≤t≤T

‖u(t)‖2Hs

+ Ch2(s−r)
∫ T

0

‖u̇(τ)‖2Hs−rdτ.

We now estimate the error emh := ũm − ũmh , where we set ũm := ũ(tm). We write

emh = ũm − Phũm︸ ︷︷ ︸
ηm

+Phũ
m − ũmh︸ ︷︷ ︸
ξmh

= ηm + ξmh .

Since ηm can be estimated by the approximation property (15), we now focus on ξmh .

Lemma A.3. Assume ũ ∈ C1([0, T ];H). Then {ξmh }
M−1
m=0 satisfy the θ-scheme: Given

ξ0h = 0, for m = 0, 1, . . . ,M − 1

(∆t)−1(ξm+1
h − ξmh , vh) + a(ξm+θ

h , vh) = (rm, vh), ∀vh ∈ Vh, (27)

with weak residual rm : Vh → R given by rm =
∑4
j=1 r

m
j where

(rm1 , vh) :=
(
(∆t)−1(ũm+1 − ũm)− ˙̃u

m+θ
, vh
)
,

(rm2 , vh) :=
(
(∆t)−1(Phũm+1 − Phũm)− (∆t)−1(ũm+1 − ũm), vh

)
,

(rm3 , vh) := a
(
Phũ

m+θ − ũm+θ, vh
)
,

(rm4 , vh) := ã(δη;um+θ − um+θ
h , vh).

Proof. We proceed as in the proof of Lemma 5.1 in [25]. We first recall that ũ ∈
C1([0, T ];H) implies

( ˙̃u
m+θ

, v) + a(ũm+θ, v) = −ã(δη;um+θ, v), ∀v ∈ V. (28)
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Inserting the definition of ξmh into the left hand side of equation (27) yields

(∆t)−1(ξm+1
h − ξmh , vh) + a(ξm+θ

h , vh)

=
(
(∆t)−1[(Phũm+1 − ũm+1

h )− (Phũm − ũmh )], vh
)

+ a(Phũm+θ, vh)− a(ũm+θ
h , vh)

=
(
(∆t)−1(Phũm+1 − Phũm), vh

)
+ a(Phũm+θ, vh)−

(
(∆t)−1(ũm+1

h − ũmh ), vh
)

− a(ũm+θ
h , vh)

(22)
=
(
(∆t)−1(Phũm+1 − Phũm), vh

)
+ a(Phũm+θ, vh)

+ ã(δη;um+θ − um+θ + um+θ
h , vh)

(28)
=
(
(∆t)−1(Phũm+1 − Phũm)− ˙̃u

m+θ
, vh
)

+ a(Phũm+θ − ũm+θ, vh)

− ã(δη;um+θ − um+θ
h , vh).

By stability (26) we have

Corollary A.4. Let ũ ∈ C1([0, T ];H). Then, under the assumptions of Lemma A.1,

‖ξMh ‖2 + C1∆t
M−1∑
m=0

‖ξm+θ
h ‖2a ≤ ‖ξ0h‖2 + C2∆t

M−1∑
m=0

‖rm+θ‖2∗. (29)

We estimate the quantities ‖rmj ‖∗, j = 1, . . . , 4. For j = 1, 2, 3 the estimates can be
found in [25, Section 5]. For clarity, we restate them:

‖rm1 ‖∗ ≤ C


(∆t)

1
2

(∫ tm+1

tm

‖¨̃u(τ)‖2∗dτ
) 1

2

, θ ∈ [0, 1],

(∆t)
3
2

(∫ tm+1

tm

‖
...
ũ (τ)‖2∗dτ

) 1
2

, θ = 1
2 ,

(30)

‖rm2 ‖∗ ≤ C(∆t)−
1
2hs−r

(∫ tm+1

tm

‖ ˙̃u(τ)‖2Hs−rdτ
) 1

2

, (31)

‖rm3 ‖∗ ≤ Chs−r‖ũm+θ‖Hs (32)

To estimate rm4 , we assume that the bilinear form ã(δη, ·, ·) is continuous on V ×V . Hence

|(rm4 , vh)| ≤ α̃‖um+θ − um+θ
h ‖a‖vh‖a.

We obtain

Lemma A.5. Assume ũ(x, t) is sufficiently smooth in [0, T ]×G and assume that ã(δη; ·, ·)
is continuous on V × V . Then

‖rm‖∗ ≤
3∑
j=1

‖rmj ‖∗ + C‖um+θ − um+θ
h ‖a,

with ‖rmj ‖∗ given by (30)–(32).

We are now able to prove Theorem 2.

Proof of Theorem 2. By definition emh = ηm + ξmh , m = 0, 1, . . . ,M − 1. Hence

‖eMh ‖2+∆t
M−1∑
m=0

‖em+θ
h ‖2a ≤ 2

(
‖ηM‖2+∆t

M−1∑
m=0

‖ηm+θ‖2a
)

+2
(
‖ξMh ‖2+∆t

M−1∑
m=0

‖ξm+θ
h ‖2a

)
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The first term can be estimated by the approximation property (15). For the second term
we have by the stability (29)

‖ξMh ‖2 + ∆t
M−1∑
m=0

‖ξm+θ
h ‖2a ≤ ‖ξ0h‖2 + C2∆t

M−1∑
m=0

‖rm+θ‖2∗.

Using the estimates for ‖rm+θ‖∗ of Lemma A.5 and the convergence result Lemma A.2
for the sequence {umh } finishes the proof.

A.2. Proof of Theorem 3. We estimate the error emh := Dαum−Dα
hu

m
h . We consider the

splitting

emh = (Dαum − PhDαum)︸ ︷︷ ︸
ηm

+ (PhDαum − PhDα
hu

m)︸ ︷︷ ︸
νmh

+ (PhDα
hu

m −Dα
hu

m
h )︸ ︷︷ ︸

ξmh,α

.

For Dα
hu

m and Dα
hu

m
h to be well defined, we extend um and umh by zero to all of Rd.

If um is sufficiently smooth such that Dαum ∈ Hs, ηm can be estimated using the
approximation property (15). If we further assume that the projector Ph : V → Vh is
uniformly stable (i.e. there exists a constant C independent of h such that ‖Phv‖V ≤
C‖v‖V ), the term νmh can be estimated using the approximation property (24) of Dα

h . It
therefore remains to estimate ξmh,α.

We shall need the following subspace of Vh. For G0 ⊂⊂ G we denote by Vh(G0) the
space

Vh(G0) = {v ∈ Vh | supp v j G0} ⊂ Vh.

We may assume that G0 is such that ϕ ∈ Vh(G0) implies Dα
hϕ ∈ Vh. It is obviously

sufficient to consider ξmh,α := Ph∂
α
hu

m − ∂αhumh .

Lemma A.6. Assume u ∈ C1([0, T ];H). Assume that the operators Ph and ∂αh commute.
Then {ξmh,α}

M−1
m=0 satisfy for any α ∈ Nd0, |α| = n ≥ 0 the θ-scheme: Given ξ0h,α =

Ph∂
α
hu0 − ∂αhu0

h, for m = 0, 1, . . . ,M − 1

(∆t)−1(ξm+1
h,α − ξ

m
h,α, vh) + a(ξm+θ

h,α , vh) = (rm, vh), ∀vh ∈ Vh(G0), (33)

with weak residual rm : Vh → R given by

rm =
4∑
j=1

rmj ,

where

(rm1 , vh) := (−1)|α|
(
(∆t)−1(um+1 − um)− u̇m+θ, ∂αh vh

)
,

(rm2 , vh) := (−1)|α|
(
(∆t)−1(Phum+1 − Phum)− (∆t)−1(um+1 − um), ∂αh vh

)
,

(rm3 , vh) := (−1)|α|a
(
Phu

m+θ − um+θ, ∂αh vh
)
,

(rm4 , vh) := −
∫
G

∑
β<α

Cα,β

{ d∑
i,j=1

(∂α−βh Qij)
(
Tα−βh ∂βhDi(Phum+θ − um+θ

h )
)
Djvh

+
d∑
i=1

(∂α−βh bi)
(
Tα−βh ∂βhDi(Phum+θ − um+θ

h )
)
vh

}
dx

with Cα,β :=
(
α

α−β
)
.
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Proof. Recall that u ∈ C1([0, T ], H) implies

(u̇m+θ, v) + a(um+θ, v) = (fm+θ, v), ∀v ∈ V. (34)

Let vh ∈ Vh(G0). Inserting ξmh,α in the θ-scheme yields

(∆t)−1(ξm+1
h,α − ξ

m
h,α, vh) + a(ξm+θ

h,α , vh)

=
(
(∆t)−1(Ph∂αhu

m+1 − Ph∂αhum), vh
)

+ a(Ph∂αhu
m+θ, vh)

−
{

(∆t)−1((∂αhu
m+1
h − ∂αhumh ), vh) + a(∂αhu

m+θ
h , vh)

}
.

By the discrete Leibniz rule, we have

(∆t)−1((∂αhu
m+1
h − ∂αhumh ), vh) + a(∂αhu

m+θ
h , vh)

= (−1)|α|
(
(∆t)−1(um+1

h − umh ), ∂αh vh
)

+ (−1)|α|a(um+θ
h , ∂αh vh) +Rαh(um+θ

h )
(16)
= (−1)|α|(fm+θ, ∂αh vh) +Rαh(um+θ

h )
(34)
= (−1)|α|

(
u̇m+θ, ∂αh vh

)
+ (−1)|α|a

(
um+θ, ∂αh vh

)
+Rαh(um+θ

h ).

Here, we denote by Rαh(um+θ
h ) the residual term

Rαh(um+θ
h ) := −

∫
G

∑
β<α

Cα,β

{ d∑
i,j=1

(∂α−βh Qij)
(
Tα−βh ∂βhDiu

m+θ
h

)
Djvh

+
d∑
i=1

(∂α−βh bi)
(
Tα−βh ∂βhDiu

m+θ
h )

)
vh

}
dx.

Utilizing once more the discrete Leibniz rule and the fact that the operators Ph and ∂αh
commute yields(

(∆t)−1(Ph∂αhu
m+1 − Ph∂αhum), vh

)
+ a(Ph∂αhu

m+θ, vh)

= (−1)|α|
(
Phu

m+1 − Phum, ∂αh vh
)

+ (−1)|α|a(Phum+θ, ∂αh vh) +Rαh(Phum+θ).

The representation of rm in (33) is now obvious.

Remark 3. Note that the residual rm4 in the Lemma A.6 satisfies rm4 = 0 if the coeffi-
cients Q, b in (3) are constant, as it is the case for the multidimensional Lévy model in
Example 1.

By the stability result (Lemma A.1) we obtain the stability estimate for ξmh,α in (33)

‖ξMh,α‖2 + C1∆t
M−1∑
m=0

‖ξm+θ
h,α ‖

2
a ≤ ‖ξ0h,α‖2 + C2∆t

M−1∑
m=0

‖rm+θ‖2∗. (35)

We estimate the residuals ‖rmj ‖∗. For j = 1, 2, 3 these are the same as Lemma A.5 (with
u replacing ũ, see also [25, Section 5]. To estimate ‖rm4 ‖, we use again that the operators
Ph and ∂αh commute. We find

‖rm4 ‖∗ ≤ C
∑
β<α

‖∂βh (Phum+θ − um+θ
h )‖a = C

∑
β<α

‖ξm+θ
h,β ‖a.
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Rewriting the estimate (35) shows that for any α ∈ Nd0,

‖ξMh,α‖2 + C1∆t
M−1∑
m=0

‖ξm+θ
h,α ‖

2
a

≤ ‖ξ0h,α‖2 + 4C2∆t
M−1∑
m=0

3∑
j=1

‖rm+θ
j ‖2a + C∆t

M−1∑
m=0

∑
β<α

‖ξm+θ
h,β ‖

2
a. (36)

Since (36) holds for an arbitrary (but fixed) α ∈ Nd0, we may iterate the inequality until
β = 0 to obtain

‖ξMh,α‖2 + C1∆t
M−1∑
m=0

‖ξm+θ
h,α ‖

2
a ≤ C(α)∆t

M−1∑
m=0

‖rm+θ
1 ‖2a + ‖rm+θ

2 ‖2a + ‖rm+θ
3 ‖2a + ‖ξm+θ

h,0 ‖
2
a

+ C(α)
∑
β≤α

‖ξ0h,β‖2. (37)

Proof of Theorem 3. We have, for emh = Dαum −Dα
hu

m
h and M ≥ 1,

‖eMh ‖2 + ∆t
M−1∑
m=0

‖em+θ
h ‖2a

≤ 3
{
‖ηM‖2 + ∆t

M−1∑
m=0

‖ηm+θ‖2a + ‖νMh ‖2 + ∆t
M−1∑
m=0

‖νm+θ
h ‖2a + ‖ξMh,α‖2

+ ∆t
M−1∑
m=0

‖ξm+θ
h,α ‖

2
a

}
.

If Dαu(t) ∈ Hs for t ∈ [0, T ], the first term can be estimated with the approximation
property (15). The second term is estimated using the uniform stability of the projector
Ph and the approximation property (24) of Dα

h (provided u(t) ∈ Hs+r+n for t ∈ [0, T ]).
For the last term we have by (37) and the fact that ∆t‖ξm+θ

h,0 ‖a can be estimated also by
the quantities ‖rm+θ

j ‖∗, j = 1, 2, 3,

‖ξMh,α‖2 + ∆t
M−1∑
m=0

‖ξm+θ
h,α ‖

2
a ≤ C

∑
β≤α

‖ξ0h,β‖2 + C∆t
M−1∑
m=0

3∑
j=1

‖rm+θ
j ‖2a.

Now conclude by using (30)–(32) to bound ‖rm+θ
j ‖∗ (replacing ũ by u), the quasi-

optimality of ∂βhu
0
h and the approximation property (15) to estimate ‖ξ0h,β‖.
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