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Abstract. Consider a Lie group with a unitary representation into a space of holomorphic
functions defined on a domain D of C and in L?(ut), the measure u being the unitarizing measure
of the representation. On finite-dimensional examples, we show that this unitarizing measure is
also the invariant measure for some differential operators on D. We calculate these operators
and we develop the concepts of unitarizing measure and invariant measure for an OU operator
(differential operator associated to the representation) in the following elementary cases:

A) The commutative groups (R, +) and (R* =R — 0, x).

B) The multiplicative group M of 2 x 2 complex invertible matrices and some subgroups of M.
C) The three-dimensional Heisenberg group.
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0. Introduction. First we define the important concepts: 1) unitarizing measure for
the representation of a Lie group G in a space of holomorphic functions (the unitarizing
measure is a real measure), 2) infinitesimal representation of the Lie algebra, 3) from the
vector fields of the infinitesimal representation, construction of a second order differential
operator AU with a drift term and real valued coefficients, and finally we ask 4) whether
the measure p of the representation of the group G is also the invariant measure for this
differential operator A®Y. Such a study is motivated by the work and ideas in [6], [3],
[17], [18] and [9]. In particular, according to [3], [I8], in certain cases, the measure for
the representation of an infinite-dimensional Lie group should be obtained as the invari-
ant measure for an Ornstein-Uhlenbeck operator A®U. In [9], the space of holomorphic
functions is identified with a complex line bundle, each section of this bundle being a
complex valued function, the operator AV is constructed in this abstract setting by the
stochastic calculus of variation and the example of the group SU(1,1) with the Poincaré
disk SU(1,1)/S" is given. It is interesting to have more examples and explicit formulas for
the operator A®Y. In Section 4, we consider discrete series representations for GI(2,R)
and for elementary finite-dimensional complex linear groups. The realization of discrete
series representation in concrete functions spaces has been done by several authors, see
the historical notes, Chapter V in [24]. In the present work, G is a finite-dimensional
group. In the first part (Section 1), we explain the relations between AV operators and
representations of the form T, f(z) = hy(z)f(kg(2)) where hy and k, are holomorphic
functions on a domain D. We show in Theorems and how to find, in a sys-
tematic way, the differential operator AV in terms of the infinitesimal representation of
the group. Theorems and can be applied to all the examples (Sections 2, 3, 4)
and also to the 3-dimensional Heisenberg group (Section 5). We illustrate Section 1 and
along the lines of the ideas in [I8], by direct calculation on the examples, we establish
the expressions for the differential operator AU, the measure of the representation and
the vector fields in the infinitesimal representation.

1. Unitary representations and APV differential operators

1.1. Unitarizing measure and unitary representation. Given a Lie group G and u
a real measure on a domain D in C" = R?", we denote by L% () the set of holomorphic
functions f : D — D such that |f|? is p-integrable, i.e.

L20(D: 1) = Hol(D) N L(u).
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We put z = (21,22,...,2,) € C" and z; = x; + /—1y;, z;,y; € R. For g € G, we
consider the operators
Ty : Lz (D; 1) — Ligo) (D; )
such that T}, has the following properties:
(a) For any holomorphic function f on D,

T91ng = T91 (ng f)

where ¢1¢g2 is the product of g; and g in the group G. If e is the neutral element
of G,

(Tef)(2) = f(2),
and therefore, for any g € G, we have

(Ty) ™' =Ty-1.

In fact, T, is a semi-group of operators indexed by a group G.
(b) T, is unitary or, equivalently, u is unitarizing for T, that is

/\Tg(f)(Z)IQdu(Z) =/|f(2)|2du(2)

(Tof)(2) = hye(2) f(ky(2))

where hy : D — C and kg : D — D are holomorphic functions on D. The conditions

(c) Ty is of the form

(a) and (c) together give the following system on hy and k,

hgi (2)hg, (kg, (2)) = hgig,(2) (1.1)
and
kg (Kgy (2)) = Kgig,(2)- (1.2)
Moreover, since (T, f)(z) = z, we deduce that
ke(z) =2z and he(z) = 1. (1.3)

When (a)-(b)—(c) are satisfied, T, is a unitary representation of G into L%, (D;u). We
denote this representation by (7}, ). We assume that ky(z) depends effectively upon g;
thus the trivial cases where k4 (2) = z for any g will be eliminated from our considerations.

REMARK 1.1. Assume that k:g is determined and that h and h are both solutions of
(L), then the product hy, = h X hg is also a solution of (L3). If kg(z) is a solution of
(1.2), then for any holomorphlc function ¢ : D — C,

as well as the determinant of the complex Jacobian matrix of k4(z) are solutions of (L.1)).
If kg(2) = (k1(2),k2(2),. .., kn(2)), we define the complex Jacobian matrix of k,(z) as
the matrix (%’Z’;‘ ) In the following, for simplicity, D is a subset of C. Then in these cases

we have hy(z) = (k-"T(z))q for any positive integer g, h{(2) = exp(p(ky(2)) — ¢(z)) where
¢ is holomorphic and

hg(2) = ki (2).
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On the other hand, if k,(z) satisfies and hy(z) satisfies (L.1)), then for any integer g,
ky(2) = (1)) /0

satisfies also (1.2]) and ﬁg(z) = hg(29) satisfies ﬁgl(z)ﬁgz, (%gl( ) = hglg2( ).

REMARK 1.2. Assume that the group law is not known, but that two functions k4(z)
and hy(z) are given. If k,(z) and hy(z) satisfy (1.1)—(L.2), from the following example,
we see that it is possible to determine the group law. Assume G = C3, g = (a,b,c) € C3.
Assume that hy(2) = e?*7¢ and ky(z) = 2 + a. We determine the group law *

(a1,b1,c1) * (az, bz, c2) = (as, bz, c3)

as follows. The condition (1.2)) implies ag = a1 + a2 and the condition (|1.1)) implies that
bz = by + ba, c3 = c1 + co + a1by. This defines the group structure G = (C3, ) associated

1 a c

to the multiplication of 3 x 3 Heisenberg matrices (0 1 b). We can find a subgroup
00 1

G1 of G such that u = e~ @ +v") gy dy is a unitarizing measure for the representation
T,f(2) = ¥t f(2 + a), g € Gy. Writing the condition (b), we obtain

a+b=0, c+c+aa=0.
The set of g1 = (a, —a, ¢) with ¢+¢+aa = 0 is a subgroup G; of G with the representation
Ty f(2) = e f(z+a) in LEy(e”@ ) dady).

1.2. Unitarizing measure and the infinitesimal representation of the Lie alge-
bra G. In [3], [1], [4], the unitarizing measure and its relation to A®Y have been studied
in the case of representations of the Lie algebra G of G. The infinitesimal representation
of the Lie algebra G into Li(D) is obtained as follows: Let € — g, be a curve on G such
that go = identity of G, we put

d
R 1.4
v de e:Og ( )
For f holomorphic on D and f € L2 (D), we put
d
= — T 1.5
p)f = =| Tt (15)

the unitarizing condition gives

Jiotr13du+ [ 15076 =0 (1.6)

for any f and ¢ holomorphic. Let (e;)(j—1,..n) be a basis of the Lie algebra G, and let
(p(e;)) be the corresponding operators in the infinitesimal representation,

d d .
Nf=_—"| T, . J
ple)f=—| _ Tafs es=+| _ 9
where g/ are curves on G.
LEMMA 1.3. If we assume that (T, 1) is of the form (c), we have
0
plej) = aj(2) 5~ + B (),
d d

aj(z) = | _ ka2, Bi(z) = | _ hg(2),

€ le=0
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where gl are curves on G such that e; = L| _ gi. We see that a;(z) and B;(z) are
holomorphic functions of z. If
T,f(z) = [k, (2)]" W F(ky(2)) where 4 is holomorphic, (1.7)
we have 5 .
ples) = a5(2) 3 + 0 (2) 4 o(2) (1.8

In this work, we shall assume that ~ is an integer though other real values of v are
admissible, see [6]. Assume that the measure p has the density R(z,Z) with respect to
the Lebesgue measure dz dz on D, let

dp = 2R(2,Z)dx dy = R(2,%) dz dz,
and put

_ ' 0 _
- (@52 R(2.2) = a)(=) + ay(2) 5 log R(z,2). (19)

Equivalently

T(z,2) = a;(2) % log(aj(2)R(2,2)) for j=1,...,n.

We obtain by writing (1.6) for v =e;, j = 1,...,n, that the functions 3;(z) and I';(z, %)
have the same real part,

%ﬁ](z) = %F]‘(Z,E) for 7=1,...,n. (1.10)

Since the condition (1.10]) is concerned only with the real parts, a representation may
have several unitarizing measures and this is the case in Lemma formula (3.4). On
the other hand, when n > 1, the system of equations (1.9)—(1.10) or equivalently the
system

% (aj(z)% +m%) log R = R(B;(2) — &j(2)), j=1,...,n, (1.11)

must have a common solution R(z,Zz). This fact is verified on our examples. In particular,
in the case of (1.8) with ¢(z) = 1, we have 3;(z) = va/(2),

0
L= 0= (1= +a; glogR (1.12)
and the system (|1.11)) reduces to
0

1 0 }
5 (i) 5 + (3 52 ) log R= (7 = DR(&)(2), j=1,....m.
If R(z,%) has been determined, we have the following

LEMMA 1.4. Assume that du = R(z,Z)dz dz, then

(i) %[aj(z) % log R(Z,E)} is harmonic on D forj=1,...,n.

The function B;(z) is completely determined by a;(z) and R(z,Z). We have

0 0?

(i) %a[aj(z)%logl%} =0, j=1,...,n
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Proof. Since 3;(z) and o/;(2) are holomorphic, R(3;) is harmonic. To prove (ii), we cal-
culate the Laplacian of the expression in (i). m
For the bracket in G,

leis ej] = Zcfjek, (1.13)
k

the condition p([e;, e;]) = [p(ei), p(e;)] together with (1.13) implies that
Q= ajog = Z oo, (1.14)
k

iy — o = Zcf]ﬂk. (1.15)
k

The relation (1.15) is a consequence of (1.14)) when p(e;) is given by (L.8). Moreover
[C13) and (T9) imply

%) 0 k
Qo &FJ — Oy @Fz = zk:cij]-—‘kc (116)

DEFINITION 1.5. If V' is a vector field on D, we define the divergence function div, (V')
by the condition

/diVM(V)(Z,E)(I)(Z,E) du = /(V<I>) dp  for any differentiable function ®(z,z).

If du = R(z,%) dz dz, we have
0
div,, (u(z,?)g) = = T (u(z,2)R(z,7)). (1.17)
We consider the vector fields
P .
H; = a;(z) e and H; = a;(2) ek

then (L.9) implies div,(H;) = —I'j(2,%) and div,(H;) = —T;(z,%).

The vector field V' has divergence zero with respect to p if and only if [(V®)du =0
for any differentiable ®(z,%). For example, for a differentiable function h: R — R,

_0 o .0 , 0
V—z£—z£—z% with z=re (1.19)

has divergence zero with respect to pu = h(2Zz) dz dz.

0

(1.18)

DEFINITION 1.6. We call a vector field V' such that div, (V) = 0 a divergence-free vector
field associated to the representation (T, ).

i . -\ 8 =\ 8
1.3. Invariant measure with respect to u(z,%2) -5z + v(2,2) 5=

DEFINITION 1.7. We say that the second order differential operator A has the real mea-
sure p as invariant measure if for any differentiable function ®(z,%) we have

/A@ dp = 0. (1.20)

REMARK 1.8. Since the measure p is real, we have [(C1A 4+ CoA)®du = 0 for any
constants C, Cs. If C1 A + C5A reduces to a first order operator, then V = C; A + C,A
is a vector field and div,, (V') = 0.
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LEMMA 1.9. An operator of the form
2

_, 0 .0
u(z,2) 5207 +v(z,%) 7 (1.21)
has R(z,Z)dzdz as invariant measure if and only if
v(z,%Z) = 0 (u(z,2)R(z,2)). (1.22)

R 0z
Comparing (1.22) and (1.9)), we see that the concept of unitarizing measure and that
of invariant measure are closely related.

THEOREM 1.10. Assume that the Lie algebra G has dimension n, n > 1. Consider the
unitarizing measure y = R(2,%Z) dz dZz for the representation T,. Assume that there exist
constants A, j,k=1,...,n, such that

Z Ajkaj(z)ak(z) =0. (123)
7,k
Let L
A =" Aji(p(e;) + ples)) H, (1.24)
7.k
then

(i) A has p as invariant measure,
(ii) A is an operator of the form (|1.21)).
The condition (1.23) means that 3_; , AjxHjH) reduces to a (holomorphic) vector field.

Proof. Let T'j(2,%) be as in (L.9). The conditions (1.9)—(1.10) imply that for any j, k
Ajie = (pleg) + plej)) Hy (1.25)
has p as invariant measure, thus A has p as invariant measure. The condition (1.23)
2
implies that A is of the form (1.21]), it has no term in %. .

Independently of Theorem we have

THEOREM 1.11. The functions T'j(z,Z) are given by (L1.9). If there exist constants Ajy
such that

> Aj(Bi(2) = T(2,%) ax(z) = 0, (1.26)
Jk

then A =3, Ajpp(e;)Hy has R(z,%) dz dz as invariant measure.

Proof. By (1.9). =

COROLLARY 1.12. Assume that 3; = v and that 3, Ajko(2)ok(2) is real. If (L1.26)
is satisfied, we have

v—1
R(z,%Z) = constant x [Z Ajkozj(z)ozk(z)} .
.k
Proof. Substituting ((1.12)) into ([1.26]), we obtain

__ __ 0
;Ajk(l —y)aar + jZkAjkO(jOlk 5 log R = 0.
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This condition implies that R = ®(z) x [3_, , Ajpajag]?~t. Since Dok Ajro(2)an(2)
and R(z,Z) are real, we deduce that ®(Z) is constant. m

The conditions of Theorem [[.I1]are satisfied for the one-dimensional cases: in Sections
2 and 3, we calculate the density R in such a way that 8 = T, see (2.4) and Remark
[3:3] They are also satisfied for some of the examples in Section 4 but we cannot apply
Theorem [I.11] to the Heisenberg group, Section 5, where we use Theorem [I.10] instead.
The conditions are satisfied both for the Heisenberg group and for the examples
in Section 4. We relate Theorems and [LT11

LEMMA 1.13. Assume that both conditions (1.23) and (1.26) are satisfied and that the
constants Ajy, are real numbers. Then Y, Ajep(e;)Hi = 0.

Proof. We have to verify that

> Ajrlajaj, + Bian) = 0. (1.27)
J.k

The condition (1.23) implies that 3, Ajkayoq = =32, Ajalay. Using (1.9), we re-
place o;. Thus for proving (1.27), we have to verify that
0
>~ A (T + a5 log R+ 3 Jar = 0. (1.28)
j.k

The condition (A, are real) as well as (1.10) and (1.26) imply that
> A8 —Ty)ax = 0. (1.29)
jok

Then (1.29) and (1.23) imply (1.28).

1.4. Ornstein—Uhlenbeck operator. For the classical Ornstein—Uhlenbeck operator,
d? z d d d T
D—@_?E—édix Where 6—d7x—¥_[7

the measure y = e~"/2t 4 is invariant. For the first order term, we have the divergence

- (2)

condition

The divergence operator § satisfies

The n-th Hermite polynomial is H, (z) = 6"1.

On the complex plane C, we consider only Hermitian metrics, they are of the form
ds? = g(2,%) dz dz where g(z,%) is a real valued function (see for example p. 289 in [14]).
In fact, these metrics are also K&hlerian, [I1]. This will give restrictions on the choice of
the unitarizing measure as we can see in Remark [3:3] and on the operator A which has
p as invariant measure, see Remark [£.8|

By analogy with the classical Ornstein—Uhlenbeck operator, we introduce the following
definition.
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DEFINITION 1.14. We call an operator a real Ornstein—Uhlenbeck operator (OU-operator)
associated to the holomorphic representation (7}, 1) when it is of the form
0? 9% 0Q 9 0Q 0 ]

u(@,y) |5+ 57+

— — 1.
0zx2  Oy? Oz Oz + Oy Oy (1.30)

such that

(i) it has the measure p of the representation as invariant measure,
(ii) u(x,y) is real positive.

Since di = R dz dz is real, this implies that @ is a real valued function. If z = z 4 iy,
then

2 2 2
it nnt ey emtlnn el 09
We have 3
dp = Rdzdz = e dy  with dv = ud(zz fij) (1.32)
and
Q = log(Ru). (1.33)

If the product Ru is real positive, then @ is real valued. The volume element %dv is
associated to the metric ds? on D = {u(z,%) > 0},

1
ds® = - (da? + dy?).

DEFINITION 1.15. We call an operator a complex O U-operator associated to (T, it), when
it is of the form

( 7)[ 0?2 0Q 8}
u(z,z — =
" l020z 0z 0z
with the measure p of the representation as invariant measure and such that @) is real
valued.

(1.34)

Consider the symplectic form

_dz ANdz

R (1.35)

We define the complex gradient of @ with respect to w as the vector field
grad , Q) =u— —. (1.36)

With this notation, the complex OU-operator associated to (T, 1) is
Alaplacialrl + gradw Q» (137)

where Alaplacian 1S the Riemannian Laplacian on D. The classical Ornstein—Uhlenbeck
has been extended to an analogue on the Wiener space and in the infinite-dimensional
setting, commutations and integration by parts identities have been obtained with the
divergence operator, see [23]. In our context, we obtained the following factorization.
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LEMMA 1.16. Let h(z,Z) be a function of (z,Z) with real or complex values. Consider the
divergence operator Oy

S = h[% + (a% log(Rh) ) 1]. (1.38)
If Q = log(Ru), we have
w9z + 20 5 (2 D). (139

In particular, if we put T'y, = a% log(aR) as in (L.9), we have §, = « % +Ty.

In the following, our problem is to express or equivalently in terms of
the infinitesimal representation as in Theorems [I.10] or [.T1] For example, Theorem [I.1]]
comes down to writing the factorization as a sum of factors p(ej)ak(z)% where
the p(e;) have the shape of a divergence operator.

LEMMA 1.17. Assume that 3, Ajro(2)ak(z) = 0. Let A be as in Them"emm then
A is of the form (1.39) with @ = log(Ru),

u(z,z) = Z Ajraj(2)ag(2),
j.k

e WH. 7 0% 0Q 0
A = jZk:Ajk(p(ej) + p(ej))Hk = u(z’ Z) {5235 + E%} )

Proof. We verify that the coefficient of % in A is equal to u %—8. n

We deduce

THEOREM 1.18. Assume that the conditions of Theorem[L.10] are satisfied, i.e. there exist
constants Aji, such that >, Ajka(2)ak(z) = 0. Assume that up to a multiplicative

constant, u(z,z) = > ; Ajeaj(z)ag(z) is real and positive. Let D be the subset of C
defined by

D= {z ‘ ZAjkaj(z)m7éo}. (1.40)
Gk

Assume that D # (). Then there is an Ornstein—Uhlenbeck operator APV associated to
the representation (T, ), and we have

AU = A+ A where A= ZAjk(p(ej) + ple;)) H,. (1.41)
Jsk
Moreover, div, (V) = 0 for the vector field

_ — 3] 0
V:AfA:ZAjk(ﬂj Jrﬁj)(OTk%*Oék &) (1.42)
j.k

Proof. According to Theorem A is of the form (1.21)) and

v(z,Z) = u(z,2) % log(Ru).

By Lemma A + A is an OU-operator. On the other hand since u(z,%) is real, we
deduce that V = A — A is a vector field. =
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We have the identification

Unitarizing measure for a representation of a group G on L¥,,(D; )

= invariant measure for an OU-process on D.

The so-called OU-process is the diffusion on D with an infinitesimal generator ACU.
This identification would permit the construction of the invariant measure from the OU-
process, see [18], [3] and [8] and a study of unitary representations of the group G. Given
the infinitesimal representation (p(e;)), let A be as in Theorem with appropriate
constants Ajx, a problem is to construct an invariant real measure p for A, and find
the Hilbert space L%_IOI(/J,) of the representation. From our examples, the infinitesimal
representation and A®Y determine the support of .

1.5. Equivalent representations. Since our purpose is to relate the unitarizing mea-
sure of the representation to a second order differential operator which has this measure as
invariant measure, it is worthwhile to consider equivalent representations and to compare
the differential operators and invariant measures for these representations. Moreover, the
unitarizing measures for two equivalent representations do not have in general the same
class of integrable functions. See Subsection 4.1.

1.5.1. The representation Tg’/’. Assume that kg(z) satisfies (1.2). For any holomorphic
function v, let

It satisfies (1.1). Consider the representations

(Tyf)(2) = hy(2)(f(kg(2))) and (T3 f)(2) = hy(2)(Tyf)(2). (1.43)

If T, is unitary for y, then T is unitary for the measure dp?(2) = [(2)[?du(z). If
() # 0, we define the linear operator A%

f(2)

¥(2)

Since we consider mainly the cases ¥(z) = exp(p(2)) and ¥ (z) = 2™ where n is a positive
integer, we do not investigate the zeroes of (z). The identities [ |[AY f|>du? = [|f]* du
and (TY)(AYf)(z) = AY(Tyf)(z) show that (T, p) and (T, u¥) are equivalent. For
the concept of equivalent representations, see for example page 7 in [24]. In Section 3.1,
solving the functional equation a(t1) + t1a(t2) = a(t1ts) yields representations like Ty,
and TP% = exp(p(ky(2)) — ¢(2))(Tyf)(2). The representation T*P¥ is unitary for

du?(z) = exp(p(z) + ¢(2)) du(z) and (AP % f)(z) = exp(—¢(2)) f(2). Define

(AVf)(z) =

P =] T,
then
_ V) pd
@) = A + 55 (2] ke @] 1
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Since ky(z) is the same for Ty and T, we have

0% () f1(2) = [p(e;) fI(=) + a;(2)f(2)-

Let A be as in (1.24]), we have A = u(z,%) [6‘3; + %Cj (% where

u(z,z) = Z Ajra;(2)ar(z).
ik

According to Theorem with the infinitesimal representation p¥, we obtain

I—l

Y'(2) Ny [ 97 0Qy 0 .

AV = A — = — th e9v =e9y. (144
o) W) g ue R g+ Gl gy With e = (14)
The measure du¥ = [|> du of the equivalent representation is invariant for AY if and

only if du is invariant for A.
1.5.2. The representation fg. Assume that ¢ is an integer. Let

(Tyf)(2) = hy(2)(f(kg(2) and  (Tyf)(2) = hy(2) f((kg(21))"7). (1.45)
We put (A2f)(z) = f(29). Since fq A7 = A9T,, the two representations (1.45]) are equiv-

alent. If T, is unitary for u, let u? be the measure such that [ |A9f|>du? = [|f|?dp,
then 7, is unitary for 9. Let p(v)f(2) = 4| _ T,f(2) = a(2)f'(z) + B(z), we obtain

= dele=0
PG = | Tt = 20 1) + B

1.6. Classical examples. In the next sections, for holomorphic representations of
finite-dimensional elementary groups, we start from the system 7. We deter-
mine 7y in the form (c) with (T.I)-(T:2)), then we construct the real measure p such that
(b) is satisfied, next we find a second order differential operator denoted by A (not neces-
sarily real) which has p as invariant measure. We require A to be of the form . We
express this operator in terms of the infinitesimal representation of the Lie algebra as in
. This explicitly relates the first order terms in A to the infinitesimal representation
of the Lie algebra G of G. In the one-dimensional example in Section 3, one can associate
several unitarizing measures to a representatlon T,. However, there is only one density
R(z,%) such that I'(z, %) (2) (see (1.9)—(1.10) and Lemma[L.3). For the 3-dimensional
Heisenberg group in Sectlon 5, D =C, see ([5] [20] ), the AOU operator is completely
determined by the infinitesimal representation. In Section 4, we examine

1) the group of 2 x 2 matrices (% 2) such that |a|? —|b|? = 1, D is the unit disk in C,
see [M].
2) the group of 2 x 2 matrices (_ag ;) such that |a|> + [b|> =1, D =C.

These two examples enter in the same framework of the group of 2 x 2 matrices
(;5 ;) such that |a|? — p|b|? > 0 and p is a real number.
Our future objective is to extend the results to infinite-dimensional Lie groups, see
[18], [2I]. We have in mind: 1) the infinite-dimensional Siegel disk, see [2], [22], 2) the
group of diffeomorphisms of the circle and the Virasoro algebra, see [3], [16], [21], [18],
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[19], [12], 3) the infinite-dimensional Heisenberg group and its representation with unita-
rizing measure being the Wiener measure on the Wiener space of continuous maps from
[0,1] to C (see [10], [13]) or its representation in a Gaussian space (S’(R),y) of tempered
Schwartz distributions where v is the Gaussian measure given by its Fourier transform,
see [1].

2. The additive group (R, +). The system (1.1)—(1.2) becomes
() : hey (2)hiy (key (2)) = hey 41, (2)  and (i) 2 ke, (Key (2)) = Ky, (2)- (2.1)
Looking for solutions k;(z) = az + tb where a, b are constants, implies k;(z) = z + tb. We
substitute in (2.1 (i)
hiy (2)hey (2 + 110) = Py g4, (2)- (2.2)
Looking for solutions of (2.2)) in the form h.(z) = exp(atz + ) where a, (3 are constants,
we find B = 0, b = 0, thus (7}f)(z) = e**f(z). Since ky(z) does not depend upon g,
we do not consider these solutions. Now take for solutions of (2.1)), k¢(2) = e’z and
hi(z) = e** where o and X are constant, we obtain (7} f)(z) = e** f(e**z). The change of

parameter ¢ — e’ leads to the multiplicative group (R* = R — 0, x) studied in the next
section. We also have for solutions of (1.2)

= ()

or equivalently k;(z) = (2P —t)(1/P) if k = —p. Compare with the flows (18)—(19) in [I5].
By Remark hi(z) = (1 — tz*)7 is solution of (I.1)) (see Subsection 1.5.2). Let

d 1 d
a(z) = a‘tzokt(z) =2 PR B(z) = @‘t:oht(z) = —~zF.

As in (|1.9), solving for real R(z,%),

where k # 0 is an integer, (2.3)

B(z) = d'(2) + a(z) % log R(z,%),

we find R(z,z) = H(e)(zz)—(1+’f(“/+1)) where z = re® and

dzdz
dp = (2z)7F7 (f)ik-zu is unitarizing for T, f(z) = (1 — t2")7 f(k(2)).
ZZ
We have div,, (2 +1 %) = —kv2* and dy is invariant with respect to
0? kv O
KA = (22)"t! - = 2.4
o= = 24

3. The multiplicative group (R* = R — 0, X). Assume ¢ # 0. The system ((1.1))(1.2)
becomes

h‘tl (Z)h‘tz (ktl (Z)) = h’t1t2 (Z) and th (kh (Z)) = kt1t2 (Z) (31)
We take ki(z) = tz, then
htl (z)htz (tlz) = htltz (Z) (32)
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LEMMA 3.1. The function hi(z) = e**=D% where a € C, is a solution of (3.2)). Solving
(13.1), we have from (c)

(Tof)(z) = " =D2f(t2)
with t # 0 and a constant. For the neutral t = 1, Ty f(2) = f(z). The operator T} is
invertible (T;) 1 f(z) = Th . f(2).

Proof. Putting t; = 0 in (3.2) and assuming that ho(z) # 0, we find h,(0) = 1 for any ¢.
We look for a solution of (3.2) in the form h;(z) = e®¥)* where a(t) is a function of ¢.
The equation for «(t) is

Oé(t1) + tloé(tg) = Oé(tﬂfg) Vi, to 75 0. (33)
If t; = to, it becomes (1 + t)a(t) = a(t?). A solution is a(t) = a(t — 1) where a is a
constant and this is also a solution of (3.3). This gives h(z) = e(*=1? where a € C. =
LEMMA 3.2. Let a« € C, \,3,0 € R. On D = {(x,y) | \x? + Bay + dy? # 0}, the real

measures
ez dy dy etz dy dz
dite, z) = = — , z=x+1y, (34
HoaB. (2) (Az? 4 Bzy + 0y?)' =7 (Az2 4+ 2B2z + Az%)1—7 y, (34)
are unitarizing for Ty with t # 0,
(T, f)(2) = 7 €2 D2 f(12). (3.5)

The constant B is real. The infinitesimal representation associated to (T}) is

p(l)y ==z % + (az+v)I and (If)(z)= f(2). (3.6)

Proof. We find the measure y by writing (b), i.e. [|T;f(2)[*du = [|f(2)|? du. Assume
that u = g(x,y) dx dy. For unitarity, we must have

t* / DO f(12) g (2, y) de dy = / f(2)Pg(x,y) dz dy.
With the change of variables 2’ = tx, vy = ty, 2’ = tz, the integral is equal to

_ 1
t2'y (1-1/t)(az+az) 2 (f Q) — dx du.
/e 7e)e(2.Y) 5 dwdy

We deduce that

~(az+az)/t, (T Q) L —(aztam)
e g(t, 2 ) o =€ g(z,y).

This identity shows that the function v (z,y) = e~ (**+%%) g(z, y) is homogeneous of degree
—2+42v and we can take 1 (z,y) = constant [\z? + Bxy+y?]7~L. The density is g(z,y) =
constant x e(** %) x [\z:2 4 Bay +0y?]7 ! with z = z+iy. Then we calculate (p(1)f)(z) =
Gl (Tef)(2) = 2f'(2) + (az +7) f(2). =

REMARK 3.3. With the notation from Lemma [L.3] we put a(z) = z,

eaz-l—ﬁ

(Az2 + 2Bz + AZ?)1-7’

R(z,%z) =

0 0 —Z
[(z,2) = d(2) + a(z) ElogR(z,E) =az+y+(y—1)z Elog(A% +2B + Az)
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In polar coordinates z = re'?, z % +z % =r %, thus the term with log cancels in ' +T.
We obtain RT'(z,Z) = R(az + ) and we deduce 3(z) = az + 7.
The case §(z) = I'(2,%) occurs when A = 0, then we consider djiq 5 = dpta,0,1,+,

aztaz

dﬂa,'y = W dzr dy
We define Hy = z Z as the first order term in p(1). The measure dy,, is invariant with
respect to

0? N 0 vz 0

a—— zZ—.

0z07 " "ozl T oz
Since k;(z) = tz, the group (R*, x) acts on R? by the homothetic transformations z + tz.

A=p(l)H, =2z

2 2
The metric ds? = df;%jg on R? is invariant under the transformations k;(z) = tz.

Combining with Section 1.5, we have
THEOREM 3.4. Let ¢ be a holomorphic function, and define
T, f(z) =t e?®) =2 f(t2)  for te R (3.7)

We have Ti f(2) = f(2), T, 1 f(z) = t=7e?/D=9G) f(2/t) and Ty, Ty, = Ty,1,- The in-
finitesimal representation is

p(1) = 2 oo + 1/ (2) + 1.
The measure
dx dy
(@2 +y?)’
is unitarizing for Ty, i.e. [|Tyf(2)]2du = [|f(2)|*dp and du is an invariant measure
with respect to the complex operator

du(z) = esa(z)-i-m (.%2 + y2)’Y z=x+ 1y, (3.8)

A 0,19 } (3.9)

/ J— —_——
S ==
The real measure dy is also invariant with respect to AU = A + A. The vector field
V = A — A satisfies div, (V) = 0,

V =2z [go’(z)

A= p(V)H, = zz[

0 78}

% ’(z)a +’y{§%—z—}. (3.10)

4. The group of 2 X 2 invertible matrices. The results of Sections 2 and 3 are
consequences of the following. Consider the group G of 2 x 2 complex invertible matrices

Cfa b\ 41 [d b
g_(c d)’ g _detg(—c a) (4.1)

with the usual multiplication
1o = a; by as ba _ (@az2 + bica  aibs + bids (4 2)
192 c1 di co do ciag +dicy c1by +didy) '

az+b
cz+d’

If we put

Ug(2) = (4.3)
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then
. (a1a2 + blcg)z + (albg + bldg) .
Vg1 gs (2) = (craz + dica)z + (c1bs + dids) =g, (1/’92 (2))- (4.4)
Let d b d det
o _az— / _ o o etg
ky(2) = Yg-1(2) = mp— ky(2) = dzkg(z) “Catar (4.5)

We verify that k, satisfies (1.2) and that Eg(z) = —cz + a satisfies (1.1) (see (4.5)).
Another solution of (1.1)) is hy(2) = det g. We express hy(z) = —cz + a in terms of kj(2)
and det g. Consider

(T,)(2) = (det gk )] 222V cotbon=o0 ey 2) (1.6

with k,(2) = 4222 As in LemmaH7 let

—cz+a’

d d
a(z) = o E:OkgE(Z) where Jelg%e = V.
The infinitesimal representation is p(V) f(z) = a(z) f'(2) + B(2) f(z) with
d
B(=) = v | _ (detg) +70'(2) + [¢/(2) + 2 a2). (4.7)

Assume that the representation (4.6) is unitary with respect to R(z,%z)dzdz. As in (1.9),
we put

[(2,2) = d(2) + a(z) % log R(z,%). (4.8)

4.1. The domain D is the complex plane or the complex half-plane. In this
section, we also consider equivalent representations, see Subsection 1.5.1.

LEMMA 4.1. For g € G, let (T,f)(z) be as in (4.6]), then we have Ty Ty, = Ty 4,. The
infinitesimal representation is given by

pr=pl) =25+ ly -y —n— (2],

P2 = P(b)f(z) = —a L /(2)7

5 (4.9)
ps = p(e) = 2 12y +m)z+ 226/(2))
pr=p(d) =23+l tnt g ()

Proof. To obtain (4.9)), we take small variations of the coeflicients a. = a+¢,... and we

calculate the partial derivatives (8a)|g:eTgf(z) at g=e= ((1) (1)) "

COROLLARY 4.2. Let pj, j = 1,2,3,4, be as in Lemma [£1], and oy, B; be defined by
pj = a;(z) £ + B;(2). Then

(i) azas + asaz +2a2 =0 and azas + axas + 2007 = —(z2 — 2)?,
(il) agae — agay =0 and a4 05 — oty = Z — 2,
(iil) anag —aza; =0 and cyaz — azaq = 2Z(z — Z).

The conditions (1.23) in Theorem are satisfied for (i), (i) or (iii).
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In order to write the system (L.10) to find the density R(z,%), we put I'; = o
o a% log R as in (1.9). We assume that ¢(z) = 0. We deduce from Lemma

) 9
GB-Ti=v—(y+n—1)+z2logR, ﬁg—f‘gz—%—k—logR,

gz 0z (4.10)
53—F3:(2fy+n—2)z—z2&10gR, ﬂ4—F4:1/—|—7+n—1—zalogR.

LEMMA 4.3. Assume v = 0. The system R(5; —T';) =0 forj=1,...,4 (see (1.10)) has
the solution

R = constant (z — )20~V (zz)". (4.11)
i0

For this solution R(z,Z), letting z = re'”, we have

cosf (y—1)(z+7%) v—1 2(y-1)

- =—i(y-1 = — Ty = —i —
Ar-h ity )siné’ z2—z ’ Pz =T ' sing 22—z’
L (y=Dr  2(y—1)zz iy cosf

Ps—Ta=i——Pp—= = Aa-Ta=idly-1) 5 =—(A ~T).
Proof. With R(8; —T';) =0 for j =1 and j = 4, we obtain (r) = 0 and
o _0
(za—i—z%)logR—ﬂv—&-n—l).
Let z = re®. It gives R = H(0)r?0*"~1. We replace in R(3; —T';) =0, j = 2,3,
o 1. 0 cos
[cos@af;mnH%]longQn ot
{cos@%Jr%sinH%] log R =2(2y+n — 2) CO:G.

We deduce (4.11)). =
4.1.1. Holomorphic representation of GI(2,R). When R is given by (4.11]), we have
(Bs —T3)an + (B2 — La)as + 2(B1 — ' )ar = 0. (4.12)

The conditions (|1.26]) of Theorem are satisfied. With (i) in Corollary[4.2} Theorem
and Lemma we obtain

THEOREM 4.4. Assume that a, b, ¢, d are real numbers (and that 27 is an integer). Let

(Tgf)(z):[k;(z)pkgiijyl Flkg(2))  with kg(z):_d;;ba,

_ —\n . dzdz
dp= (2 —2)*7(22)"dv with dv = G—22 Lizzzy -

(4.13)

The measure p is unitarizing for T,. Let H, = —z %, Hy, = —6%, H.=2? %, Hy== %
and let p be the infinitesimal representation as in Lemma (with v =0, ¢ = 0). Then

W 18 an invariant measure for

2 n
A = p(Hy + p(F + 200y = (2~ 27 [0+ (2o + ) 2] g

or, equivalently,
0? oQ 0

A=—(z-7%)? [% + a£} with  Q =log[(z — 2)?7(22)"]. (4.15)
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Proof. With (.11, we obtain the unitarizing measure du = constant x (z—2)%*¥(2z)" dv.
In that case, the domain of integration is D = {z € C|Sz # 0}. If a, b, ¢, d are real
numbers and the imaginary part Sz # 0, then k4(z) in is well defined and %, is a
map from D to D. The expression is a consequence of and Theorem m

Compare (4.14) with Definition [1.14] =

COROLLARY 4.5. Let A be as in Theorem [£.4], we have
B o 2v-1) n 5 O
A=—(g+T = )(E-25)
Moreover,
— 0? 0? v 0 2n 0 0
A+A=2y" ==+ -— +4—
+ y[62+6y + y Oy m2+y(3m+y8y>]

has p as invariant measure and we have div, (V') =0 for the vector field

0 4iny? ( 0 (’)) (4.16)

V=A- A——4wyax PR y%—xa—y .
REMARK 4.6. If we consider the subgroup of matrices g such that detg > 0 and the
domain D; = {z € C|Sz > 0}, then k; is a map from D; to D;. As in Subsection
1.5.1, consider the holomorphic function t(z) = e(=D%. We have [)(2)]? = e~ 2(=+)
with z = & + iy. Assume that du = dzdy, then du? = e 2#+¥) dz dy. The functions
1.12>0(z — Z)" are integrable for du¥ but not for dp.

REMARK 4.7. If v = 1, then du = (2%2)" dz dZ is unitarizing for T, the domain D is the
complex plane, we do not need the restriction of the assumption that a, b, ¢, d are real.
Since 3; —I'; = 0, by Theorem , w1 is invariant for any A = Zj k Ajxp; Hy, where Ajy,

are arbitrary constants, j,k = 1,...,4. For example, for v = 1, n = 0, it is immediate
that
S I 0
pla)Hy, + p(b)Hy + p(c)H. + p(d)Hg = (1 + 2Z) 9207 +2(1+ ZZ)Z£ (4.17)

has dz dz as invariant measure.

REMARK 4.8. The case where the metric on D is not Hermitian. If we do not require A
to be of the form (1.21]) and allow
0? 0?
A= Z) —5 z
w(z2) gz T ul52) g oz
with w(z,%) # 0, there are many differential operators A with = (2—2%)20~Y(22)" dz dz

as invariant measure. However, the principal symbol in such operators does not corre-
spond to a Hermitian metric on C. Examples of such A are given by [I.25]

02 5 02

— 0
[pla) + P, = 25 = + 2 + (29 + 20+ )7,

4.1.2. The subgroup of transformations ky(z) = tz — b where t, b are complex numbers.
We consider the relation (ii) in Corollary If R is given by (4.11]), we verify that

(Ba —Ta)ag — (B —Ta)ag = —(y — 1). (4.18)
We cannot apply Theorem [I.11} we find an OU-operator with Theorem

+v(z,2) —
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THEOREM 4.9. Consider the group of transformations of the complex plane defined by
kg(z) =tz —b where t is real, t # 0 and b is a complex number. Assume that 2y —1 > 0.
Let

T,f(z) = £ f(tz — ).
Consider the Hilbert space H of entire functions f such that
I£11? = /|f(x+iy)|2ysdmdy <400 for 0<s<2y-—1.
Then the measure
dp=(z—2)?0"Ydzdz

satisfies the unitarity condition [ |Tyf(2)[*du = [|f|*dp for all f € H and it is an
invariant measure for
2

0207
where p(t) = py = 22+~ and p(b) = p2 = — £ as in Lemma|l.4]

A = (plt) + p(E)Hy — (o(b) + o) = (z - 2) (27— 1) 2

dz

Proof. If f € H, then for any real ¢t and complex number b, the function |f(tz — b)|? is
integrable for p. m

z

4.1.3. The subgroup of transformations kq(z) = — where ¢, a are complex numbers

—C
and a # 0. We apply Theorem with Corollary (iii). We find
(61 —Ty)as — (B3 — Ts)ag = —(y — 1)z
THEOREM 4.10. Consider the group of transformations
z
k = —
4(2) ezt a

and let
a’\/

z
T,f(z) = ( ).
o/ (2) (—cz+a)* / —cz+a
The measure dp = (z — 2)2(7_1) dzdz is unitarizing for Ty, i.e. for any holomorphic

function such that |f(2)|? and T,f(z)|* are integrable for p, we have [|T,f(z)]>du =
J1f(2)|? dp. The measure p is invariant for

a0, D
— -7 = 2Z— .

020Z oz oz

Proof. We apply Theorem As in Subsection 4.1.2, the difficulty is to determine a

class of holomorphic functions f such that |f(k,(2))|? is integrable for y for any ¢ and a,
a#0. =

A=2zZ(z—%)

4.2. The subgroups A, and G,,. If we require conditions on the parameters a, b, c, d,
in order to have a subgroup of G, this gives restrictions on Ty; thus for a subgroup of G,
we have more unitarizing measures since there are fewer equations in the system (1.10]).
For example, for the commutative subgroup of diagonal matrices g = (| ) with d # 0,
we obtain k4 (z) = dz and we are in the case of Section 3, if d is a real number.
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NoTATION 4.11. Given a fixed real number p, we denote by A, the group constituted
with matrices
g= (a b) with  det g = a@ — pbb > 0.
pb @
We denote by G, the subgroup of matrices in A, with determinant equal to one.

Since we do not fix the value of the determinant for elements in A,, the Lie algebra
A, of A, is a four-dimensional real vector space. Fixing the determinant equal to one
for elements in G, takes off one degree of freedom, then the Lie algebra G, of G, is a
three-dimensional real vector space. In the following, we consider representations of G/.
Because of 1.5.1, we assume n = 0 and ¢ = 0 in (4.6). Since k; (z) = (a@—pbb)[—pb z+a] =2,
the representation (4.6) for G, is written as

1 az—b
T,f)(z) = —— (===, 4.19
T = e (S (1.19)
To calculate the infinitesimal representation of G,, for ¢t > 0, ¢ small, we consider the
following three curves ggj ), Jj = 1,2,3, which are in G, and g(()J ) = Identity of G,. The

vectors e; = % ’t:ogéj)’ Jj =1,2,3, form a basis of the Lie algebra G,.

a eit/2 0 _1 i 0
g9 = 0 e-it/Q ’ €1 = 5 0 —i )

2 _ 1 cos(t/2) sin(t/2) . 1/0 1
o \/0052(t/2) —pSinQ(t/Z) (psin(t/?) Cos(t/Q))7 2 (p 0)’ (4.20)

@ _ 1 ( cos(t/2) isin(t/2)>’ oL ( 0 z)

9 = \/cos2(t/2) ~psin?(t/2) \ipsint/2)  cos(t/2) “2\—ip 0
Then [e1, e2] = e3, [e1,e3] = —eq, [e2,e3] = per and {e, e1, ez, e3} is a basis of A,.
LEMMA 4.12. The infinitesimal representation for G, associated to s given by
plen)f(z) = —i[zf'(2) + 7f(2)];
p(e2)(2) = —5 (1= p2) () + 72 (2),
plea)f(z) = =5 (1 +p2)'(2) - ipf (2).

In the following, we put p; = p(e;) = a;(2) 2 +03;(z). We solve the system (L.9)—(L.10)
with

2

) .0
B1—T1=—i(y— 1)—|—zz%10gR,

1 0
fa =Ty = (y—1)pz + 5(1 - p2?) alogR,

i 0
—TIy=—i(y—1 ¢! ) = log R.
Py =T =—ily = pz + 5 (L +pz°) 5-log R
We obtain R(z,%) = constant (1 — pzz)?Y~2. With the expression of R,

. 1+pzz p(z — %)
pri—T4 i(y=1) 1—p2z’ Po—Ta = (y-1) 1—pez’

p(z + %)
1—pzz

fBs—I3 = —i(y—1)
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4.2.1. Domains D, = {1 — pzz > 0}. We have

02(2) = 02(2) + 05(2)03(2) — pon (J (2] = 3 (1~ p2)’
and a3 +aj —pai =0, (4.21)
(B2 —Ta)ag + (B3 — I'3)as — p(B1 —T'1)ar =0,
and Ay = p(e2)Hs + p(es)Hs — pp(e1)Hy; = 0. The conditions of Theorem [L.11]

are satisfied. In the following lemma, we write the unitarizing measure in terms of the
volume measure. We deduce

LEMMA 4.13. Let Hj = a(2) 2, j=1,2,3, and H; = aj(z) .

Hi(2) = —izf'(2), Hof(z) = —3 (1= p)f'(2), Haf(2) =~ (14+p2)f'(2),
then A = p(ea)Hs + p(es)Hs — pp(e1)Hy has the unitarizing measure

dzdz
dpip = (1 — pi2)? — 2

T—psap (4.22)

as ivariant measure.

THEOREM 4.14. The domain D, = {z € C|1— pzz > 0} is invariant under the transfor-
mations z — (az + b)(pbz + @)~ . Let
1 az—b
T, f)(z) = —— ><< i ) or g€G,, 2D, 4.23
106 = s < (Se) for 9<Gy zeD G2
Given g1 and g2 € Gy, we have Tg, Ty, = Ty, 4,. Here, we assume that 2v is an integer.
If g € Gy, the operator Ty is unitary in L (Dp; pp) where py, is given by ([£.22). Let
plej)j=1,23, Hj and A as in Lemma we have
— _ — 1 0? 2ypz O
A = ples) H - Hy = 5(1-p22)* [ — =
ple2)Ha + p(es) Hs — pp(er) Hy 2( paZ) 9202 (1— pez) 0%
The measure pu, is invariant for A and for A9V = A+ A. We have

(4.24)

0? 0 0 0 0
OU _ (1 _ . .=\2 - B
AYY = (1 - p2z) [8282 5, log(1 pzz)y g log(1 — p2Z%) 82}
02 0 0
_ _ —=\2 (. = I -~
= (1—pz2) [8282 + vh'(2Z) <Z8 + Z(‘?Zﬂ (4.25)
with h(zZ) = log(1 — pzZz). The vector field V = A — A is a free-divergence vector field
(V) =),
— /(0 0
V=A-A=—yp(l—pzz) <z£ - z%) (4.26)

Proof. This is a consequence of Theorem [I.10] and Lemma [.13] Below, we show how to
calculate R from the condition of unitarity (b). Let y = R(z,%) dz dZ be a real measure
on D, such that (b) is realized. With a change of variable in (b), we obtain

(det g)* [kg (kg (2))1*7 x R(ky ' (2), kg ' (2)) x (kg ) (2)]* = R(2,2).
Since (k;')'(z) = 1/k}(k; ' (2)), it gives

(det 9)* |(k, 1) ()17 x R(ky ' (2), kg ' (2)) = R(2,2) Vg € G
If det g = 1, then R(z,%) = (1 — pz2)2"~Y is a solution. =
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5. The 3-dimensional Heisenberg group and the system (1.1)—(1.2)

5.1. Commutators in non-commutative groups. If the group G is not commuta-
tive, we compare Ty, T,, and T,,T,, for g1, g2 € G. We say that g € G is a commutator
in G if g is of the form g = ¢(g1, g2) = g;lglgggfl with g1, g2 € G. In that case, we have

9192 = g2¢(g1, 92)g1- If this property is satisfied, according to (a), we obtain
T T

9192 L(gag1)-1 = 919207 g5t T TgngIC(gmgfl)gzg;l = T0(927gf1)

This gives Ty, 4, =T, 1 Tgogy and Ty, = Tgr, T, -1 4, )- In the case of the Heisen-

(92,9
berg group, see Remark commutators are g = (0,0, k) where k is a real number.

5.2. Representations where k4(z) = z + u(g) and hy(z) = exp(l(g)z + m(g)).
Let v and § be two fixed constants such that v —§ # 0. We assume that v and § are real
numbers. Consider on the 3-dimensional real space the group law

(al,bl,cl) * (az,bg,CQ) = (a1 + ag,bl + bg,Cg)
with

0
c3=c1 +co+ ((ll bl) (6 g) <Zj) = + co + yai1bs + dasb;. (51)

The commutators (see Subsection 5.1) are given by g192 = g2¢(g1, g2)g1 with
c(g1,92) = (0,0, (v — 6)(a1ba — azb1)).
Let u = (o, 3) and [ = (A, €) be two complex vectors in C2?, we have
det(u,l) = ae — A\G.
For g = (a,b, c), we put
u(g) =aa+ Bb and I(g) = \a + b,
det(u,l) = ae — A\G.
We have u(g1)l(g2) — u(g2)l(g1) = det(u, l)(a1bz — azb1). We put

m(g) =m(a,b,c) = %l(g)u(g) + det(u, 1) [’y i 5 2Zyt55) ab] (5.2)
Let
kg(z) =z+4+u(g) and hy(z) =exp(l(g)z +m(g)), (5.3)

then the conditions 7 are satisfied.
LEMMA 5.1. We define
Ty f(2) = (Tapf)(2) = exp(l(g)z +m(g)) x f(z + u(g)). (5:4)
Then Ty, Ty, = T4, 4,- The infinitesimal representation for is
pla)f(z) = af'(z) + Azf(2),

p(b)f(2) = Bf'(2) + ezf(2), (5.5)

det(u,1)
ple) f(z) = ﬁ f(2).

In the next lemma, we determine the density R(z,Z) of the unitarizing measure p.
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LEMMA 5.2. Let p(j) = a(j) £ + B(j) with j = a,b,c and I'(j) = £ 2 (a(j)R), then

B(a) —T(a) =Xz — a% log R,

B(b) —T'(b) = ez — 6% log R, (5.6)
det(u,!

5(0) - Tl = 0.
Solving the system R(B(j) —T'(j)) =0, j = a,b, ¢, we obtain
(i) R[det(u, )] =0 where det(u,l) = ae — Ag,
and letting a = a1 + ias, B = P + 102,
(i) det(u,u) = aff —afB = —2i(a182 — aa31) # 0.
When (i) and (ii) are satisfied, we have, up to an additive constant

1 X\—ea , AFB—¢a _ le—A3 _,

logR = - — z = 22+ - —=——=7". 5.7
*"T2a5-pa” " af-pa 2ap-pa o7
We put log R = Az? +2B2%Z + AzZ? + 2B2z + Az%. The constant B is real.

Proof. Since 3(c) — I'(¢) = 0, we have (ii). The system (1.10) becomes

0 0 - 0 -0
a—logR+a—logR=X2+Xz, B—logR+p8—logR=ez+¢€z
0z 0z 0z 0z

and has a unique solution if af — @B # 0.

COROLLARY 5.3. If the density E(z,Z) is given by (5.7)), we have

B(a) —T'(a) = 2B(az — 0z) B(b) —T(b) = 2B(Bz — 7), B(c) —T(c) = det(u, )

)

and [3(a) — I'(a)]a(b) — [3(b) — L (b)]a(a) = (AB — ea)z.
5.2.1. Ezample. Let u(g) = ha+27b, I(g) = ib, v = 1 and § = 0, then with the notation
of (5.2), m(g) = itb? +ihc, A\ =0, e =4, a = h, 8 = 27. A group element (a, b, c) acts on
holomorphic functions as
Un.+(a,b,¢)f(2) = exp(ihc)(Sq o Tof)(2) = exp(ihc) exp(ith? + ibz) f(z + ah + 27b),

where (S, f)(2) = f(z+ha) and (T} f)(z) = exp(iTh? +ibz) f(z +27b), see [20} pages 6-7],

Unhr(a1,b1,¢1) 0o Up r(az,ba, c2) = Up 7 (a1 + az, by + ba, c1 + c2 + a1bs).
Up,-(a,b,c) is unitary on the Hilbert space of entire functions on the complex plane
such that || f||2 = [, exp(—y?/2t)|f(z + iy)|* dwdy is finite, see [20, pages 6-7]. The
infinitesimal representation is

pla)f(z) = hf'(z), pb)f(z) =27f"(2) +izf(2), plc)f(z) =ihf(z).
We assume that a, b, ¢ are real numbers and 7 = it where ¢ is a real number. We obtain
that R(z,z) = constant x exp(—y?/2t) and log R = (z — z)?/(8t). The operator

0? 0?2 y o

AOU:7 g
0zx2  Oy? t Oy
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has exp(—y?/2t) dz dz as invariant measure. To give an expression of A°Y in terms of p(a),
p(b) and H, h Hb = 2it 2 is not immediate. A9V is not equal to p(a)H,+p(b)Hy, =
(h? +4t?) 2= + 22t 5=. But we verify that

o L ; L 2 2
(0(0) + PN () — 2(@) ~ 2 (pfa) + pla))? = ~2ith[ - + ;Z, 12

We can find A9V in a systematic way with Theorem [1.10] _ As in Lemma ala) = h,

a(b) = 2it, a(c) = 0, then a(a)a(b) — a(b)a(a) = 0 and a(a)a(b) — a(b)a(a) = —2ith.
By Theorem

020Z

A = (pla) + @) — (p6) + POz = —4ith|[ 2o+ Lz -2 2]
— AR AP o 0207 ' 4t oz
as well as A — A = —2ithA°Y have Rdzdz as invariant measure and the vector field
o 0
V=A+A= —4zth(z—z)<az %)
satisfies div, (V') = 0. We also have
B 0 _ h(z—7%2) 0 z2+z
ﬁ(a)—F(a)——halogR— T B(b)—I‘(b)—zz—Zzta logR—z( 5 )

and 3(c) — I'(c) = ih. Since a(a)(B(b) — T'(b)) — a(b)(B(a) — T'(a)) = ihZ # 0, we cannot
apply Theorem

5.2.2. The representation (5.4)). Assume that +, ¢ are real constants. The constants «,
B, A, € are complex numbers. Let o = a3 + iz, 8= 1 + 102, A = A1 +i)g, € = €1 + i€
and aq, (1, A1, €1 are the real parts, as, B2, A2, €2 are the imaginary parts. We have

THEOREM 5.4. Consider the 3-dimensional real Heisenberg group Gy with the group law

. Let Ty as in .
Tyf(2) = (Tap.e f)(2) = exp(l(g)z + m(g)) x f(z + u(g))-
Assume that R[det(u,l)] = 0 where det(u,l) = ae — A3 and assume that det(u,u) =

af —af = —2i(a1f2 — asBi) # 0. Then T, is a holomorphic unitary representation for
the group Gy on L?(u),

[ 105 duey) = [ 1P duay), 2=t
where du(z,y) = exp(Q(z,y)) dx dy and the quadratic form Q(x,y) is
A2 — az€q 24 (€1 + ager) — (M + )\252)

Qy) = aifls —azfh a1fz — azfh
A1 —ai€ex 4
—_ 5.8
a1l —azfh (5:8)
The real measure dy is an invariant measure for
0? 0? oQ oQ
ov_9Y9 Y9 2 Bl
A 8x2+6y2+<8z)8 +(8y>8y' (59)
We have
92 R _ -
A% = ————= x [(p(a) + p(a))(Hy — Hp) + (p(b) + p(b))(Ha — Ha,)] (5.10)

apf —ap
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where H, = a%, Hy, = ﬁ%. In particular, APV does not depend on the constants & and

v in (5.1)). On the complex plane, consider the metric ds®> = dx* + dy?, the Laplacian is
2

% + 3872 and A°Y is the usual two-dimensional Ornstein—Uhlenbeck operator.

Proof. With the notation of (5.5)—(5.6), a(a) = «, a(b) = [. As in example 5.2.1,
a(a)a(b) — a(b)al(a) = 0 and ala)a(b) — a(b)a(a) = af — fa # 0. By Theoremm

A = (p(a) + p(a))Hy — (p(b) + p(b))Ha
— 0? \G — e M—ex \ O
‘*aﬂ_ﬁ®[&ﬁz+(aﬁ_gaz+ag_gaz)ii
has the measure R dz dZ as invariant measure (R = €@ is given by and Q = Az? +
2B2% + AZz?). Since aff — 3a # 0 and R(a3 — fa) = 0, we have
0? 0 0 0 0 }

A—A= (aB—ﬁ&)[Q
where R is given by (5.7) and
— — 90 _0
V=A+B=det(lz+Tup +a-)

where

— 0  _ 0N _ - ., 0 - ., 0
det (lz +ilz,u 2 +u £) = (det(l,u)z + det(l,w)z) b + (det(l,u)z + det(l, u)Zz) 5

We obtain (5.9)—(5.10]) from (1.34). =

REMARK 5.5. Let 9(z) = 2", the unitarizing measure of the equivalent representation
Ty of Subsection 1.5.1 is dp? = (22 + y?)"eQ@Y) dx dy.
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