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Abstract. We show that for any strongly closed subgroup of a unitary group of a finite von
Neumann algebra, there exists a canonical Lie algebra which is complete with respect to the
strong resolvent topology. Our analysis is based on the comparison between measure topology
induced by the tracial state and the strong resolvent topology we define on the particular space
of closed operators on the Hilbert space. This is an expository article of the paper by both
authors in Hokkaido Math. J. 41 (2012), 31–99, with some open problems.

Contents
1. Introduction and main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2. Notation and Murray–von Neumann’s result . . . . . . . . . . . . . . . . . . . . . . . . 37
3. Topological analysis of M and existence of the Lie algebra . . . . . . . . . . . . . . . . 39

3.1. Strong resolvent topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2010 Mathematics Subject Classification: 22E65, 46L51.
Key words and phrases: finite von Neumann algebra, unitary group, affiliated operator, measur-
able operator, strong resolvent topology, tensor category, infinite-dimensional Lie group, infinite-
dimensional Lie algebra.
∗ Supported by Research fellowships of the Japan Society for the Promotion of Science for Young
Scientists (Grant No. 2100165000).
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc96-0-2 [35] c© Instytut Matematyczny PAN, 2012



36 H. ANDO AND Y. MATSUZAWA

3.2. τ -measure topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3. Almost everywhere convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4. Direct sums of algebras of unbounded operators . . . . . . . . . . . . . . . . . . . 41
3.5. Local convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Lie group-Lie algebra correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5. Categorical characterization of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2. fvN and fRng as tensor categories . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6. Related problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Introduction and main theorem. In this article we consider the following problem:
Let H be an infinite-dimensional Hilbert space, U(H) be its unitary group equipped with
the strong operator topology (SOT for short). Let G be a strongly closed subgroup of
U(H). Is there a natural Lie algebra for G? Of course there is no problem when one
considers norm topology, but many infinite-dimensional unitary representations are only
strongly continuous. Therefore it is natural to consider the strong topology.

In view of the Stone Theorem, the natural candidate would be the set Lie(G) of all
skew-adjoint operators A such that the one parameter unitary group generated by A

belongs to G:
Lie(G) := {A∗ = −A on H : etA ∈ G for all t ∈ R}.

However, there remain some problems to be settled. First, due to the domain problem
of unbounded operators, Lie(G) may not be a Lie algebra: the domain dom(A+B) =
dom(A) ∩ dom(B) or dom(AB) = {ξ ∈ dom(B) : Bξ ∈ dom(A)} may no longer be
dense for A,B ∈ Lie(G). Even worse, it can be {0}. Secondly, as the object in question is
infinite-dimensional, we need to choose a suitable topology for Lie(G). Since we consider
a correspondence between Lie groups and Lie algebras, it is natural to require the map
exp : Lie(G)→ G to be continuous, with G equipped with the strong operator topology.
It is well-known that a sequence {An}∞n=1 of skew-adjoint operators on a Hilbert space
converges to a skew-adjoint operator A in the strong resolvent sense if and only if etAn

converges strongly to etA for all t ∈ R. Therefore it seems natural to consider the strong
resolvent topology for Lie(G). However, it is not clear whether the vector space opera-
tions and the Lie bracket operations are continuous with respect to the strong resolvent
topology of Lie(G). In general, even if sequences {An}n, {Bn}n of skew-adjoint operators
converge, respectively, to skew-adjoint operators A, B with respect to the strong resol-
vent topology, the sequences {An + Bn}n and {AnBn − BnAn}n are not guaranteed to
converge, respectively, to A + B, AB − BA. In summary, the group G is in general too
large to have a decent topological Lie algebra.

We can solve this difficulty in the case of G being a closed subgroup of the unitary
group U(M) of some finite von Neumann algebra M by applying noncommutative inte-
gration theory, and prove that the Lie algebraic operations are continuous with respect
to the strong resolvent topology and that Lie(G) is complete as a uniform space. Hence
Lie(G) forms a complete topological Lie algebra.

The starting point in our study is the classical result of Murray–von Neumann stating
that the set of all closed operators affiliated with a finite von Neumann algebra M has a
natural *-algebra structure (see Section 2 for the terminology). By this and the results of
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Trotter–Kato and Nelson, it is easily shown that Lie(G) actually has a well-defined Lie
algebra structure. The non-trivial part in our analysis is the topological consideration
on the set M of all closed operators affiliated with M, which we will explain in the
subsequent chapter. In short, we compare two different topologies on M, one of which
comes from operator theory and the other from noncommutative integration theory. As
a byproduct, we also discuss the following problem: What kind of unbounded operator
algebras can be represented in the form of M? Here, M is a finite von Neumann algebra.
We give their characterization from the viewpoint of a tensor category. We show that R

can be represented as M if and only if it is an object of the category fRng (cf. Definition
5.3). More precisely, we prove that the category fRng is isomorphic to the category fvN
of finite von Neumann algebras on a Hilbert space as a tensor category.

Notes. After finishing this work, the authors were informed by Professor Daniel Beltiţă
that he had recently written a paper whose subject was closely related to ours [3]. He
proved, prior to our work, related results in a different approach and motivation. Al-
though having some connections, our focus was on the strong resolvent topology and its
connection with other linear topologies on M and we found that it plays more important
roles than the measure topology if M is not countably decomposable. Also, the above
topological analysis is a crucial part in the characterization of the tensor category of M.

2. Notation and Murray–von Neumann’s result. We fix the notation used in the
later sections. All the proofs of results without any reference can be found in [1]. For the
details about operator theory or operator algebra theory, see for instance, Reed–Simon
[11] and Takesaki [17]. Let H be a Hilbert space with an inner product 〈ξ, η〉, which is
linear with respect to η. Let M be a von Neumann algebra on H. M′ := {a ∈ B(H) :
ab = ba, for all b ∈ M} is the commutant of M. The group of all unitary operators in
M is denoted by U(M). The lattice of all projections in M is denoted by P (M). The
orthogonal projection onto the closed subspace K ⊂ H is denoted by PK. The domain of
an operator T on H is written as dom(T ). If T is a closable operator, we write T for the
closure of T .

Definition 2.1. A densely defined closable operator T on H is said to be affiliated with
a von Neumann algebra M if for any u ∈ U(M′), uTu∗ = T holds. In this case we write
TηM. If T is affiliated with M, so is T . The set of all densely defined closed operators
affiliated with M is denoted by M.

Note that TηM if and only if xT ⊂ Tx for all x ∈M′. A von Neumann algebra with
no non-unitary isometry is called finite. It is known that a countably decomposable von
Neumann algebra is finite if and only if there exists a faithful finite normal trace on it (for
the definition and properties of traces, see [17]). A von Neumann algebra is called atomic
if each nonzero projection dominates a minimal projection. A von Neumann algebra with
no nonzero minimal projection is called diffuse.

In general, M is not a *-algebra under these operations. This is the reason for the
difficulty of constructing Lie theory in infinite dimensions. However, Murray and von
Neumann proved, in the pioneering paper [8], that for a finite von Neumann algebra M,
M does constitute a *-algebra of unbounded operators:
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Theorem 2.2 (Murray–von Neumann). The set M of all densely defined closed operators
affiliated with a finite von Neumann algebra M on H constitutes a *-algebra under the
sum A+B, the scalar multiplication λA (λ ∈ C), the product AB and the involution A∗,
where X denotes the closure of a closable operator X.

Through the proof of the above theorem, they introduced an important notion of
complete density, which also play significant roles in our study.

Definition 2.3. A subspace D is said to be completely dense for M if there exists an
increasing net {pα} ⊂ P (M) of projections in M such that

(1) pα ↗ 1 (strongly);
(2) pαH ⊂ D for any α.

It is clear that a completely dense subspace is dense in H. We often omit the phrase
“for M” when the von Neumann algebra in consideration is obvious from the context.

Remark 2.4.

(1) In [8], Murray and von Neumann used the term “strongly dense”. However, this ter-
minology is somewhat confusing. Therefore we tentatively use the term “completely
dense”.

(2) We do not assume the separability of H, hence we modify the definition of complete
density using net instead of sequence. For the subtle difference between them, see
[1, 8].

The completely dense subspaces can be understood as noncommutative version of
“sets of measure 1 in a probability space” as follows:

Proposition 2.5 (Murray–von Neumann [8]). Let M be a finite von Neumann algebra.

(1) If {Di}∞i=1 is a sequence of completely dense subspaces for M, then
⋂∞
i=1Di is also

completely dense.
(2) For each X ∈ M and a completely dense subspace D for M, the subspace {ξ ∈

dom(X) : Xξ ∈ D} is also completely dense. In particular, dom(X) is completely
dense for all X ∈M.

The above proposition, together with the following one, will prove Theorem 2.2.

Proposition 2.6 (Murray–von Neumann [8]). Let M be a finite von Neumann algebra.

(1) Every closed symmetric operator in M is self-adjoint.
(2) There are no proper closed extensions of operators in M. Namely, if X,Y ∈ M

satisfy X ⊂ Y , then X = Y .
(3) Let {Xn}∞n=1 be a sequence in M. The intersection of domains

DP :=
⋂
p∈P

dom(p(X1, X
∗
1 , X2, X

∗
2 , . . . ))

of all unbounded operators obtained by substituting {Xn}∞n=1 into the noncommu-
tative polynomial p(x1, y1, . . . ) is completely dense for M, where P is the set of all
noncommutative polynomials with indefinite elements {xn, yn}∞n=1.
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Finally, we remark that converse of the Murray–von Neumann’s result is also true.
Namely,

Theorem 2.7. Let M be a von Neumann algebra acting on a Hilbert space H. Assume
that, for all A, B ∈ M, the domains dom(A+B) and dom(AB) are dense in H. If the
set M forms a *-algebra with respect to the sum A+B, the scalar multiplication αA

(α ∈ C), the multiplication AB and the involution A∗, then M is a finite von Neumann
algebra.

3. Topological analysis of M and existence of the Lie algebra. We keep the nota-
tion from Section 2. Let M be a finite von Neumann algebra acting on a Hilbert space H.
We investigate topological properties of M. Our goal is to prove that the algebraic op-
erations on M are continuous with respect to the strong resolvent topology. This can be
done by comparing this topology with the τ -measure topology defined below. They seem
quite different from each other, but in fact they coincide. To prove this fact, we further
introduce another notion of convergence, called the almost everywhere convergence. The
main topic of the present section is to compare various convergence relations between
them.

3.1. Strong resolvent topology. First of all, we define a topology called the strong
resolvent topology on the suitable subset of densely defined closed operators. Let H be
a Hilbert space. We say that a densely defined closed operator A on H belongs to the
resolvent class RC (H) if A satisfies the following two conditions:

(RC.1) there exist self-adjoint operators X and Y on H such that the intersection
dom(X) ∩ dom(Y ) is a core of X and Y ,

(RC.2) A = X + iY , A∗ = X − iY .

Note that (RC.1) implies dom(X) ∩ dom(Y ) is dense, so X + iY and X − iY are
closable. Thus X + iY and X − iY are always defined. Furthermore, we have

1
2

(A+A∗) =
1
2

(X + iY +X − iY ) ⊃ X|dom(X)∩dom(Y ).

Hence A + A∗ is closable and by (RC.1), we get 1
2 (A+A∗) ⊃ X. As X is self-adjoint,

X has no non-trivial symmetric extension, we have 1
2 (A+A∗) = X. Therefore, X is

uniquely determined. Similarly, Y is also unique and 1
2i (A−A∗) = Y . We define

Re(A) := X =
1
2

(A+A∗), Im(A) := Y =
1
2i

(A−A∗).

Also note that bounded operators and (possibly unbounded) normal operators belong to
RC (H). Now we endow RC (H) with the strong resolvent topology (SRT for short), the
weakest topology for which the mappings

RC (H) 3 A 7−→ {Re(A)− i}−1, {Im(A)− i}−1 ∈ (B(H),SOT)

are continuous. Thus a net {Aα}α in RC (H) converges to A ∈ RC (H) with respect to
the strong resolvent topology if and only if

{Re(Aα)− i}−1ξ → {Re(A)− i}−1ξ, {Im(Aα)− i}−1ξ → {Im(A)− i}−1ξ,
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for each ξ ∈ H. This topology is well-studied in the field of unbounded operator theory
and suitable for the operator theoretical study.

Let M be a finite von Neumann algebra on a Hilbert space H. We shall show that M

is a closed subset of the resolvent class RC (H). This fact follows from Propositions 2.5,
2.6 and the following lemmata [1].

Lemma 3.1. Let M be a finite von Neumann algebra on a Hilbert apace H, A be in M.
Then there exist unique self-adjoint operators B and C in M such that

A = B + iC.

Lemma 3.2. Let M be a finite von Neumann algebra. Then M is closed with respect to
the strong resolvent topology.

Remark 3.3. In general, the strong resolvent topology is not linear. Indeed, there exist
sequences {An}∞n=1, {Bn}∞n=1 of self-adjoint operators and self-adjoint operators A, B
such that the following conditions hold:

(1) {An}∞n=1 and {Bn}∞n=1 converge to A and B in the strong resolvent topology, re-
spectively;

(2) An +Bn is essentially self-adjoint for each n ∈ N;
(3) A+B is essentially self-adjoint;
(4)

{
An +Bn

}∞
n=1

converges to some self-adjoint operator C in the strong resolvent
topology, but C 6= A+B.

For the details, see [15]. However, as we see in the sequel, the strong resolvent topology
is linear on M.

The next is the main technical theorem.

Theorem 3.4. Let M be a finite von Neumann algebra acting on a Hilbert space H. Then
M is a complete topological *-algebra with respect to the strong resolvent topology.

To prove this theorem, we next consider τ -measure topology.

3.2. τ -measure topology. We first prove Theorem 3.4 in a countably decomposable
case. In this case, we can use the noncommutative integration theory thanks to a faithful
normal tracial state. Noncommutative integration theory was initiated by I. E. Segal
[14] and has been well studied by many people. We follow the definition of τ -measure
topology due to E. Nelson [10]. Let M be a countably decomposable finite von Neumann
algebra acting on a Hilbert space H. Fix a faithful normal tracial state τ on M. The
τ -measure topology (MT for short) on M is the linear topology whose fundamental system
of neighborhoods at 0 is given by

N(ε, δ) :=
{
A ∈M : there exists a projection p ∈M such that ‖Ap‖ < ε, τ(p⊥) < δ

}
,

where ε and δ run over all strictly positive real numbers. E. Nelson showed that M is a
complete topological *-algebra with respect to this topology [10]. Note that the τ -measure
topology satisfies the first countability axiom.

Remark 3.5. In this context, the operators in M are sometimes called τ -measurable
operators. In [4], various theorems of integration theory are obtained.
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Thus there are two topologies on M, the strong resolvent topology and the τ -measure
topology. These two topologies look quite different, but they coincide on M, i.e.,

Lemma 3.6. Let M be a countably decomposable finite von Neumann algebra acting on
a Hilbert space H. Then the strong resolvent topology and the τ -measure topology coin-
cide on M. In particular, M forms a complete topological *-algebra with respect to the
strong resolvent topology. Moreover, the τ -measure topology is independent of the choice
of a faithful normal tracial state τ .

To proceed further, we next consider the noncommutative analogue of almost every-
where convergence.

3.3. Almost everywhere convergence. Let M be a countably decomposable finite
von Neumann algebra on a Hilbert space H.

Definition 3.7. A sequence {An}∞n=1 ⊂ M converges almost everywhere (with respect
to M) to A ∈M if there exists a completely dense subspace D such that

(i) D ⊂
⋂∞
n=1 dom(An) ∩ dom(A),

(ii) Anξ converges to Aξ for each ξ ∈ D.

We remark the analogy between convergence notions in finite von Neumann algebras
and those used in probability theory.

non-Abelian Abelian
“a.e.” convergence a.e. convergence

Xn → X on D (completely dense) Xn(ω)→ X(ω) P -a.e.
convergence in τ -MT: ∀ε > 0 ∃{en} s.t. convergence in probability
‖(Xn −X)en‖ < ε, τ(e⊥n )→ 0 ∀ε > 0 P (|Xn −X| > ε)→ 0

convergence “in law” convergence in law

τ(EXn(·)) weak*→ τ(EX(·)) µXn
weak*→ µX

Here, EXn(·) and EX(·) mean the spectral resolution of a self-adjoint operators Xn and
X in M, respectively. The relations between the almost everywhere convergence and the
other topologies, as expected from the above analogy, turn out to be true [1].

Lemma 3.8. Let {An}∞n=1 ⊂ M be a sequence, A ∈ M. Suppose An converges to A in
the τ -measure topology, then there exists a subsequence {Ank

}∞k=1 of {An}∞n=1 such that
Ank

converges almost everywhere to A.

Lemma 3.9. Let {An}∞n=1 be a sequence in M converging almost everywhere to A ∈M.
Suppose {An∗}∞n=1 also converges almost everywhere to A∗, then {An}∞n=1 converges to A
in the strong resolvent topology.

From these considerations with an additional technical result we can prove Lemma 3.6.

3.4. Direct sums of algebras of unbounded operators. To finish the proof of The-
orem 3.4 in a general case, we consider some results about the direct sums of unbounded
operators.
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Let {Hα}α be a family of Hilbert spaces and H =
⊕

αHα be the direct sum Hilbert
space of {Hα}α, i.e.,

H :=
{
ξ = {ξ(α)}α : ξ(α) ∈ Hα,

∑
α

‖ξα‖2 <∞
}
.

For a subspace Dα of Hα, we set⊕̂
α
Dα :=

{
ξ = {ξ(α)}α ∈ H : ξ(α) ∈ Dα, ξ(α) = 0 except finitely many α

}
.

It is known that
⊕̂

αDα is dense in H whenever each Dα is dense in Hα.
Next we recall the direct sum of unbounded operators. Let Aα be a (possibly un-

bounded) linear operator on Hα. We define the linear operator A = ⊕αAα on H as
follows:

dom(A) :=
{
ξ = {ξ(α)}α ∈ H : ξ(α) ∈ dom(Aα),

∑
α

‖Aαξα‖2 <∞
}
,

(Aξ)(α) := Aαξ
(α), ξ ∈ dom(A).

A is said to be the direct sum of {Aα}α. It is easy to see that if each Aα is a densely
defined closed operator then so is A. In this case,

A∗ =
⊕

α
Aα
∗.

The next lemma follows immediately.

Lemma 3.10. Let Hα be a Hilbert space, H be the direct sum Hilbert space of {Hα}α.
For each α, we consider a net {Aα,λ}λ∈Λ of self-adjoint operators on Hα and self-adjoint
operator Aα on Hα. Set

Aλ :=
⊕

α
Aα,λ,

and

A :=
⊕

α
Aα,

on the Hilbert space H. Then Aλ converges to A in the strong resolvent topology if and
only if each {Aα,λ}λ∈Λ converges to Aα in the strong resolvent topology.

The next lemma is the key to prove Theorem 3.4. Here, the symbol
⊕b denotes the

`∞-direct sum of von Neumann algebras.

Lemma 3.11. Let Mα be a finite von Neumann algebra acting on Hα, and put

M :=
⊕b

α
Mα.

Then

M =
⊕

α
Mα.
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The sum, the scalar multiplication, the multiplication and the involution are given by(⊕
α
Aα
)

+
(⊕

α
Bα
)

=
⊕

α
(Aα +Bα),

λ
(⊕

α
Aα
)

=
⊕

α
(λAα), for all λ ∈ C,(⊕

α
Aα
)(⊕

α
Bα
)

=
⊕

α
(AαBα),(⊕

α
Aα
)∗ =

⊕
α

(Aα∗).

In addition, if each Mα is countably decomposable, then M is a complete topological
*-algebra with respect to the strong resolvent topology on M.

We also use

Lemma 3.12. Let (M,H) and (N,K) be spatially isomorphic finite von Neumann alge-
bras. If a unitary operator U of H onto K induces the spatial isomorphism, then the
map

Φ : M→ N, X 7→ UXU∗,

is a *-isomorphism. Moreover, Φ is a homeomorphism with respect to the strong resolvent
topology.

Combining all the above results, we can prove Theorem 3.4.

Proof of Theorem 3.4. Since M is finite, there exists a family of countably decomposable
finite von Neumann algebras {Mα}α such that M is spatially isomorphic onto

⊕b
α Mα.

From Lemma 3.12, there exists a *-isomorphism of M onto
⊕

α Mα which is homeomor-
phic with respect to the strong resolvent topology. By Lemma 3.11,

⊕
α Mα is a complete

topological *-algebra and so is M. Hence the proof is complete.

3.5. Local convexity. We also study the local convexity of
(
M,SRT

)
. This will be im-

portant when we consider the extension of a σ-weakly continuous map between finite von
Neumann algebras to algebras of affiliated operators. The absence of atomic projections
leads to the fact that M is no longer locally convex, although it is an F-space on which
open mapping theorem, uniform boundedness principle and so on hold.

Proposition 3.13. Let M be a finite von Neumann algebra. Then the following are
equivalent :

(1) (M,SRT) is locally convex.
(2) M is atomic.

We need some lemmata to prove the above proposition.
Above all, we use the following result.

Proposition 3.14. Let M be a finite von Neumann algebra. Then the following are
equivalent :

(1) There exists no nonzero SRT-continuous linear functional on M.
(2) M is diffuse.
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In particular, we cannot extend any normal states SRT-continuously to M. For the
proof, see [1]. Also see Section 6 for more discussions.

4. Lie group-Lie algebra correspondences. Based on the above study, we show the
main result of this paper. Let M be a finite von Neumann algebra acting on a Hilbert
space H, G be a strongly closed subgroup of U(M).

Recall that a densely defined closable operator A is called a skew-adjoint operator if
A∗ = −A, and A is called essentially skew-adjoint if A is skew-adjoint.

Definition 4.1. For a strongly closed subgroup G of U(M), the set

g = Lie(G) := {A : A∗ = −A on H, etA ∈ G, for all t ∈ R}

is called the Lie algebra of G. The complexification gC of g is defined by

gC :=
{
A+ iB : A,B ∈ g

}
.

If G = U(M), we sometimes write g as u(M).

The next lemma shows we can freely do algebraic operations on g.

Lemma 4.2. Under the above notation, g ⊂M holds.

Therefore the sum A+B and the Lie bracket AB −BA are well-defined operations
in M, but it is not clear whether they belong to g again. The following lemma helps us
answer the question.

Lemma 4.3 (Trotter-Kato, Nelson [9]). Let A,B be skew-adjoint operators on a Hilbert
space H.

(1) If A+B is essentially skew-adjoint on dom(A) ∩ dom(B), then

et(A+B) = s-lim
n→∞

(
etA/netB/n

)n
,

for all t ∈ R.
(2) If (AB −BA) is essentially skew-adjoint on

dom(A2) ∩ dom(AB) ∩ dom(BA) ∩ dom(B2),

then
et[A,B] = s-lim

n→∞

(
e−
√
t/nAe−

√
t/nBe

√
t/nAe

√
t/nB

)n2

,

for all t > 0, where [A,B] := AB −BA.

Lemma 4.4. Let G be a strongly closed subgroup of U(M). Then g is a real Lie algebra
with the Lie bracket [X,Y ] := XY − Y X.

Using the above lemmata and topological results from Section 3, we prove the following
main theorem.

Theorem 4.5. Let G be a strongly closed subgroup of the unitary group U(M) of a finite
von Neumann algebra M. Then g is a complete topological real Lie algebra with respect
to the strong resolvent topology. Moreover, gC is a complete topological Lie ∗-algebra.
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Remark 4.6. It is easy to see that for G = U(M), its Lie algebra u(M) is equal to
{A ∈M;A∗ = −A} and the exponential map

exp : u(M)→ U(M)

is continuous and surjective by the spectral theorem.

Group homomorphisms induce Lie algebra homomorphisms in a natural way.

Proposition 4.7. Let M1, M2 be finite von Neumann algebras on Hilbert spaces H1, H2,
respectively. Let Gi be a strongly closed subgroup of U(Mi) (i = 1, 2). For any strongly
continuous group homomorphism ϕ : G1 → G2, there exists a unique SRT-continuous
Lie algebra homomorphism Φ : Lie(G1) → Lie(G2) such that ϕ(eA) = eΦ(A) for all
A ∈ Lie(G1). In particular, if G1 is isomorphic to G2 as a topological group, then Lie(G1)
and Lie(G2) are isomorphic as topological Lie algebras.

On the other hand, it also has an infinite-dimensional character.

Proposition 4.8. Let M be a finite von Neumann algebra, then the following are equiv-
alent ;

(1) The exponential map exp : u(M) 3 X 7→ exp(X) ∈ U(M) is locally injective.
Namely, the restriction of the map onto some SRT-neighborhood of 0 ∈M is injec-
tive.

(2) M is finite-dimensional.

Remark 4.9. Lie(G) is not always locally convex, whereas most of infinite-dimensional
Lie theories, by contrast, assume local convexity. Indeed, by Proposition 3.13, u(M) is
locally convex if and only if M is atomic.

Next, we characterize closed *-subalgebras of M.

Proposition 4.10. Let M be a finite von Neumann algebra on a Hilbert space H, R be
a SRT-closed *-subalgebra of M with 1H. Then there exists a unique von Neumann sub-
algebra N of M such that R = N.

Corollary 4.11. Let M be a finite von Neumann algebra on a Hilbert space H, g be a
real SRT-closed Lie subalgebra of u(M). Then the following are equivalent :

(1) there exists a von Neumann subalgebra N of M such that g = u(N),
(2) 1H ∈ g and for all A,B ∈ g, i

(
AB +BA

)
∈ g.

In the above case, N is unique.

5. Categorical characterization of M

5.1. Motivation. In this section we consider the following problem.

Problem 5.1. Characterize those *-algebras R of unbounded operators on a Hilbert
space H which are isomorphic to M for some finite von Neumann algebra M on H.

We answer this problem with the aid of tensor category. Let M be a finite von Neu-
mann algebra on H. As shown in the previous section, the topological properties of M

are quite different from those of M. In particular, it may not be locally convex. On the
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other hand, they have many similar algebraic properties in common. For example, it can
be shown that if X,Y ∈ M satisfy XY = 1 then Y X = 1 follows automatically. These
similarities are best explained from the categorical viewpoint.

5.2. fvN and fRng as tensor categories. First we note that the usual tensor product
(M1,M2) 7→ M1⊗M2 of von Neumann algebras and the tensor product of σ-weakly
continuous homomorphisms (φ1, φ2) 7→ φ1⊗φ2 makes the category of finite von Neumann
algebras a tensor category.

Definition 5.2. The category fvN is a category whose objects are pairs (M,H) of a
finite von Neumann algebra M acting on a Hilbert space H and whose morphisms are
σ-weakly continuous unital *-homomorphisms. The unit object is (C1C,C). The tensor
functor is the usual tensor product functor of von Neumann algebras. The definition of
left and right unit constraint functors should be obvious.

Next, we study the category of M’s for M being finite von Neumann algebras. For
this purpose, we have to settle some subtleties due to the fact that we cannot use von
Neumann algebraic structure from the outset. This difficulty can be overcome thanks to
the notion of resolvent class operators, whose definitions are independent of von Neumann
algebras (see Section 3). We define fRng as follows.

Definition 5.3. The category fRng is a category whose objects (R,H) consist of a SRT-
closed subset R of the resolvent class RC (H) on a Hilbert space H with the following
properties:

(1) X + Y and XY are closable for all X, Y ∈ R.
(2) X + Y , αX, XY and X∗ again belong to R for all X, Y ∈ R and α ∈ C.
(3) R forms a *-algebra with respect to the sum X + Y , the scalar multiplication αX,

the multiplication XY and the involution X∗.
(4) 1H ∈ R.

The morphism set between (R1,H1) and (R2,H2) consists of SRT-continuous unital
*-homomorphisms from R1 to R2.

From the definition of fRng, it is not clear whether, for each objects in fRng, its
algebraic operations are continuous or not. The next lemma answers this problem.

Lemma 5.4. Let (R,H) be an object in fRng. Then there exists a unique finite von
Neumann algebra M on H such that R = M. Furthermore, M = R ∩B(H).

Note that for each finite von Neumann algebra M on a Hilbert space H, (M,H) is an
object in fRng. Now we answer Problem 5.1 in the following form.

Theorem 5.5. The category fRng is a tensor category. Moreover, fRng and fvN are
isomorphic as tensor categories.

To prove this theorem, we need many lemmata. We give an outline of the proof. First,
we define the tensor product R1⊗R2 of objects Ri (i = 1, 2) in fRng. Let A,B be
densely defined closed operators on Hilbert spaces H, K, respectively. Let A⊗0 B be an
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operator defined by

dom(A⊗0 B) := dom(A)⊗alg dom(B),

(A⊗0 B)(ξ ⊗ η) := Aξ ⊗Bη, ξ ∈ dom(A), η ∈ dom(B).

It is easy to see that A⊗0 B is closable. Denote its closure by A⊗B.

Lemma 5.6. Let M1, M2 be finite von Neumann algebras acting on Hilbert spaces H1,
H2, respectively. Let A ∈M1 and B ∈M2. Then we have A⊗B ∈M1⊗M2.

The next lemma says that the tensor product of algebras of affiliated operators has a
natural *-algebraic structure.

Lemma 5.7. Let M, N be finite von Neumann algebras acting on Hilbert spaces H, K
respectively. Let A,C ∈M, B,D ∈ N. Then we have

(1) (A⊗B)(C ⊗D) = AC ⊗BD.
(2) (A⊗B)∗ = A∗ ⊗B∗.
(3) A+ C ⊗B +D = A⊗B +A⊗D + C ⊗B + C ⊗D.
(4) λ(A⊗B) = λA⊗B = A⊗ λB (λ ∈ C).

Now we define the tensor product R1⊗R2 of (R1,H1) and (R2,H2) in Obj(fRng).
Let Mi be finite von Neumann algebras on Hi such that Ri = Mi (i = 1, 2), respectively
(cf. Lemma 5.4). From Lemma 5.7, the linear space R1 ⊗alg R2 spanned by {A1 ⊗ A2 :
Ai ∈ Ri, i = 1, 2} is a *-algebra. Since R1 ⊗alg R2 is a subset of M1⊗M2, it belongs to
RC (H1 ⊗H2). Therefore:

Definition 5.8. Under the above notation, we define R1⊗R2 to be the SRT-closure
(for H1 ⊗H2) of R1 ⊗alg R2.

Lemma 5.9. Let Ri (i = 1, 2) be as above. Then R1⊗R2 is also an object in fRng.
More precisely, if Ri = Mi, where Mi is a finite von Neumann algebra (i = 1, 2), then
M1⊗M2 = M1⊗M2.

The above Lemma says that (R1⊗R2,H1 ⊗H2) is again an object in fRng.
Next, we discuss the extension of morphisms in fvN to ones in fRng.

Lemma 5.10. Let (M1,H1), (M2,H2) be finite von Neumann algebras. Then the mapping

(M1,SRT)× (M2,SRT) −→ (M1⊗M2,SRT),

(A,B) 7−→ A⊗B,

is continuous.

The next proposition guarantees the existence and the uniqueness of the extension
of morphisms in fvN to the morphisms in fRng. Note that the claim is not trivial,
because many σ-weakly continuous linear mappings between finite von Neumann algebras
cannot be extended SRT-continuously to the algebra of affiliated operators. Indeed, we
cannot extend any σ-weakly continuous state on a finite von Neumann algebra M SRT-
continuously onto M if M is diffuse.
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Proposition 5.11. Let M1,M2 be finite von Neumann algebras on Hilbert spaces H1,
H2, respectively.

(1) For each SRT-continuous unital *-homomorphism Φ : M1 →M2, the restriction ϕ
of Φ onto M1 is a σ-weakly continuous unital *-homomorphism from M1 to M2.

(2) Conversely, for each σ-weakly continuous unital *-homomorphism ϕ : M1 → M2,
there exists a unique SRT-continuous unital *-homomorphism Φ : M1 →M2 such
that Φ|M1 = ϕ.

The next lemmata, together with Lemma 5.9, imply that fRng is a tensor category.

Lemma 5.12. Let Ri, Si (i = 1, 2) be objects in Obj(fRng). If Ψ1 : R1 → S1,
Ψ2 : R2 → S2 are SRT-continuous unital *-homomorphisms, then there exists a unique
SRT-continuous unital *-homomorphism Ψ : R1⊗R2 → S1⊗S2 such that Ψ(A⊗B) =
Ψ1(A)⊗Ψ2(B), for all A ∈ R1 and B ∈ R2. We define Ψ1 ⊗Ψ2 to be the map Ψ.

Lemma 5.13. Let (Ri,Hi) (i = 1, 2, 3) be objects in fRng. Then we have a unique
*-isomorphism which is homeomorphic with respect to the strong resolvent topology:

(R1⊗R2)⊗R3
∼= R1⊗(R2⊗R3)

(X1 ⊗X2)⊗X3 7→ X1 ⊗ (X2 ⊗X3), for all Xi ∈ Ri

We denote the map by αR1,R2,R3 .

Proposition 5.14. fRng is a tensor category.

Now we will prove that fvN is isomorphic to fRng as tensor categories. Define two
functors E : fvN→ fRng, F : fRng→fvN.

Definition 5.15. Define two correspondences E , F as follows:

(1) For each object (M,H) in fvN,

E(M,H) := (M,H),

which is an object in fRng. For each morphism ϕ : M1 → M2 in fvN, E(ϕ) :
M1 → M2 is the unique SRT-continuous extension of ϕ to M1, so that E(ϕ) is a
morphism in fRng by Proposition 5.11.

(2) For each object (R,H) in fRng,

F(R,H) := (R ∩B(H),H).

For each morphism Φ : R1 → R2 in fRng, F(Φ) := Φ|R1∩B(H), which is a mor-
phism in fvN by Proposition 5.11.

Lemma 5.16. E and F are tensor functors.

Finally we can show that E ◦ F = 1fRng,F ◦ E = 1fvN. Therefore fvN and fRng are
isomorphic as tensor categories. This completes the proof of Theorem 5.5.

6. Related problems. Here we discuss further research directions.

Problem 6.1. Is it possible to characterize those topological *-algebras R which are
isomorphic to M for some finite von Neumann algebra M without referring to any von
Neumann algebra M and any Hilbert space H?
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Probably the notion of von Neumann-regular ring is helpful for solving the above
problem.

Problem 6.2. Let M1,M2 be finite von Neumann algebras, f : M1 →M2 be a nonzero
positive σ-weakly continuous linear map. As mentioned in the previous chapter, f cannot
always be extended to an SRT-continuous linear map F : M1 → M2. Find a necessary
and sufficient condition for f to have the unique extension to M1.

Remark 6.3. For any diffuse von Neumann subalgebra N1 of M1, the range f(N1) must
not be contained in any atomic von Neumann subalgebra of M2.

Proof. Suppose by contradiction f(N1) is contained in an atomic subalgebra N2 of M2

and f has an SRT-continuous extension F : M1 →M2. Let f be a restriction of F to N1.
Since N2 is atomic, there exists a orthogonal family of central projections {zi}i∈I of N2

with sum equal to 1, such that N2,zi is a finite type I factor for all i ∈ I. Then N2,zi is SRT-
closed and the map fzi

: N1 3 x 7→ f(x)zi takes values in N2,zi
. Then for any σ-weakly

continuous linear functional ϕ ∈ (N2)∗, ϕ ◦ fzi
: N1 → C is a SRT-continuous linear

functional, hence is equal to 0 by Proposition 3.14. In particular, ϕ(fzi
(1)) = 0 for any ϕ,

which means fzi
(1) = f(1)zi = 0 for all i ∈ I. Therefore we have f(1) =

∑
i∈I f(1)zi = 0.

Since f is positive, this means f = 0, a contradiction.

Therefore the question is whether this is also a sufficient condition. Clearly the com-
plete positivity is not enough, as seen in Proposition 3.14. On the other hand, convex
combinations of σ-weakly continuous unital *-homomorphisms can be extended to M1

by Proposition 5.11.
Let M be a von Neumann algebra acting on H. Since every isometry in M is a strong

limit of unitaries in M, U(M) is strongly closed if and only if M is finite. Therefore in
some sense U(M) is “maximally large” among those strongly closed subgroups G of U(H)
which have natural Lie algebras. Therefore:

Problem 6.4. Let H be a Hilbert space, G be a strongly closed subgroup of U(H).
Suppose Lie(G) is a Lie algebra which is complete with respect to the strong resolvent
topology. Is the von Neumann algebra M generated by G of finite type?
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