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Abstract. In this paper we first introduce the Fock–Guichardet formalism for the quantum

stochastic (QS) integration, then the four fundamental processes of the dynamics are introduced

in the canonical basis as the operator-valued measures, on a space-time σ-field FX, of the QS

integration. Then rigorous analysis of the QS integrals is carried out, and continuity of the QS

derivative D is proved. Finally, Q-adapted dynamics is discussed, including Bosonic (Q = I),

Fermionic (Q = −I), and monotone (Q = O) quantum dynamics. These may be of particular

interest to quantum field theory, quantum open systems, and quantum theory of stochastic

processes.

1. Introduction. Non-commutative generalization of the Itô stochastic calculus, devel-
oped in [1, 2, 9, 15, 17, 18] gave an adequate mathematical tool for studying the behav-
ior of open quantum dynamical systems singularly interacting with a boson quantum-
stochastic field. Quantum stochastic calculus also made it possible to solve an old problem
of describing such systems with continuous observation and constructing a quantum fil-
tration theory which would explain a continuous spontaneous collapse under the action of
such observation [4, 5, 8]. This gave examples of stochastic non-unitary, non-stationary,
and even non-adapted evolution equations in a Hilbert space whose solution requires a
proper definition of chronologically ordered quantum stochastic semigroups, and expo-
nents of operators, by extending the notion of the multiple stochastic integral to non-
commuting objects.

Here is the first part of an outline of the solution to this important problem by
developing a Q-adapted form of the new quantum stochastic calculus constructed in [7]
in a natural scale of Fock spaces. It is based on an explicit definition, introduced in [6],
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of the non-adapted quantum stochastic integral, as a non-commutative generalization
of the Skorokhod integral [19] represented in the Fock space. The point derivative of
the quantum stochastic calculus is discussed as an operator on the scaled Fock space,
and consequentially the single integral operator-kernels are derived from the operator-
kernels of the multiple stochastic integral. These quantum stochastic derivatives are then
presented in an explicit Q-adapted form, and we recover the Fermionic anti-commutation
relation as well as the Bosonic commutator of the usual adapted process.

The approach used here is similar in spirit to the kernel calculus of Maassen–Lindsay–
Meyer [15, 17], however the difference is that all the main objects are constructed not
in terms of kernels but in terms of operators represented in the Fock space. In addition
we employ a much more general notion of multiple stochastic integral, non-adapted in
general but focusing now on Q-adapted processes, which reduces to the notion of the
kernel representation of an operator only in the case of a scalar (non-random) operator-
function under the integral. The possibility of defining a non-adapted single integral in
terms of the kernel calculus was shown by Lindsay [14], but the notion of the multiple
quantum-stochastic integral was introduced in [7].

2. Rigged Guichardet–Fock space. Let (X, λ) be an essentially ordered space, that
is, a measurable space X with a σ-finite measure λ : FX 3 4 7→ λ(4) ≥ 0 and an ordering
relation x ≤ x′ with the property that any n-tuple (x1, . . . , xn) ∈ Xn can be identified
up to a permutation with a chain κ = {x1 < . . . < xn} modulo the product measure∏n
i=1 dxi of dx := λ(dx). In other words, we assume that the measurable ordering is

almost total, that is, for any n the product measure of n-tuples s ∈ Xn with components
(x1, . . . , xn) that are not comparable is zero. Hence, in particular, it follows that the
measure λ on X is atomless and we may assume that this essentially total ordering on X
is induced from the linear order in R+ by a measurable map t : X → R+ relatively to
which λ is absolutely continuous with respect to the Lebesgue measure dt on R+ in the
sense of admitting the disintegration

〈f ◦ t, 14〉λ :=
∫
4
f(t(x))λ(dx) =

∫ ∞
0

f(t)λ4(t) dt ≡ 〈f, λ4〉 .

Here 14 is the indicator of any integrable subset 4 ⊆ X and f is any essentially bounded
function f : R+ → C and 4 7→ λ4(t) is defined by duality as a positive measure on X
for each t ∈ R+. In any case we will fix a map t that the above condition holds and
t(x) < t(x′) if x < x′, interpreting t(x) as the time at the point x ∈ X. For example,
t(x) = t for x = (~x, t) if X = Rd×R+ is the (d+1)-dimensional space-time with the casual
ordering [3] and dx = d~x dt, where d~x is the standard volume element on d-dimensional
space Rd 3 ~x.

We shall identify the finite chains κ with increasingly indexed n-tuples (x1, . . . , xn)≡s
with xi ∈ X, x1 < . . . < xn, denoting by X =

∑∞
n=0 Xn the set of all finite chains as the

union of the sets
Xn = {s ∈ Xn : x1 < . . . < xn}

with one-element X0 = {∅} containing the empty chain as a subset of X: ∅ = X0.
We introduce a measure ‘element’ dκ =

∏
x∈κ dx on X induced by the direct sum
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n=0 λ

⊗n(4n),4n ∈ F⊗nX of product measures ds =
∏n
i=1 dxi on Xn with the unit

mass dκ = 1 at the only atomic point κ = ∅.
Let {kx : x ∈ X} be a family of Hilbert spaces kx, let p0 be an additive semigroup

of nonnegative essentially measurable locally bounded functions q : X → R+ with zero
included 0 ∈ p0, and let p1 = {1 + q0 : q0 ∈ p0}. For example, in the case X = Rd × R+

by p1 we mean the set of polynomials q(x) = 1+
∑m
k=0 ck|~x|k with respect to the modulus

|~x| = (Σx2
i )

1/2 of a vector ~x ∈ Rd with coefficients ck ≥ 0. We denote by K?(q) the
Hilbert space of essentially measurable vector-functions k : x 7→ k(x) ∈ kx which are
square integrable with the weight q ∈ p1:

‖k‖(q) =
(∫
‖k(x)‖2xq(x) dx

)1/2

<∞.

With q ≥ 1, any space K?(q) can be embedded into the Hilbert space k = K?(1),
and the intersection

⋂
q∈p1

K?(q) ⊆ k can be identified with the projective limit K+ =
limq→∞K?(q). This follows from the facts that the function ‖k‖(q) is increasing:
q ≤ p ⇒ ‖k‖(q) ≤ ‖k‖(p), and so K?(p) ⊆ K?(q), and that the set p1 is directed in
the sense that for any q = 1 + r and p = 1 + s, r, s ∈ p0, there is a function in p1

majorizing q and p (we can take for example q + p − 1 = 1 + r + s ∈ p1). In the case
of polynomials q ∈ p1 on X = Rd × R+ the decreasing family {K?(q)}, where kx = C,
is identical with the integer Sobolev scale of vector fields k : Rd → L2(R+) with values
k(x)(t) = k(x, t) in the Hilbert space L2(R+) of square integrable functions on R+. If we
replace Rd by Zd and if we restrict ourselves to the positive part of the integer lattice Zd,
then we obtain the Schwartz space in the form of vector fields k ∈ K+.

The dual space K−? to K+ is the space of generalized vector-functions f(x) defining
the continuous functionals

〈f |k〉 =
∫
〈f(x) |k(x)〉 dx, k ∈ K+.

It is the inductive limit K− = limq→0 K?(q) in the opposite scale {K?(q) : q ∈ p−},
where p− is the set of functions q : X → (0, 1] such that 1/q ∈ p1, which is the union⋃
q∈p−

K?(q) of the inductive family of Hilbert spaces K?(q), q ∈ p−, with the norms
‖k‖(q), containing as the minimal the space K∗ = K?(1). Thus we obtain the Gel’fand
chain

K+ ⊆ K?(q+) ⊆ K∗ ⊆ K?(q−) ⊆ K−

in the extended scale {K?(q) : q ∈ p}, where p = p− ∪ p1, with q+ ∈ p1, q− ∈ p−. The
dual space K ?

+ = K− is the space of the continuous linear functionals on K+ containing
the Hilbert space K called the rigged space with respect to the dense subspace K + = K ?

−
of K equipped with the projective convergence in the scale ‖k∗‖(q) = ‖k‖(q) for q ∈ p1.

We can similarly define a Fock–Gel’fand triple (F+,F∗,F−) with

F+ =
⋂
q∈p1

F?(q), F∗ = F?(1), F− =
⋃
q∈p−

F?(q),

for the Hilbert scale {F?(q) : q ∈ p} of the symmetric Fock spaces F?(q) =
⊕∞

n=0K
(n)
? (q)

over K?(q), where K(0)
? (q) = C, K(1)

? (q) = K?(q), and each K(n)
? (q) for n > 1 is given by

the product weight qn(x1, . . . , xn) =
∏n
i=1 q(xi) on Xn. We shall consider the Guichardet

[10] representation of the symmetric tensor-functions ψn ∈ K
(n)
? (q) regarding them as
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the restrictions ψ|Xn of the functions ψ : κ 7→ ψ(κ) ∈ K⊗? (κ) with sections in the
Hilbert products K⊗? (κ) =

⊗
x∈κ kx, square integrable with the product weight q(κ) =∏

x∈κ q(x):

‖ψ‖(q) =
(∫
‖ψ(κ)‖2q(κ) dκ

)1/2

<∞.

The integral here is over all chains κ ∈ X and defines the pairing on F+ by

〈ψ |ψ〉 =
∫
〈ψ(κ) |ψ(κ)〉 dκ, ψ ∈ F+.

In more detail we can write this in the form∫
‖ψ(κ)‖2q(κ) dκ =

∞∑
n=0

∫
· · ·
∫

0≤t1<...<tn<∞

‖ψ(x1, . . . , xn)‖2
n∏
i=1

q(xi) dxi,

where the n-fold integrals for ψn ∈ K(n)
? are taken over simplex domains Xn = {s ∈ Xn :

t(x1) < . . . < t(xn)}.
One can easily establish an isomorphism between the space F?(q) and the symmetric

(or antisymmetric) Fock space over K?(q) with a nonatomic measure dx in X. It is defined
by the isometry

‖ψ‖(q) =
( ∞∑
n=0

1
n!

∫
· · ·
∫
‖ψ(x1, . . . , xn)‖2

n∏
i=1

q(xi) dxi
)1/2

,

where the functions ψ(x1, . . . , xn) can be extended to the whole of Xn in a symmetric (or
antisymmetric) way uniquely up to the measure zero due to nonatomicity of dx on X.

3. Explicit definition of QS integrals. Let h be a Hilbert space called the initial
space for the Hilbert products H∗ = h ⊗ K∗ and G∗ = h ⊗ F∗. We consider the Hilbert
scale G?(q) = h⊗F?(q), q ∈ p, of complete tensor products of h and the Fock spaces over
K?(q), and we put

G+ =
⋂

G?(q), G− =
⋃

G?(q),

which constitute the Gel’fand triple G+ ⊆ G∗ ⊆ G− dual to G+ ⊆ G ⊆ G− of the
Hermitian adjoint bra-spaces G+ = G∗+, G = G∗∗ , G− = G∗−.

Let (Dµ
ν )µ=−,◦
ν=◦,+ be a quadruple of functions Dµ

ν on X with kernel values Dµ
ν (x) : G+ →

G− for kx = C, or, if kx 6= C, as continuous operators
D−+(x) : G+ → G−, D◦◦(x) : kx ⊗G+ → kx ⊗G−,

D◦+(x) : kx ⊗G+ → G−, D−◦ (x) : kx ⊗G+ → G−.
(1)

The continuity means that there is a q ∈ p1 such that these operators are bounded from
G?(q) ⊇ G+ to G(q)? ⊆ G−, where G(q)? = G?(q−1). We assume that D−+(x) is locally
integrable in the sense that

∃ q ∈ p1 : ‖D−+‖
(1)
q,t =

∫
Xt
‖D−+(x)‖q dx <∞ ∀t <∞,

where Xt = {x ∈ X : t(x) < t}, and

‖D‖q = sup{‖Dχ‖(q−1)/‖χ‖(q)}
is the norm of the continuous operator D : G?(q) → G?(q−1) which defines a bounded
Hermitian form D(χ;χ) := 〈χ |Dχ〉 on G?(q). We also assume that D◦◦(x) is locally
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bounded with respect to a strictly positive function s of x such that 1/s ∈ p0 in the sense
that

∃ q ∈ p1 : ‖D◦◦‖
(∞)
q,t (s) = ess sup

x∈Xt
{s(x)‖D◦◦(x)‖q} <∞ ∀t <∞;

here ‖D‖q is the norm of the operator D : kx⊗G?(q)→ kx⊗G?(q−1). Finally, we assume
that D◦+(x) and D−◦ (x) are locally square integrable with strictly positive function r(x)
such that 1/r ∈ p0, in the sense that

∃ q ∈ p1 : ‖D◦+‖
(2)
q,t (r) <∞, ‖D−◦ ‖

(2)
q,t (r) <∞ ∀t <∞,

where ‖D‖(2)q,t (r) = (
∫

Xt ‖D(x)‖2qr(x) dx)1/2 and ‖D‖q are the respective norms of the
operators

D◦+(x) : G?(q)→ kx ⊗G?(q−1), D−◦ (x) : kx ⊗G?(q)→ G?(q−1).

Then for any t ∈ R+ we can define a generalized quantum stochastic (QS) integral

it0(D) =
∫

Xt
Λ(D, dx), Λ(D,4) =

∑
µ,ν

Λµν (Dµ
ν ,4) (2)

introduced in [18] as the sum of four continuous operators Λνµ(Dµ
ν ) : G+ → G− described

as operator-measures on FX 3 4 for 4 = Xt with values

[Λ+
−(D−+,4)χ](ϑ) =

∫
4

[D−+(x)χ](ϑ) dx (preservation),

[Λ+
◦ (D◦+,4)χ](ϑ) =

∑
x∈4∩ϑ

[D◦+(x)χ](ϑ \ x) (creation),

[Λ◦−(D−◦ ,4)χ](ϑ) =
∫
4

[D−◦ (x)χ̊(x)](ϑ) dx (annihilation),

[Λ◦◦(D
◦
◦,4)χ](ϑ) =

∑
x∈4∩ϑ

[D◦◦(x)χ̊(x)](ϑ \ x) (exchange).

(3)

Here χ ∈ G+, ϑ \ x = {x′ ∈ ϑ : x′ 6= x} denotes the chain ϑ ∈ X from which the point
x ∈ ϑ has been eliminated, and χ̊(x) ∈ kx ⊗ G+ is the single point split χ̊(x) = ∇xχ, or
point derivative, defined for each χ ∈ G+ almost everywhere (namely, for ϑ ∈ X : x /∈ ϑ)
as the function

[∇xχ](ϑ) = χ(ϑ t x) ≡ χ̊(x, ϑ),

where the operation κ t x denotes the disjoint union ϑ = κ ∪ x, κ ∩ x = ∅ of chains
κ ∈ X and x ∈ X \ κ with pairwise comparable elements. Note that the point splitter ∇
represents the Malliavin derivative [16] densely defined in Fock–Guichardet space as the
bosonic annihilation operator b(x) : G+ → kx ⊗ G+ by [b(x)χ] (ϑ) = χ̊(x, ϑ) where one
can take χ̊(x, ϑ) = 0 if x ∈ ϑ, and its right inverse operator

[
∇∗xψ

]
(ϑ) = ψ(x, ϑ \ x) with[

∇∗xψ
]
(ϑ) = 0 if x /∈ ϑ defines in this representation the Skorokhod non-adapted integral

as the creation point integral [
∇∗ψ

]
(ϑ) =

∑
x∈ϑ

ψ(x, ϑ \ x)

for any ψ ∈ K− ⊗ G−. The continuity of this derivative as the projective limit map
G+ → K+ ⊗ G+ and the point integral as the adjoint map K− ⊗ G− → G− will simply
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follow from the isometricity of the multiple point splitter and co-isometricity of the adjoint
multiple point integral as defined below, originally established in [7].

4. Split operator and its properties. As it is proved below, we can consider the
multiple bosonic annihilation operators b⊗(υ) : χ 7→ χ̊(υ) eliminating several points υ
in Xn, with

[
b⊗(υ)χ

]
(ϑ) = 0 if υ ⊆ ϑ, as partial isometries on the projective limit G+

into G
(n)
+ = K⊗n+ ⊗ G+. They are described for each υ = {x1, . . . , xn} in terms of the

n-point split [
∆(n)
υ χ

]
(ϑ) := χ(ϑ t υ) ≡ χ(n)(υ, ϑ), υ ∈ Xn, (4)

where we put χ̊(υ) = χ(n)(υ) for n = |υ|. It is defined almost everywhere (ϑ ∩ υ = ∅) on
ϑ ∈ X as the n-th order ∆υn =

⊗
x∈υn ∇x point (or Malliavin) derivative [16] such that

∆(0) = I and ∆(1) = ∇. These n-tuple annihilations, densely defined as operators from
G+ into k⊗(υ)⊗G+, are not continuous for each υ ∈ Xn (except υ = ∅ corresponding to
n = 0 for which b⊗(∅) = I), but they define projective-continuous linear maps into the
space G(n)

+ of functions υ 7→ φ(υ) on Xn ⊂ X for each n ∈ N, and therefore have the
adjoints G(n)

+ → G+. This follows from the projective contractivity of the maps ∆(n) :
G+ → G(n)

+ , and their adjoints, such that each function χ(n) = ∆(n)χ is square-integrable
on Xn with any q0 ∈ p0 being a component of the isometric operator

∆χ =
∫ ⊕
X

∆υχdυ =
∞⊕
n=0

∆(n)χ ≡ χ̊.

The projective isometricity of the linear operator ∆ =
∫ ⊕
X ∆υ dυ, called the multiple point

splitter,
∆ : G?(q0 + q1)→ F?(q0)⊗G?(q1)

is established in the following lemma.

Lemma 4.1. The linear map ∆ : χ 7→
[
∆(n)χ

]
defined as ∆χ =

⊕∞
n=0 ∆(n)χ in (4)

for all υ ∈ X is a projective isometry on Hilbert scale {G?(q) : q ∈ p} into the scale
{F?(q0)⊗G?(q1) : q0 ∈ p0, q1 ∈ p1} such that

‖∆χ‖(q0, q1) = ‖χ‖(q0 + q1).

The adjoint co-isometric operator 〈∆∗ψ |χ〉 = 〈ψ |∆χ〉, defined on ψ ∈ F?(q0) ⊗ G?(q1)
as the multiple point integral ∆∗ =

∑
∆∗n, is a contraction from F?(q−1

0 )⊗G?(q−1
1 ) into

any G?(q−1) with q ≥ q0 + q1 such that (∆∗n)∗ = ∆(n). In particular,[
∆∗nψ

]
(ϑ) =

∑
Xn3υ⊆ϑ

ψ(υ, ϑ \ υ), ϑ ∈ X , (5)

defines for ψ(υ,κ) = ψn(υ)⊗ χ(κ) the n-th order Skorokhod integral[
Sn(ψn)χ

]
(ϑ) =

∑
Xn3υ⊆ϑ

ψn(υ)⊗ χ(ϑ \ υ) =
[
∆∗n(ψn ⊗ χ)

]
(ϑ)

of ψn ∈ K (n)
? (q−1

0 ) on χ ∈ G?(q−1
1 ).

Proof. We first of all establish the principal formula of the multiple integration∫ ∑
υ⊆ϑ

f(υ, ϑ \ υ) dϑ =
∫∫

f(υ,κ) dυ dκ ∀f ∈ L1(X × X ), (6)



QUANTUM CHAOTIC STATES AND STOCHASTIC INTEGRATION 57

which will allow us to define the adjoint operator ∆∗. Let f(υ,κ) = g(υ)h(κ) be the
product of integrable complex functions on X of the form g(υ) =

∏
x∈υ g(x), h(κ) =∏

x∈κ h(x) for any υ, κ ∈ X . Employing the binomial formula∑
υ⊆ϑ

g(υ)h(ϑ \ υ) =
∑

υtκ=ϑ

∏
x∈υ

g(x)
∏
x∈κ

h(x) =
∏
x∈ϑ

(g(x) + h(x)),

and also the equality
∫
f(υ) dυ = exp{

∫
f(x) dx} for f(υ) =

∏
x∈υ f(x), we obtain the

formula∫ ∑
υ⊆ϑ

g(υ)h(ϑ \ υ) dϑ = exp
{∫

(g(x) + h(x)) dx
}

=
∫∫

g(υ)h(κ) dυ dκ,

which proves (6) on a set of product functions f dense in L1(X × X ).
Applying this formula to the scalar product 〈ψ(υ,κ) |ψ(υ,κ)〉 ∈ L1(X×X ), we obtain∫ ∑

υ⊆ϑ

〈ψ(υ, ϑ \ υ) |χ(ϑ)〉 dϑ =
∫∫
〈ψ(υ,κ) |χ(υ t κ)〉 dυ dκ,

that is, 〈∆∗ψ |χ〉 = 〈ψ |∆χ〉, where [∆χ](υ,κ) = χ(κ t υ) ≡ χ̊(υ,κ). Choosing arbitrary
ψ ∈ F?(q−1

0 )⊗G?(q−1
1 ), we find that the annihilation operators b(υ)χ = [∆υχ] define the

isometry ∆ : G?(q0 + q1)→ F?(q0)⊗G?(q1) with the operator ∆∗ defined as co-isometry
F?(q−1

0 ) ⊗ G?(q−1
1 ) → G?(q−1) for q = q0 + q1 with respect to the standard pairing of

dual spaces G?(q) and G?(q−1):

‖χ̊‖2(q0, q1) =
∫∫
‖χ̊(υ,κ)‖2q0(υ)q1(κ) dυ dκ

=
∫ ∑

υ⊆ϑ

‖χ(ϑ)‖2q0(υ)q1(ϑ \ υ) dϑ =
∫
‖χ(ϑ)‖2

∑
υtκ=ϑ

q0(υ)q1(κ) dϑ

=
∫
‖χ(ϑ)‖2(q0 + q1)(ϑ) dϑ ≡ ‖χ‖2(q0 + q1) ≤ ‖χ‖2(q) ∀q ≥ q0 + q1.

Hence it follows that ∆ is projective continuous operator from G+ to F+ ⊗ G+, where
F+ =

⋂
q∈p0

F?(q), and in particular so is the one-point split χ(x,κ) = χ(xtκ) ≡ χ̊(x,κ)
from G+ to K+⊗G+, as a contracting map G?(q0 +q1)→ F?(q0)⊗G?(q1) for all q0 ∈ p0,
q1 ∈ p. The lemma is proved.

Remark. Because the explicit form of both the creation and annihilation operators’
norms may not be obvious we shall review them here for the reader’s familiarization.

‖∆‖q0+q1 = sup
χ

‖∆χ‖(q0, q1)
‖χ‖(q0 + q1)

= sup
χ,ψ

∣∣〈ψ |∆χ〉∣∣
‖ψ‖(q−1

0 , q−1
1 )‖χ‖(q0 + q1)

and

‖∆∗‖q0,q1 = sup
ψ

‖∆∗ψ‖((q0 + q1)−1)
‖ψ‖(q−1

0 , q−1
1 )

= sup
χ,ψ

∣∣〈∆∗ψ |χ〉∣∣
‖ψ‖(q−1

0 , q−1
1 )‖χ‖(q0 + q1)

where ψ ∈ F?(q−1
0 ) ⊗ G?(q−1

1 ) and χ ∈ G?(q0 + q1), indeed ∆∗ : F?(q−1
0 ) ⊗ G?(q−1

1 ) →
G?((q0 + q1)−1) and ∆ : G?(q0 + q1) → F?(q0) ⊗ G?(q1). By virtue of the fact that
〈ψ |∆χ〉 = 〈∆∗ψ |χ〉 these two norms are equal, and they are equal to 1.
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5. Multiple QS integrals and their continuity. We are now ready to prove the
inductive continuity of the integral (2) with respect to D = [Dµ

ν ] by showing the inequality

‖(it0(D)χ)‖(p−1) ≤ ‖D‖sq,t(r)‖χ‖(p) ∀p ≥ r−1 + q + s−1,

where ‖D‖sq,t(r) = ‖D−+‖
(1)
q,t +‖D◦+‖

(2)
q,t (r)+‖D−◦ ‖

(2)
q,t (r)+‖D◦◦‖

(∞)
q,t (s). We will establish this

inequality as the single-integral case of the corresponding inequality for the generalized
multiple QS integral [7]

[ıt0(M)χ](ϑ) =
∑

υ◦◦tυ◦+⊆ϑt

∫
X t

∫
X t

[
M(υ)χ̊(υ−◦ t υ◦◦)

]
(υ◦−) dυ−+ dυ−◦ (7)

where ϑt = ϑ ∩ Xt,X t = {ϑ ∈ X : ϑ ⊂ Xt} and the sum is taken over all decompositions
ϑ = υ◦− t υ◦◦ t υ◦+ such that υ◦◦ ∈ X t and υ◦+ ∈ X t. The multi-integrand M(υ) defines the
values

M(υ··) = δ∅(υ+
· )M(υ)δ∅(υ·−), υ =

(
υ−+ υ−◦
υ◦+ υ◦◦

)
of matrix elements M··(υ) = M(υ··), υ =

⊔
µ,ν υ

µ
ν , for a decomposable triangular tensor-

operator M ≡ M·· defined on matrices υ·· = [υµν ]µ=−,◦,+
ν=−,◦,+ whose elements are finite disjoint

chains υµν , with υµν = ∅ for µ > ν and with M(υ··) = 0 if υ+
· 6= ∅ or υ·− 6= ∅. The

other values of M(υ··) are defined by a kernel-operator function M(υ) of the quadruple
υ = (υµν )µ=−,◦

ν=+,◦ with continuous operator values M(υ) : G+ → G− in the scalar case
kx = C. In the general case it is defined almost everywhere by its values on the chains
υµν ∈ X in the continuous operators

M
(
υ−+ υ−◦
υ◦+ υ◦◦

)
: k⊗
υ−◦
⊗ k⊗υ◦◦ ⊗G+ → k⊗υ◦◦ ⊗ k⊗υ◦+

⊗G−.

We will assume that these operators are bounded from G?(q) to G?(q−1) for some q ∈ p1,
such that ‖I‖ = 1, and that there exist strictly positive functions r > 0, r−1 ∈ p0, and
s > 0, s−1 ∈ p0 such that

‖M‖sq,t(r) =
∫
X t
‖M−+(υ)‖sq,t(r) dυ <∞ ∀t <∞, (8)

where

‖M−+(υ−+)‖sq,t(r) =
(∫
X t

∫
X t

ess sup
υ◦◦∈X t

(s(υ◦◦)‖M(υ)‖q)2r(υ◦+ t υ−◦ ) dυ◦+ dυ−◦

)1/2

,

and s(υ) =
∏
x∈υ s(x), r(υ) =

∏
x∈υ r(x).

We mention that the single integral (2) corresponds to the case

M(υ··) = 0 ∀υ·· :
∑

µ6=+,ν 6=−

|υµν | 6= 1,

and M(xµν ) = Dµ
ν (x) otherwise, where xµν denotes one of six ‘atomic’ triangular matrices

υ··(x) = [υκλ(x)]κ=−,◦,+λ=−,◦,+ ≡ x having all matrix elements υκλ(x) empty if x 6= xκλ, but
υµν (x) = x for x = xµν . Note that integrand M(xµν ) is zero on the atomic matrices x+

ν

and xµ−, otherwise M(x) = M(x), given by the single-point kernel M(x) as a function of
one of the four single-point tables υ(x) = (υκλ(x))κ=−,◦λ=+,◦ ≡ x:

x−+ =
(
x, ∅
∅ ∅

)
, x◦+ =

(
∅, ∅
x ∅

)
, x−◦ =

(
∅, x

∅ ∅

)
, x◦◦ =

(
∅, ∅
∅ x

)
, (9)



QUANTUM CHAOTIC STATES AND STOCHASTIC INTEGRATION 59

determined by an x ∈ X. It follows from the next theorem that the function M(υ) in (7)
can be defined up to equivalence, whose kernel {M ≈ 0} consists of all multiple integrands
with ‖M‖sq,t(r) = 0 for all t ∈ R+ and for some q, r, s. In particular, M can be defined
almost everywhere only for the tables υ = (υµν ) that give disjoint decompositions υ =⊔
µ,ν υ

µ
ν of the chains υ ∈ X , that is, it may have nonzero values only on υ representable

in the form υ =
⊔
x∈υ x, where x is one of the atomic tables given by (9) with indices

µ, ν for x ∈ υµν .

Theorem 5.1. Suppose that M(υ) is a locally integrable function in the sense of (8) for
some q, r, s > 0. Then its integral (7) is a continuous operator Tt = ıt0(M) from G+

to G− satisfying the estimate

‖Tt‖p = sup
χ∈G?(p)

{
‖Ttχ‖(p−1)/‖χ‖(p)

}
≤ ‖M‖sq,t(r) (10)

for any p ≥ r−1 + q+ s−1. The operator T∗t , formally adjoint to Tt in G∗, is the integral

ıt0(M)∗ = ıt0(M‡), M‡(υ··) = M(υ̃··)
∗, [̃υµν ] =

[
υ−ν−µ

]
(11)

of δ∅(υ+
· )M?(υ)δ∅(υ·−) = M‡(υ··), which is continuous from G+ to G−, and satisfying

‖M?‖sq,t(r) = ‖M‖sq,t(r) for M?(υ) = M(υ′)∗, where (υµν )′ = (υ−ν−µ). Moreover, the
operator-valued function t 7→ Tt has the quantum-stochastic differential dTt = dit0(D) in
the sense that

ıt0(M) = M(∅) + it0(D), Dµ
ν (x) = ı

t(x)
0 (Ṁ(xµν )), (12)

defined by the quantum-stochastic derivatives D = [Dµ
ν ] with values (1) acting from G?(p)

to G?(p−1) and bounded almost everywhere:

‖D−+‖
(1)
p,t ≤ ‖M‖sq,t(r), ‖D‖(2)p,t (r) ≤ ‖M‖sq,t(r), ‖D◦◦‖

(∞)
p,t (s) ≤ ‖M‖sq,t(r)

for D = D−◦ and D = D◦+, p ≥ r−1 + q + s−1. This differential is defined in the form of
the multiple integrals (7), with respect to υ, of the point derivatives Ṁ(x, υ··) = M(υ··tx),
where x is given by one of four atomic tables (9) at a fixed point x ∈ X.

Proof. Using property (6) in the form∫ ∑
⊔
υ◦ν=ϑ

f(υ◦−, υ
◦
◦ , υ
◦
+) dϑ =

∫∫∫
f(υ◦−, υ

◦
◦ , υ
◦
+)
∏
ν

dυ◦ν ,

it is easy to find that from the definition (7) for χ ∈ G+ we have∫
〈χ(ϑ) | [Ttχ](ϑ)〉 dϑ

=
∫
X t

dυ−+

∫
X t

dυ◦+

∫
X t

dυ−◦

∫
X t

dυ◦◦
〈
χ̊(υ◦◦ t υ◦+) |M(υ)χ̊(υ−◦ t υ◦◦)

〉
=
∫
X t

dυ−+

∫
X t

dυ◦+

∫
X t

dυ−◦

∫
X t

dυ◦◦
〈
M(υ)∗χ̊(υ◦◦ t υ◦+) | χ̊(υ−◦ t υ◦◦)

〉
=
∫
〈[T∗tχ](ϑ) |χ(ϑ)〉 dϑ,

that is, T∗t acts as ıt0(M?) in (7) with M?(υ) = M(υ′)∗, where (υµν )′ = (υ−ν−µ) with
respect to the inversion − : (−, ◦,+) 7→ (+, ◦,−). More precisely, this yields ‖ıt0(M)‖p =
‖ıt0(M?)‖p, since ‖T‖p = ‖T∗‖p by the definition (10) of p-norm and by

sup
{∣∣〈χ |Tχ〉∣∣/‖χ‖(p)‖χ‖(p)} = sup

{∣∣〈T∗χ |χ〉∣∣/‖χ‖(p)‖χ‖(p)}.
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We estimate the integral 〈χ |Ttχ〉 using the Schwartz inequality∫
‖χ̊(υ)‖(q)‖χ̊(υ)‖(q)s−1(υ) dυ ≤ ‖χ̊‖(s−1, q)‖χ̊‖(s−1, q)

and the property (6) of the multiple integral according to which

‖χ̊‖(s−1, q) = ‖χ‖(q + s−1)

then

|〈χ |Ttχ〉| ≤
∫
X t

∫
X t

∫
X t

∫
X t
‖χ̊(υ◦◦ t υ◦+)‖(q)‖M(υ)χ̊(υ◦◦ t υ−◦ )‖(q−1) d4υ

≤
∫
X t

dυ◦◦

∫
X t

∫
X t
‖χ̊(υ◦◦ t υ◦+)‖(q)

(∫
X t
‖M(υ)‖qdυ−+

)
‖χ̊(υ−◦ t υ◦◦)‖(q) dυ−◦ dυ◦+

≤
∫
X t

dυ
(∫
X t
‖χ̊(υ t υ◦+)‖2(q)

dυ◦+
r(υ◦+)

∫
X t
‖χ̊(υ t υ−◦ )‖2(q)

dυ−◦
r(υ−◦ )

)1/2

‖M◦◦(υ)‖q,t(r)

=
∫
X t

dυ‖χ̊(υ)‖(r−1 + q)‖M◦◦(υ)‖q,t(r)‖χ̊(υ)‖(r−1 + q)

≤ ess sup
υ∈X t

{
s(υ)‖M◦◦(υ)‖q,t(r)

}
‖χ‖(r−1 + q + s−1)‖χ‖(r−1 + q + s−1),

where ‖M◦◦(υ◦◦)‖q,t(r) =
(∫
X t
∫
X t(
∫
X t ‖M(υ)‖q dυ−+)2r(υ−◦ tυ◦+) dυ−◦ dυ◦+

)1/2, and d4υ :=
dυ−◦ dυ◦◦ dυ◦+ dυ−+ . Then since

ess sup
υ∈X t

{s(υ)‖M◦◦(υ)‖q,t(r)} ≤ ‖M‖sq,t(r),

and since

sup
χ∈G?(p)

‖Tχ‖(p−1)
‖χ‖(p)

= sup
χ∈G?(p)

∣∣〈χ |Tχ〉∣∣
‖χ‖(p)‖χ‖(p)

,

it follows that ‖Tt‖p ≤ ‖M‖sq,t(r) for all p ≥ r−1 + q + s−1.
Now using the definition (7) and the property∫

X t
χ(ϑ) dϑ = χ(∅) +

∫
Xt

dx
∫
X t(x)

χ̊(x, ϑ) dϑ,

where χ̊(x, ϑ) = χ(ϑ t x), it is easy to see that

[(Tt − T0)χ](ϑ) = [(ıt0(M)−M(∅))χ](ϑ)

=
∫

Xt
dx

t(υ◦ν)<t(x)∑
υ◦◦tυ◦+⊆ϑ

{∫
X t(x)

dυ−+
[∫
X t(s)

dυ−◦
(
Ṁ(x−+,υ)χ̊(υ−◦ t υ◦◦)

+ Ṁ(x−◦ ,υ)χ̊(x t υ−◦ t υ◦◦)
)]}

(ϑ \ υ◦◦ \ υ◦+)

+
∑
x∈Xt

∫ t(υ◦ν)<t(x)

υ◦◦tυ◦+⊆ϑ

{∫
X t(x)

dυ−+
[∫
X t(x)

dυ−◦
(
Ṁ(x◦+,υ)χ̊(υ−◦ t υ◦◦)

+ Ṁ(x◦◦,υ)χ̊(x t υ−◦ t υ◦◦)
)]}

(ϑ \ υ◦◦ \ υ◦+)

=
∫

Xt
dx
[
D−+(x)χ+ D−◦ (x)χ̊(x)

]
(ϑ) +

∑
x∈Xt

[
D◦+(x)χ+ D◦◦(x)χ̊(x)

]
(ϑ \ x).
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Consequently, Tt − T0 =
∑

Λνµ(Dµ
ν ,Xt), where Λµν (D,4) are defined in (3) as operator-

valued measures on X of operator-functions

[Dµ
+(x)χ](ϑ) =

t(υ◦ν)<t(x)∑
υ◦◦tυ◦+⊆ϑ

∫
X t(x)

dυ−+

∫
X t(x)

dυ−◦ [Ṁ(xµ+,υ)χ̊(υ−◦ t υ◦◦)](ϑ◦−),

[Dµ
◦ (x)χ̊(x)](ϑ) =

t(υ◦ν)<t(x)∑
υ◦◦tυ◦+⊆ϑ

∫
X t(x)

dυ−+

∫
X t(x)

dυ−◦ [Ṁ(xµ◦ ,υ)χ̊(x t υ−◦ t υ◦◦)](ϑ◦−),

acting on χ ∈ G+ and χ̊(υ) ∈ k⊗υ ⊗G+, where ϑ◦− = ϑ∩ (υ◦◦ t υ◦+) = ϑ \υ◦◦ \υ◦+. This can
be written in terms of (7) as

Dµ
ν (x) = ıt0(Ṁ(xµν )).

Because of the inequality ‖Tt‖p ≤ ‖M‖sq,t(r) for all p ≥ r−1+q+s−1 we obtain ‖D−+‖
(1)
p,t ≤

‖M‖sq,t(r), since ‖D−+(x)‖p ≤ ‖Ṁ(x−+)‖sq,t(x)(r):∫
Xt
‖D−+(x)‖p dx ≤

∫
Xt
‖Ṁ(x−+)‖sq,t(x)(r) dx =

∫
Xt

dx
∫
X t(x)

‖M−+(x t υ)‖sq,t(x)(r) dυ

=
∫
X t
‖M−+(υ)‖sq,t(r) dυ − ‖M−+(∅)‖sq,t(r) = ‖M‖sq,t(r)− ‖M−+(∅)‖sq,t(r).

For the estimate of D◦+ we shall require the use of the norm

‖M◦+‖sq,t(r) :=
(∫
X t

(
‖M◦+(υ◦+)‖sq,t(r)

)2

r(υ◦+) dυ◦+

)1/2

,

where

‖M◦+(υ◦+)‖sq,t(r) :=
(∫
X t

(∫
X t

ess sup
υ◦◦∈X t

s(υ◦◦)‖M(υ)‖q dυ−+
)2

r(υ−◦ ) dυ−◦

)1/2

;

in particular, ‖M◦+‖sq,t(r) ≤ ‖M‖sq,t(r). So we have

‖D◦+‖
(2)
p,t (r)

2 ≤
∫

Xt
(‖Ṁ◦+(x◦+)‖sq,t(x)(r))

2r(x) dx

= ‖M◦+‖sq,t(r)2 − ‖M◦+(∅)‖sq,t(r)2 ≤ ‖M‖sq,t(r)2.
In a similar manner we obtain the estimate for D−◦ ,

‖D−◦ ‖
(2)
p,t (r)

2 ≤
∫

Xt
(‖Ṁ−◦ (x−◦ )‖sq,t(x)(r))

2r(x) dx

= ‖M−◦ ‖sq,t(r)2 − ‖M−◦ (∅)‖sq,t(r)2 ≤ ‖M‖sq,t(r)2.

Finally, from ‖D◦◦(x)‖p ≤ ‖Ṁ(x◦◦)‖sq,t(x)(r) we similarly obtain

‖D◦◦‖
(∞)
p,t (s) ≤ ess sup

x∈Xt
{s(x)‖Ṁ(x◦◦)‖sq,t(x)(r)} ≤ ‖M‖

s
q,t(r)

if p ≥ r−1 + q + s−1, which concludes the proof.

Since Tt = ıt0(M) the theorem obviously states that ‖ıt0(M)‖p ≤ ‖M‖sq,t(r) for all
p ≥ 1

r + q + 1
s , and in particular for the case when M(υ) = 0 if

∑
|υµν | 6= 1, and

M(x) = D(x). Then the result of the theorem becomes

‖it0(D)‖p ≤ ‖D‖sq,t(r)
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and now we shall begin to evaluate the quantum stochastic norm (8) explicitly for the
single integrand D(x),

‖D‖sq,t(r) = ‖D−+‖
(1)
q,t + ‖D−+(∅)‖sq,t(r).

One may now proceed in a similar manner to find that

‖D−+(∅)‖sq,t(r) = ‖D−◦ ‖
(2)
q,t (r) + ‖D◦+‖

(2)
q,t (r) + ‖D◦◦‖

(∞)
q,t (s),

and thus we have recovered the inequality stated at the beginning of this section.

6. Adapted and Q-adapted QS integrals. The quantum-stochastic integral (7) con-
structed in [7], as well as its single variations (2) introduced in [6], are defined explicitly
and do not require that the functions M and D under the integral be adapted. By virtue of
the continuity we have proved above, they can be approximated in the inductive conver-
gence by the sequence of integral sums ıt0(Mn), it0(Dn) corresponding to step measurable
operator-functions Mn and Dn if the latter converge inductively to M and D in the
poly-norm (8).

In fact, if there exist functions r, s with r−1, s−1 ∈ p0 and q ∈ p1 such that
‖Mn−M‖sq,t(r)→ 0, then there also exists a function p ∈ p1 such that ‖ıt0(Mn−M)‖p → 0,
and we have p ≥ r−1 + q + s−1 by the inequality (10), which implies the inductive con-
vergence ıt0(Mn)→ ıt0(M) as a result of the linearity of ıt0.

Let Q : x 7→ L(kx) be a measurable operator-valued function with q-contractive
values ‖Q(x)‖ ≤ q(x) with respect to a positive function q ∈ p, where L(kx) is the space
of adjointable maps in kx. We shall say that the integrand D(x) is Q-adapted if it has
the product form

Dµ
ν (x) = Dµ

ν (x)t(x) ⊗Q⊗t(x) (13)

with respect to the Fock split G = Gt(x)⊗F[t(x) corresponding to X = Xt(x)tX[t(x), where
Dµ
ν (x)t(x) := Kµ

ν (x) is the restricted action Gt(x)
+ → Gt(x)

− of Dµ
ν (x) corresponding to the

vacuum embeddings Gt(x)
+ ⊆ G+ and Gt(x)

− ⊆ G−. We can now write the Q-adapted QS
integrals as a more explicit form of the general QS integrals (3)

[Λ+
−(D−+,4)χ](ϑ) =

∫
4

[
K−+(x)⊗Q⊗(κ)χ̊(κ)

]
(ϑt(x)) dx, x /∈ ϑ,

[Λ+
◦ (D◦+,4)χ](ϑ) =

∑
x∈4∩ϑ

[
K◦+(x)⊗Q⊗(κ)χ̊(κ)

]
(ϑt(x)),

[Λ◦−(D−◦ ,4)χ](ϑ) =
∫
4

[
K−◦ (x)⊗Q⊗(κ)χ̊(x t κ)

]
(ϑt(x)) dx, x /∈ ϑ,

[Λ◦◦(D
◦
◦,4)χ](ϑ) =

∑
x∈4∩ϑ

[
K◦◦(x)⊗Q⊗(κ)χ̊(x t κ)

]
(ϑt(x)).

(14)

Here Q⊗(κ) =
⊗

x∈κ Q(x) for any κ ∈ Xt(x) and χ̊(κ, ϑt) = χ(ϑttκ) on the decomposi-
tion of the chain ϑ ∈ X into ϑt = {x ∈ ϑ : t(x) < t} and κ = {x ∈ ϑ : t(x) > t} ≡ ϑt. The
usual adapted case corresponds to the identity operator Q = I which we shall now refer
to as Bosonic adapted, however there are also two other basic cases of interest. The first
is the vacuum adapted case corresponding to the zero operator Q = O, and the second
is the Fermionic adapted case corresponding to Q = −I. In the vacuum adapted case
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Q⊗ = O⊗ is the vacuum projector given on G∗ as

[P0χ](ϑ) = χ(∅)δ∅(ϑ), δ∅(ϑ) =

{
1 ϑ = ∅
0 ϑ 6= ∅.

The ±I-adapted integrands define the Fermionic and Bosonic fields in the Guichardet–
Fock space as

Λ(D−◦ ) = Λ◦−(D−◦ ), Λ(D◦+) = Λ+
◦ (D◦+),

with D−◦ (x) = K−◦ (x) ⊗ Q⊗t(x), and D◦+(x) = K◦+(x) ⊗ Q⊗t(x), and the terminology used
here is justified in the corollary following the next proposition.

Proposition 6.1. Let Λ(D−◦ ) and Λ(D◦+) be Q-adapted quantum stochastic integrals
with respect to a q-contractive operator Q on K∗. Suppose that both K−◦ (x) and K◦+(z)
are diagonal on X t(x) such that [K◦+(x)χ](ϑ) = K◦+(x, ϑ)χ(ϑ) and [K−◦ (x)χ̊(x)](ϑ) =
K−◦ (x, ϑ)χ(x t ϑ), and that the commutation [K−◦ (x),K◦+(z)] = 0 is satisfied for each
x, z ∈ Xt with x 6= z, then given constant Q = cI, c ∈ C, the c-commutator

[Λ(D−◦ ),Λ(D◦+)]c = Λ(D−◦ )Λ(D◦+)− cΛ(D◦+)Λ(D−◦ )

satisfies the equation

[Λ(D−◦ , t),Λ(D◦+, t)]c =
∫

Xt
K−◦ (x)K◦+(x) dx⊗ (Q2)⊗t (15)

if D−◦ (x, ϑt(x) \ z) = D−◦ (x, ϑt(x)) for all x > z, and D◦+(z, ϑt(z) tx) = D◦+(z, ϑt(z)) for all
z > x.

Proof. The QS integrals are defined as

[Λ(D−◦ , t)χ](ϑ) =
∫

Xt
D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|χ(ϑ t x) dx

and
[Λ(D◦+, t)χ](ϑ) =

∑
z∈ϑt

D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)|χ(ϑ \ z).

Consider the quantity

[Λ(D−◦ )Λ(D◦+)χ](ϑ)−
[∫

Xt
K−◦ (x)K◦+(x) dx⊗ (Q2

t )
⊗χ
]
(ϑ)

=
∫

Xt
D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|

∑
z∈ϑt(x)

D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)tx|χ(x t ϑ \ z) dx

+
∫

Xt
D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|

∑
z∈ϑt

t(x)

D◦+(z, ϑt(z) t x)⊗Q⊗|ϑt(z)|χ(x t ϑ \ z) dx,

where ϑts = ϑ ∩ (s, t). Since Q = cI, and by the requirement that D◦+(z, ϑt(z) t x) =
D◦+(z, ϑt(z)) for all z > x, we can write this as

=
∑
z∈ϑt

∫
Xt
t(z)

D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|D◦+(z, ϑt(z))⊗ cQ⊗|ϑt(z)|χ(x t ϑ \ z) dx

+
∑
z∈ϑt

∫
Xt(z)

D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)|χ(x t ϑ \ z) dx,
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and now we look at

c[Λ(D◦+, t)Λ(D−◦ , t)χ](ϑ)

= c
∑
z∈ϑt

D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)|
∫

Xt(z)
D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)\z|χ(x t ϑ \ z) dx

+ c
∑
z∈ϑt

D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)|
∫

Xt
t(z)

D−◦ (x, ϑt(x) \ z)⊗Q⊗|ϑt(x)|χ(x t ϑ \ z) dx

which we can write as

=
∑
z∈ϑt

D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)|
∫

Xt(z)
D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|χ(x t ϑ \ z) dx

+ c
∑
z∈ϑt

D◦+(z, ϑt(z))⊗Q⊗|ϑt(z)|
∫

Xt
t(z)

D−◦ (x, ϑt(x))⊗Q⊗|ϑt(x)|χ(x t ϑ \ z) dx,

and indeed the result follows as a consequence of the commutation [K−◦ (x),K◦+(z)] = 0
for each x, z ∈ Xt with x 6= z.

Corollary 6.2. In particular notice that the Bosonic and Fermionic field commutators
are obtained, respectively, in the cases where c = +1 and c = −1, where we have

[Λ(D−◦ , t),Λ(D◦+, t)]±1 =
∫

Xt
K−◦ (x)K◦+(x) dx⊗ I⊗t

and the monotonic field commutator, c = 0, is

[Λ(D−◦ , t),Λ(D◦+, t)]0 =
∫

Xt
K−◦ (x)K◦+(x) dx⊗O⊗t

where we have made use of the identification Dµ
ν (∅) = 0.

Obviously the QS integral Y(t) = it0(D) of any Q-adapted integrand D(x) is an
operator-valued Q-adapted process in the sense that Y(t) = Yt⊗Q⊗t . The approximation
of this integral in the class of adapted step functions when Q = I, by continuity, leads to
the usual definition of the quantum-stochastic integral it0(D) which was given by Hudson
and Parthasarathy for the identity-adapted case with X = R+, t(x) = x as the weak limit
of integral sums

it0(Dn) =
∫ t

0

Λ(Dn,dx) =
n∑
j=1

Dµ
ν (xj)Aν

µ(4j).

Here D(xj) = Dn(x) for x ∈ [xj , xj+1) is an adapted approximation corresponding to
the decomposition R+ =

∑n
j=14i into the intervals 4j = [xj , xj+1) given by the chain

x0 = 0 < x1 < . . . < xn < xn+1 = ∞, and Dµ
ν (x)Aν

µ(4) is the sum of the operators (3)
with functions Dµ

ν (x) constant on 4 which can therefore be pulled out in front of the
integrals Aν

µ.
In particular, for D−+ = 0 = D◦◦ and D−◦ = g ⊗ 1̂ = D◦+, where 1̂ = I⊗ is the unit

operator in F∗ and g(x) is a scalar locally square integrable function corresponding to
the case kx = C = h, we obtain the Itô definition of the Wiener integral

İt0(g) =
∫ t

0

g(x)w(dx),
∫ t

0

g(x) ŵ(dx) = it0(D)
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with respect to the stochastic measure w(4), 4 ∈ FX on R+, represented in G∗ = F∗
by the operators ŵ(4) = A+

◦ (4) + A◦−(4). We also note that the multiple integral (7)
in the trivially adapted case M(υ) = M(υ) ⊗ I⊗ defines the Fock representation of the
generalized Maassen–Meyer kernels [9, 17] and in the case

M(υ) = m(υ−◦ t υ◦+)δ∅(υ−+)δ∅(υ◦◦), δ∅(υ) =

{
1, υ = ∅,
0, υ 6= ∅,

it leads to the multiple stochastic integrals ıt0(M) = Ît0(m),

It0(m) =
∞∑
n=0

∫
· · ·
∫

0≤t1<...<tn<t

m(x1, . . . , xn)w( dx1) . . . w(dxn)

of the generalized functions m ∈
⋃
r−1∈p0

G?(r), that is, to the Hida distributions [11, 13]
of the Wiener measure w(4) represented as ŵ(4). Thus, we can consider the trivially
adapted QS multiple integrals ıt0(M) as quantum Hida operator-distributions whose prop-
erties are described in the following corollary when Q = I.

Corollary 6.3. Suppose that M(υ) = M(υ)⊗Q⊗ where ‖Q⊗‖q = 1, i.e. the operator-
function M is defined by the q-contractive ampliation of the ?-kernel M with ‖M‖st (r)<∞,

M

(
υ−+ υ−◦
υ◦+ υ◦◦

)
: k⊗(υ−◦ t υ◦◦)⊗ h→ k⊗(υ◦◦ t υ◦+)⊗ h,

where

‖M‖st (r) =
∫
X t

dυ−+
(∫
X t

dυ◦+

∫
X t

dυ−◦ ess sup
υ◦◦∈X t

{s(υ◦◦)‖M(υ)‖}2r(υ◦+ t υ−◦ )
)1/2

for all t ∈ R+ and for some r(υ) =
∏
x∈υ r(x), s(υ) =

∏
x∈υ s(x); r−1, s−1 ∈ p0.

Then the integral (7) defines a Q-adapted family Tt, t ∈ R+, of p-bounded operators
Tt = ıt0(M ⊗ Q⊗), ‖Tt‖p ≤ ‖M‖st (r) for p ≥ r−1 + q + s−1, with bounded Q-adapted
quantum-stochastic derivatives Dµ

ν (x) = ı
t(x)
0 (Ṁ(xµν )⊗Q⊗).

Proof. Since ‖M(υ)⊗Q⊗‖q ≤ ‖M(υ)‖ the result immediately follows from the inequality
‖M ⊗Q⊗‖sq,t(r) ≤ ‖M‖st (r).
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[7] V. P. Belavkin, A quantum nonadapted Itô formula and stochastic analysis in Fock scale,

J. Funct. Anal. 102 (1991), 414–447.

[8] V. P. Belavkin, Quantum stochastic calculus and quantum non-linear filtering, J. Multi-

variate Anal. 42 (1992), 171–201.

[9] M. P. Evans, R. L. Hudson, Multidimensional quantum diffusions, in: Quantum Proba-

bility and Applications III (Oberwolfach, 1987), Lecture Notes in Math. 1303, Springer,

Berlin, 1988, 69–88.

[10] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math. 261,

Springer, Berlin, 1972.

[11] T. Hida, Brownian Motion, Applications of Mathematics 11, Springer, New York, 1980.

[12] A. S. Holevo, Time-ordered exponentials in quantum stochastic calculus, Preprint 517,

Universität Heidelberg, 1989.

[13] Yu. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, W. Westerkamp, Generalized func-

tionals in Gaussian spaces: the characterization theorem revisited, J. Funct. Anal. 141

(1996), 301–318.

[14] J. M. Lindsay, On set convolutions and integral-sum kernel operators, in: Probability The-

ory and Mathematical Statistics (Vilnius, 1989), vol. II, Mokslas, Vilnius, 1990, 105–123.

[15] J. M. Lindsay, H. Maassen, The Stochastic Calculus of Bose Noise, CWI Syllabus 32,

Centre for Mathematics and Computer Science, Amsterdam, 1992.

[16] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in: Proceedings

of the International Symposium on Stochastic Differential Equations (Res. Inst. Math.

Sci., Kyoto, 1976), Wiley, New York, 1978, 195–263.
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