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Abstract. This mainly expository article is devoted to recent advances in the study of dynam-
ical aspects of the Cuntz algebras On, n < ∞, via their automorphisms and, more generally,
endomorphisms. A combinatorial description of permutative automorphisms of On in terms of
labelled, rooted trees is presented. This in turn gives rise to an algebraic characterization of the
restricted Weyl group of On. It is shown how this group is related to certain classical dynamical
systems on the Cantor set. An identification of the image in Out(On) of the restricted Weyl group
with the group of automorphisms of the full two-sided n-shift is given, for prime n, providing an
answer to a question raised by Cuntz in 1980. Furthermore, we discuss proper endomorphisms
of On which preserve either the canonical UHF-subalgebra or the diagonal MASA, and present
methods for constructing exotic examples of such endomorphisms.

1. Introduction. The C∗-algebras On, n ∈ {2, 3, 4, . . . } ∪ {∞} were first defined and
investigated by Cuntz in his seminal paper [23], and they bear his name ever since. It
is difficult to overestimate the importance of the Cuntz algebras in theory of operator
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algebras and many other areas. It suffices to mention that Cuntz’s original article, [23],
is probably the most cited ever paper in the area of operator algebras (MSC class 46L).
Indeed, as C∗-algebras naturally generated by Hilbert spaces, the Cuntz algebras continue
to provide a convenient framework for several different areas of investigations. In order to
illustrate the variety of applications, without pretending in any way to be exhaustive, we
only mention a very small sample of papers dealing with Fredholm theory, classification
of C∗-algebras, self-similar sets, coding theory, continuous fractions, spectral flow and
index theory for twisted cyclic cocycles, see e.g. [4, 40, 49, 46, 39, 11].

This mainly expository article is devoted to recent advances in the study of dynamical
aspects of the Cuntz algebras On with n <∞ via their automorphisms and, more gener-
ally, endomorphisms. It is not a comprehensive review but a selective one, biased towards
the contributions made by the three authors. Some original results are also presented in
this article, as will be explained later.

Systematic investigations of endomorphisms of On, n < ∞ were initiated by Cuntz
in [24]. A fundamental bijective correspondence between unital ∗-endomorphisms and uni-
taries in On was established therein (see equation (2), below). Using this correspondence
Cuntz proved a number of interesting results, in particular with regard to those endo-
morphisms which globally preserve either the core UHF-subalgebra Fn or the diagonal
MASA Dn.

Investigations of automorphisms of On began almost immediately after the birth of
the algebras in question, see [2, 24, 28, 27, 10, 47, 56]. Classification of group actions
on On came to the fore somewhat later, see [35, 48]. In the present article, we review
more recent results on automorphisms of On contained in [55, 22, 17, 18, 16].

Proper endomorphisms of the Cuntz algebras have also attracted a lot of atten-
tion. In particular, they played a role in certain aspects of index theory, both from the
C∗-algebraic and von Neumann algebraic point of view. The problem of computing the
Jones(-Kosaki-Longo) index of (the normal extensions) of localized endomorphisms of On
was posed in [36]. Progress on this and other related problems was then achieved in a
number of papers. Of particular note in this regard are contributions made by Longo,
[43, 44, 45], and Izumi, [32, 33, 34], but see also [25, 19, 1, 15, 29, 37, 38, 21, 20, 30].
There is also a parallel line of research dealing with various entropy computations, e.g. see
[12, 53, 54]. Recently, one of the most interesting applications of endomorphisms of On,
found by Bratteli and Jørgensen in [8, 9], is in the area of wavelets. Before that, shift
endomorphisms of Cuntz algebras have been systematically employed in the analysis of
structural aspects of quantum field theory, see e.g. the discussion in [26, Section 2] and
references therein.

The present article is organized as follows. After setting the stage with some prelimi-
naries in Section 2, we discuss localized automorphisms in Section 3. Localization refers
to the fact that the corresponding unitary lies in one of the matrix algebras constitut-
ing a building block of the UHF-subalgebra Fn. In Section 3.2, we review fundamental
results about permutative automorphisms of On, mainly contained in [22]. The key break-
through obtained therein was a clear-cut correspondence between such automorphisms
and certain combinatorial structure related to labelled trees. This in turn served as a plat-
form for further theoretical analysis, classification results, and construction of non-trivial
examples.
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In Section 3.3, we present a more direct approach to finding automorphisms, based on
solving certain polynomial matrix equations. Even though these equations are relatively
easy to derive, finding a complete set of solutions is a highly non-trivial task.

Section 3.4 contains a complete classification of those permutative endomorphisms
of O3 in level k = 3 which are either automorphisms of O3 or restrict to automorphisms
of the diagonal D3. These results were obtained in [17] and in the subsequent unpublished
work [18], with aid of massive computer calculations. We also give tables summarizing the
results of our automorphism search for all values of parameters n and k with n+ k ≤ 6.

In Section 4, we review very recently obtained description of the so-called restricted
Weyl group of On in terms of automorphisms of the full two-sided n-shift, [16]. On one
hand, this result provides an answer to a question raised by Cuntz in [24]. On the other
hand, it establishes a very interesting correspondence between an important class of au-
tomorphisms of a purely infinite, simple C∗-algebra On and much studied automorphism
group of a classical system of paramount importance in symbolic dynamics, [41, 42]. Some
aspects of this correspondence are related to the problem of extension of an automor-
phism from Dn to the entire On. A similar question for the UHF-subalgebra Fn rather
than the diagonal Dn has been studied recently in [14].

Some recent results related to proper endomorphisms of On are reviewed in Sec-
tion 5. Subsection 5.1 deals with those endomorphisms which globally preserve the UHF-
subalgebra Fn, while Subsection 5.2 with those which globally preserve the diagonal Dn.
The main theme in here is construction of endomorphisms which globally preserve one
of these subalgebras but whose corresponding unitary does not belong to the relevant
normalizer. The problem of existence of such exotic endomorphisms was left open in [24]
and remained unresolved until the recent works of [20] and [30].

2. Preliminaries. If n is an integer greater than 1, the Cuntz algebra On is the unital
C∗-algebra generated by n isometries S1, . . . , Sn, satisfying

∑n
i=1 SiS

∗
i = I, [23]. Then it

turns out that On is separable, simple, nuclear and purely infinite. We denote by W k
n the

set of k-tuples µ = (µ1, . . . , µk) with µm ∈ {1, . . . , n}, and by Wn the union
⋃∞
k=0W

k
n ,

where W 0
n = {0}. We call elements of Wn multi-indices. If µ ∈ W k

n then |µ| = k is the
length of µ. If µ = (µ1, . . . , µk) ∈ Wn, then Sµ = Sµ1 . . . Sµk

(S0 = 1 by convention) is
an isometry with range projection Pµ = SµS

∗
µ. Every word in {Si, S∗i : i = 1, . . . , n} can

be uniquely expressed as SµS∗ν , for µ, ν ∈Wn [23, Lemma 1.3].
We denote by Fkn the C∗-subalgebra of On spanned by all words of the form SµS

∗
ν ,

µ, ν ∈ W k
n , which is isomorphic to the matrix algebra Mnk(C). The norm closure Fn of⋃∞

k=0 Fkn , is the UHF-algebra of type n∞, called the core UHF-subalgebra of On, [23]. It is
the fixed point algebra for the gauge action of the circle group γ : U(1)→ Aut(On) defined
on generators as γt(Si) = tSi. For k ∈ Z, we denote by O(k)

n := {x ∈ On : γt(x) = tkx},
the spectral subspace for this action. In particular, Fn = O(0)

n . The C∗-subalgebra of
Fn generated by projections Pµ, µ ∈ Wn, is a MASA (maximal abelian subalgebra)
both in Fn and in On. We call it the diagonal and denote by Dn. The spectrum of Dn is
naturally identified with Xn—the full one-sided n-shift space. We also set Dkn := Dn∩Fkn .
Throughout this paper we are interested in the inclusions

Dn ⊆ Fn ⊆ On.
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The UHF-subalgebra Fn possesses a unique normalized trace, denoted by τ . We will refer
to the restriction of τ to Dn as to the canonical trace on Dn.

We denote by Sn the group of those unitaries in On which can be written as finite
sums of words, i.e., in the form u =

∑m
j=1 SµjS

∗
νj

for some µj , νj ∈ Wn. It turns out
that Sn is isomorphic to the Higman–Thompson group Gn,1 [50]. One can also identify
a copy of Thompson’s group F sitting in canonical fashion inside S2. We also define
Pn = Sn ∩ U(Fn). Then Pn =

⋃
k Pkn, where Pkn are permutation unitaries in U(Fkn).

That is, for each u ∈ Pkn there is a unique permutation σ of multi-indices W k
n such that

u =
∑
µ∈Wk

n

Sσ(µ)S
∗
µ. (1)

As shown by Cuntz in [24], there exists the following bijective correspondence be-
tween unitaries in On and unital ∗-endomorphisms of On (whose collection we denote by
End(On)). A unitary u in On determines an endomorphism λu by1

λu(Si) = uSi, i = 1, . . . , n. (2)

Conversely, if ρ : On → On is an endomorphism, then
∑n
i=1 ρ(Si)S∗i = u gives a unitary

u ∈ On such that ρ = λu. If the unitary u arises from a permutation σ via formula (1),
the corresponding endomorphism will be sometimes denoted by λσ. Composition of en-
domorphisms corresponds to a ‘convolution’ multiplication of unitaries as follows:

λu ◦ λw = λu∗w, where u ∗ w = λu(w)u. (3)

We denote by ϕ the canonical shift:

ϕ(x) =
n∑
i=1

SixS
∗
i , x ∈ On.

If we take u =
∑
i,j SiSjS

∗
i S
∗
j then ϕ = λu. It is well-known that ϕ leaves invariant both

Fn and Dn, and that ϕ commutes with the gauge action γ. We denote by φ the standard
left inverse of ϕ, defined as φ(a) = 1

n

∑n
i=1 S

∗
i aSi.

If u ∈ U(On) then for each positive integer k we define

uk := uϕ(u) · · ·ϕk−1(u). (4)

We agree that u∗k stands for (uk)∗. If α and β are multi-indices of length k and m,
respectively, then λu(SαS∗β) = ukSαS

∗
βu
∗
m. This is established through a repeated appli-

cation of the identity Sia = ϕ(a)Si, valid for all i = 1, . . . , n and a ∈ On. If u ∈ Fkn for
some k then, following [19], we call endomorphism λu localized. Even though systematic
investigations of such endomorphisms were initiated in [24], it should be noted that auto-
morphisms constructed this way appeared already in the work of Connes in the context
of the hyperfinite type II1 factor, [13].

For algebras A ⊆ B we denote by NB(A) = {u ∈ U(B) : uAu∗ = A} the normalizer
of A in B, and by A′∩B = {b ∈ B : (∀a ∈ A) ab = ba} the relative commutant of A in B.
We also denote by Aut(B,A) the collection of all those automorphisms α of B such that
α(A) = A, and by AutA(B) those automorphisms of B which fix A point-wise.

1In some papers, e.g. [24], [55] and [22], a different convention λu(Si) = u∗Si is used.
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3. Localized endomorphisms and automorphisms. In this section, we mostly deal
with automorphisms of On. However, it may be useful to broaden our horizon for a little
while and consider more general endomorphisms of Cuntz algebras from the point of view
of subfactor/sector theory.

3.1. One example. Since dealing simultaneously with all unitaries in matrix algebras is
very difficult, in order to discuss interesting cases it is convenient to focus on some selected
classes of unitaries which arise in specific situations like in the study of integrable systems.
Let H be a Hilbert space with dim(H) = n. Cuntz already noticed that unitary solutions
Y ∈ U(H ⊗H) of the quantum YBE (without spectral parameter)

Y12Y23Y12 = Y23Y12Y23 (5)

can be characterized in Cuntz algebra terms as those unitaries Y in F2
n satisfying

λY (Y ) = ϕ(Y ). (6)

As a simple exercise, it is instructive to observe that no nontrivial unitary solution of
the YBE induces an automorphism of On. Indeed, we claim that if Y ∈ F2

n then Y

satisfies equation (5) if and only if2 Y ∈ (λ2
Y , λ

2
Y ) := λ2

Y (On)′ ∩ On. Here one needs the
composition rule of endomorphisms, namely λ2

Y = λλY (Y )Y = λY ϕ(Y )Y ϕ(Y ∗), along with
the characterization of self-intertwiners recalled in Section 5.1 below. That is, thanks to
equation (13) one has that Y ∈ (λ2

Y , λ
2
Y ) if and only if(

Y ϕ(Y )Y ϕ(Y ∗)
)∗
Y Y ϕ(Y )Y ϕ(Y ∗) = ϕ(Y ). (7)

Now, the left hand side of (7) is precisely ϕ(Y )Y ∗ϕ(Y ∗)Y ϕ(Y )Y ϕ(Y ∗) and the claim is
now clear. If Y is not a multiple of the identity, this shows already that λ2

Y (On)′ ∩ On
contains non-scalar elements and therefore, On being simple, λ2

Y is not an automorphism,
as well as λY . The computation of the Jones index for subfactors associated to Yang–
Baxter unitaries has been discussed in more detail in [19, 15].

It is well-known that finding all solutions of the YBE in dimension n is a difficult
problem that has been dealt with only for very small values of n. This is closely related
with the classification problem for braiding in categories of representations of quantum
groups and/or conformal nets. It is expected that attaching to these solutions invariants
from subfactor theory will lead to a much better understanding.

Other families of unitaries related to the study of spin/vertex models might also
provide a useful playground:

Problem 3.1.

(a) Examine Cuntz algebra endomorphisms associated to normalized Hadamard ma-
trices, cf. [36];

(b) Discuss from the Cuntz algebra point of view the tetrahedron equation and/or its
several variations (see e.g. [3]).

2At first sight this condition might look a bit strange, however one should then remember
that in algebraic quantum field theory the canonical braiding ερ of a localized morphism ρ of
the observable net A indeed satisfies ερ ∈ ρ2(A)′ ∩ A.



86 R. CONTI ET AL.

Finally, it is worth to recall that a throughout discussion of localized endomorphisms
associated to (finite-dimensional) unitaries satisfying the so-called pentagon equation
(which is a basic ingredient of quantum group theory) has been provided in [45, 19].

3.2. Permutative automorphisms and labelled trees. We begin by recalling3 some
results from [22]. Let u be a unitary in Fkn . For i, j ∈ {1, . . . , n}, one defines linear maps
auij : Fk−1

n → Fk−1
n by auij(x) = S∗i u

∗xuSj , x ∈ Fk−1
n . We put Vu = Fk−1

n /C1. Since
auij(C1) ⊆ C1, there are induced maps ãuij : Vu → Vu. We define Au as the subring of
L(Vu) generated by {ãuij : i, j = 1, . . . , n}. We denote by H the linear span of the Si’s.
Following [19], we define inductively Ξ0 = Fk−1

n and Ξr = λu(H)∗Ξr−1λu(H), r ≥ 1. It
follows that {Ξr} is a nonincreasing sequence of subspaces of Fk−1

n and thus it eventually
stabilizes. If p is the smallest integer for which Ξp = Ξp+1, then Ξu :=

⋂
r Ξr = Ξp. The

following result is contained in [22].

Theorem 3.2. Let u be a unitary in Fkn . Then the following conditions are equivalent :

(1) λu is invertible with localized inverse;
(2) Au is nilpotent ;
(3) Ξu = C1.

In the case of a permutation unitary u ∈ Pkn, Theorem 3.2 may be strengthened and
very conveniently reformulated in combinatorial terms, as follows. As shown in [22], the
corresponding λu is an automorphism of On if and only if u satisfies two conditions, called
(b) and (d) therein. Condition (b) by itself guarantees that endomorphism λu restricts to
an automorphism of the diagonal Dn.4 To describe these two conditions we will identify
unitary u ∈ Pkn with the corresponding permutation of W k

n .
For i = 1, . . . , n, one defines a mapping fui : W k−1

n →W k−1
n so that fui (α) = β if and

only if there exists m ∈ W 1
n such that (β,m) = u(i, α). Then u satisfies condition (b) if

and only if there exists a partial order ≤ on W k−1
n ×W k−1

n such that:

(i) Each element of the diagonal (α, α) is minimal.
(ii) Each (α, β) is bounded below by some diagonal element.
(iii) For every i and all (α, β) such that α 6= β, we have

(fui (α), fui (β)) ≤ (α, β). (8)

For this condition (b) to hold it is necessary that the diagram of each mapping fui is a
rooted tree, with the root its unique fixed point and with an edge going down from α to β
if fui (α) = β. By convention, we do not include in the diagram the loop from the root to
itself. For example, if u = id is viewed as an element of P3

2 , then the corresponding pair
of labelled trees is:

• •

•

F

.......................................................................

.........................................................................................................................

f id
1

21 22

12

11

• •

•

F

.......................................................................

.........................................................................................................................

f id
2

11 12

21

22

3Note the difference in convention regarding the definition of λu.
4Since Pkn ⊂ NOn(Dn) for all k, every permutative endomorphism of On maps Dn into itself.
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To describe condition (d) we define Wk−1
n as the union of all off-diagonal elements

of W k−1
n ×W k−1

n and one additional element †. For i, j ∈ W 1
n , we also define mappings

fuij : Wk−1
n → Wk−1

n so that fuij(α, β) = (γ, δ) if there exists an m ∈ W 1
n such that

(γ,m) = u(i, α) and (δ,m) = u(j, β). Otherwise, we set fuij(α, β) = †. We also put
fuij(†) = † for all i, j. Then u satisfies condition (d) if and only if there exists a partial
order ≤ on Wk−1

n such that:

(i) The only minimal element with respect to ≤ is †.
(ii) For every (α, β) ∈ Wk−1

n and all i, j = 1, . . . , n, we have

fuij(α, β) ≤ (α, β). (9)

With help of this combinatorial approach, a complete classification has been achieved
in [22], [17] and [18] of permutations in Pkn with n + k ≤ 6 such that the corresponding
endomorphism λu either is automorphism of On or restricts to an automorphism of the
diagonal Dn. Considering the image of λ(Pkn)−1 in the outer automorphism group of On,
it was shown in [22] with respect to the case of O2, that no outer automorphisms apart
from the flip-flop arise in this way for k = 3 (a much simpler case k = 2 being already
known). For k = 4, twelve new classes in Out(O2) were found.

3.3. Inverse pairs of localized automorphisms. In this section, we gather together
a few facts about pairs of unitaries in some finite matrix algebras giving rise to automor-
phisms of On that are inverses of each other. We also briefly discuss interesting algebraic
equations such unitaries must satisfy. These equations provide a useful background for
the considerations in Section 3 of [22] (e.g. Theorem 3.2, Corollary 3.3 therein), which
are reviewed in the present article in Section 3.2 above. They have also been useful for
several other concrete computations in [22], e.g. in computing explicitly the inverse of λA,
introduced and analyzed in Section 5, filling the tables of Section 6, and in the search of
square-free automorphisms, [22]. Although these equations are not difficult to derive, we
think that highlighting them may be of benefit, especially to the readers who do not use
the machinery of Cuntz algebras on the daily basis.

So let us suppose that u ∈ Fkn and w ∈ Fhn are unitaries such that

λuλw = id = λwλu ,

i.e. λu(w)u = 1 = λw(u)w.5 This readily leads to a system of coupled matrix equations

uhwu
∗
h = u∗, wkuw

∗
k = w∗, (10)

where both uh and wk are in Fh+k−1
n . In passing, observe that the second equation is

independent of the level h for which w ∈ Fhn .

5Since λu and λw are injective, one identity implies the other. Also, up to replacing k and h
with their maximum, there would be no loss of generality in assuming that k = h. However as
the inverse of an automorphism induced by a unitary in a matrix algebra might very well be
induced by a unitary in a larger matrix algebra, it seems convenient to allow this more flexible
asymmetric formulation. It is worth stressing that, given k, the subset of unitaries u’s in Fkn
such that λ−1

u (exists and) is still induced by a unitary in Fkn is strictly smaller than the set
of unitaries such that λ−1

u is induced by a unitary in some Fhn . An a priori bound for h as a
function of n, k is provided in [22, Corollary 3.3].
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In practical situations, one is faced with the converse problem. Starting with some
u ∈ Fkn , one might not know the precise value of h, or even if the corresponding w

exists at all. It turns out that the existence of solutions (for w) of equations (10) imply
invertibility of λu. The following proposition combined with [22, Corollary 3.3] gives an
algorithmic procedure for finding these solutions. We omit its elementary proof.

Proposition 3.3. Let u be a unitary in Fkn and suppose that u∗hu
∗uh ∈ Fhn for some h.

Then λu is invertible and λ−1
u = λw with w := u∗hu

∗uh.

In particular, given a unitary u ∈ Fkn , one has λ2
u = id (i.e., u = w) if and only if

λu(u)u = 1, if and only if ukuu∗k = u∗.

Finally, we present yet another computational strategy for determining invertibility
of endomorphism λu and finding its inverse. Again, we omit an elementary proof of the
following proposition.

Proposition 3.4. Let u and w be unitaries in Fkn and Fhn , respectively, satisfying equa-
tions (10). Then u is a solution of the following polynomial matrix equation

(u∗ru
∗ur)ru(u∗ru

∗ur)∗r = u∗ruur , (11)

where r can be taken as maximum of k and h.
Conversely, given r, every solution u ∈ Frn of equation (11) gives rise to an automor-

phism λu of On, with inverse induced by w := u∗ru
∗ur.

After some simplification, taking into account that u ∈ Frn, it is straightforward to
check that the first nontrivial equation in the family (11), for r = 2, is

ϕ(u)ϕ2(u∗)ϕ(u∗)u = uϕ(u)ϕ2(u∗)ϕ(u∗), (12)

i.e. u commutes with ϕ(uϕ(u∗)u∗). Similarly, for r = 3, one obtains

uϕ2(uϕ(u)ϕ2(u))ϕ
(
ϕ2(u∗)ϕ(u∗)uϕ(u)ϕ2(u)

)
ϕ2(u∗)ϕ(u∗)

= ϕ2(uϕ(u)ϕ2(u))ϕ
(
ϕ2(u∗)ϕ(u∗)uϕ(u)ϕ2(u)

)
ϕ2(u∗)ϕ(u∗)u

i.e., u commutes with ϕ2(uϕ(u)ϕ2(u))ϕ
(
ϕ2(u∗)ϕ(u∗)uϕ(u)ϕ2(u)

)
ϕ2(u∗)ϕ(u∗).

Remark 3.5. The strategy of applying Proposition 3.4 is to find all pairs satisfying (10)
by solving equations of the form (11) for all values of r. Implicitly, by solving such an
equation, we predict w to take a particular form, namely w = u∗ru

∗ur. However, we do not
assume w ∈ Frn. In fact, w automatically belongs to F2r−1

n . Combining this with equations
(10) we obtain an additional relation u must satisfy, namely u∗ru∗ur = u∗2r−1u

∗u2r−1.

We find it rather intriguing that in the case of permutation unitaries the polynomial
matrix equations (11) turn out to be equivalent to the tree related conditions of [22,
Corollary 4.12].

Of course, the above polynomial matrix equations apply to arbitrary unitaries in the
algebraic part of Fn and not only to permutation matrices. Therefore, they can be used for
finding other families of automorphisms of On with localized inverses. It is to be expected
that new interesting classes of automorphisms different from the much studied quasi-free
ones will be found this way. It seems also worth while to investigate the algebraic varieties
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in R2k2
defined by these equations. At present, we are not aware of occurrences of these

equations outside the realm of Cuntz algebras but we would not be surprised if such
instances were found.

3.4. The classification of permutative automorphisms. The classification of au-
tomorphisms of On associated to unitaries in Pkn for n = k = 2 goes back to [37]. Beyond
that, the program of classifying permutative automorphisms corresponding to unitaries
in Pkn for small values of n and k was initiated in [22] and continued in [17]. In this
section, we present a complete classification in the case n = k = 3. These results come
from the unpublished manuscript, [18], and were obtained with aid of a massive scale
computer calculations involving Magma software, [6].

As discussed in Section 3.2 above, determination of invertibility of a permutative en-
domorphism hinges upon verification of two combinatorial conditions, called (b) and (d),
[22]. In short, condition (b) allows to determine when the corresponding endomorphism
λσ of On restricts to an automorphism of Dn, while condition (d), together with (b),
determines the more stringent situation that λσ ∈ Aut(On).6 Detailed analysis of con-
ditions (b) and (d) in terms of labelled, rooted trees, was then accomplished for n = 2
in [22] up to level k = 4, and in [17] for n = 3 up to level k = 3 (for n = 3 = k only
condition (b) was examined) and n = 4 up to level 2.

In the case n = k = 3, the involved rooted trees have nine vertices. By in-degree type
of a rooted tree we mean the multiset of the in-degrees of its vertices; in [17, Figure 1], we
have divided a relevant subset of 171 rooted trees with 9 vertices into 11 distinct in-degree
types called A,B, . . . ,K and described in Table 1 therein. For instance, the in-degree type
A spots only trees with six vertices with no incoming edge (leaves) and three vertices with
three incoming edges (also recall that there is always an invisible loop at the root), while
the in-degree type B singles out trees with five leaves, one vertex with one incoming edge,
one vertex with two incoming edges and two vertices with three incoming edges. It turns
out that condition (b) is satisfied for a set F of 7390 3-tuples of labelled rooted trees,
up to permutation of tree position (action of the symmetric group S3) and consistent
relabelling of all trees (action of S9), as described in [17, Section 2.2]. The set F is then
partitioned into 6 distinct three-element multisets of in-degree types, as listed in Table 1
below (based on Table 2 in [17], to which we refer for more details). Examples of triples
of rooted trees with labels belonging to the in-degree types AAA and AF G are shown
in Figure 2 of [17].

For instance, the six permutative Bogolubov automorphisms associated to permuta-
tions u ∈ P1

3 , viewed as elements in P3
3 , give raise to the 3-tuple of trees with in-degree
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6It is also useful to observe that, the diagonal Dn being a MASA in On, an automorphism
of On mapping Dn into itself automatically restricts to an automorphism of Dn.



90 R. CONTI ET AL.

but also other 3-tuples of trees still of in-degree typeAAAmay correspond to permutative
automorphisms of O3, e.g.
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In fact, type A is comprised of the two kinds of trees entering the above two 3-tuples.
As deduced in [18] after very long and tedious computer-assisted computations, we

can report that, among the permutations already selected on the basis of condition (b),
the total number of permutations for n = k = 3 satisfying condition (d) is

907 044 · 9! = 329 148 126 720.

This result relies very much on the extensive set of data already collected in [17]. For
each of the 7 390 representatives in the set F we found the induced permutations that
satisfy condition (d); it took about 7 processor years to compute.

Table 1. In-degree types of permutations satisfying condition (d)

ID types some none total
A A A 290 1 878 2 168
A B B 611 2 171 2 782
A C D 86 864 950
A E E 290 782 1 072
A F G 35 357 392
A H H 12 14 26

total 1 324 6 066 7 390

In Table 1, we indicate how many instances of each in-degree type have some permu-
tations satisfying condition (d) and how many instances have none. In Table 2, the 7 390
representative tree tuples are counted (second column headed #f) according to exactly
how many induced permutations satisfy condition (d) (first column headed #σ), and
according to the combined relabelling and repositioning orbit size (third column headed
#o). The fourth entry in each row is the product of the first three entries; so the sum of
the fourth column is the given figure.

All in all, taking into account the results in [22, 17], Table 3 summarizes the up-to-
date enumeration of permutations providing automorphisms of On and (in brackets, in
the second line) of Dn:

Problem 3.6. Extend the results summarized in Tables 1, 2, and 3 to include a wider
range of parameters, possibly developing new computational techniques to this end.

4. The restricted Weyl group of On. We recall from [24] that Aut(On,Dn) is
the normalizer of AutDn(On) in Aut(On) and it can be also described as the group
λ(NOn

(Dn))−1 of automorphisms of On induced by elements in the normalizer NOn
(Dn).
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Table 2. Number of permutations σ satisfying condition (d) per f .
#σ #f #o #σ ·#f ·#o
0 6 066 6 · 9! 0 · 9!
24 22 6 · 9! 3 168 · 9!
48 288 6 · 9! 82 944 · 9!
60 9 6 · 9! 3 240 · 9!
72 10 6 · 9! 4 320 · 9!
84 47 6 · 9! 23 688 · 9!
96 213 6 · 9! 122 688 · 9!
96 6 3 · 9! 1 728 · 9!

108 103 6 · 9! 66 744 · 9!
120 74 6 · 9! 53 280 · 9!
132 107 6 · 9! 84 744 · 9!
144 111 6 · 9! 95 904 · 9!
156 121 6 · 9! 113 256 · 9!
168 23 6 · 9! 23 184 · 9!
180 3 3 · 9! 1 620 · 9!
192 57 6 · 9! 65 664 · 9!
192 8 3 · 9! 4 608 · 9!
204 26 6 · 9! 31 824 · 9!
204 4 3 · 9! 2 448 · 9!
216 11 6 · 9! 14 256 · 9!
216 7 3 · 9! 4 536 · 9!
228 27 6 · 9! 36 936 · 9!
240 38 6 · 9! 54 720 · 9!
312 4 6 · 9! 7 488 · 9!
312 4 3 · 9! 3 744 · 9!
312 1 1 · 9! 312 · 9!

7 390 907 044 · 9!

Table 3. Number of permutative automorphisms of On (and of Dn) at level k
n \ k 1 2 3 4
2 2 4 48 564,480

(2) (8) (324) (175,472,640)
3 6 576 329,148,126,720

(6) (5184) (161,536,753,300,930,560)
4 24 5,771,520

(24) (1,791,590,400)

Furthermore, using [51], one can show that Aut(On,Dn) has the structure of a semidirect
product AutDn(On) o λ(Sn)−1 [22]. In particular, the group λ(Pn)−1 is isomorphic with
the quotient of the group Aut(On,Dn)∩Aut(On,Fn) by its normal subgroup AutDn

(On).
We call it the restricted Weyl group of On, cf. [24, 22]. We also note that every unital
endomorphism of On which fixes the diagonal Dn point-wise is automatically surjective,
i.e. it is an element of AutDn(On) [14, Proposition 3.2] and that it is easy to construct
product-type automorphisms of Dn that do not extend to (possibly proper) endomor-



92 R. CONTI ET AL.

phisms of On [14, Proposition 3.1]. A simple example of such an automorphism of D2 is
given by

⊗∞
i=1 Ad(ui), where ui = 1 for i even and ui = ( 0 1

1 0 ) for i odd and we have real-
ized D2 as an infinite tensor product over N of diagonal matrices of size 2. In particular,
it becomes important to characterize those automorphisms of Dn that can be obtained by
restricting automorphisms (or even endomorphisms) of On. As a variation on the theme,
we mention the following

Problem 4.1. Find necessary and sufficient conditions for an automorphism of Dn to
extend to an automorphism or a proper endomorphism of Fn, respectively.

In [16], a subgroup Gn of Aut(Dn) was defined. It consists of those automorphisms α
for which there exists an m such that both αϕm and α−1ϕm commute with the shift ϕ.

Theorem 4.2 ([16]). The restriction r : λ(Pn)−1 → Gn is a group isomorphism.

Recall that the spectrum of Dn may be naturally identified with the full one-sided
n-shift space Xn. The above theorem identifies the restricted Weyl group of On with
the group of those homeomorphisms of Xn which together with their inverses eventually
commute with the shift. In a sense, this provides an answer to a question raised by Cuntz
in [24].

Let IGn = {Ad(u)|Dn
: u ∈ Pn}. This is a normal subgroup of Gn, since for u ∈ Pkn

we have Ad(u)ϕk = ϕk. We also denote by Innλ(Pn)−1 the normal subgroup of λ(Pn)−1

consisting of all inner permutative automorphisms {Ad(u) : u ∈ Pn}. We call the quotient
λ(Pn)−1/ Innλ(Pn)−1 the restricted outer Weyl group of On. It follows from Theorem
4.2 that the restricted outer Weyl group of On is naturally isomorphic to the quotient
Gn/IGn. Further analysis reveals that this group in turn is related to automorphisms
of the two-sided shift. Indeed, let Aut(Σn) denote the group of automorphisms of the
full two-sided n-shift (that is, the group of homeomorphisms of the full two-sided n-shift
space Σn that commute with the two-sided shift σ) and let 〈σ〉 be its subgroup generated
by the two-sided shift σ. It is known that 〈σ〉 coincides with the center of Aut(Σn).

Theorem 4.3 ([16]). There is a natural embedding of the group λ(Pn)−1/ Innλ(Pn)−1

into Aut(Σn)/〈σ〉. If n is prime then this embedding is surjective and thus the two groups
are isomorphic.

The above theorem establishes a useful correspondences between permutative auto-
morphisms of the Cuntz algebra On and automorphisms of a classical dynamical system.
It opens up very attractive possibilities for two-fold applications: of topological dynamics
to the study of automorphisms of a simple, purely infinite C∗-algebra, and of algebraic
methods available for On to the study of symbolic dynamical systems. Thanks to a com-
bined effort of a number of researchers (see [41] and [42]) several interesting properties
of the group Aut(Σn)/〈σ〉 are known: it is countable, residually finite, contains all finite
groups, and contains all free products of finitely many cyclic groups. However, a number
of questions remain to date unsolved (see [7]). For example, is it generated by elements
of finite order? And most importantly, is Aut(Σn)/〈σ〉 isomorphic to Aut(Σm)/〈σ〉 (as
an abstract group) when n 6= m are prime?
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Along with automorphisms of the two-sided shift, automorphisms of the full one-sided
shiftXn have been extensively studied (see [41] and [42]). As shown in [16], each element of
Aut(Xn) (viewed as an element of Aut(Dn)) admits an extension to an outer permutative
automorphism of On. This leads to the following.

Theorem 4.4. There exists a natural (given by extensions) embedding of Aut(Xn) into
λ(Pn)−1/ Innλ(Pn)−1.

5. Proper endomorphisms. In this section, we mainly deal with proper endomor-
phisms of On which globally preserve either the core UHF-subalgebra Fn or the diagonal
MASA Dn. Two main references for the results reviewed below are [20] and [30].

5.1. Endomorphisms preserving Fn. Cuntz showed in [24] that if a unitary w be-
longs to Fn then the corresponding endomorphism λw globally preserves Fn. The reversed
implication was left open in [24]. This question was finally answered to the negative in [30],
where a number of counterexamples were produced. The main method for finding such
counterexamples is the following.

Let u be a unitary inOn and let v be a unitary in the relative commutant λu(Fn)′∩On.
Then the three endomorphisms λu, λvu, and λuϕ(v) coincide on Fn. Assume further that
u ∈ Fn, and let w equal either vu or uϕ(v). Then λu(Fn) ⊆ Fn and thus λw(Fn) ⊆ Fn.
However, w belongs to Fn if and only if v does.

The above observation shows how to construct examples of unitaries w outside Fn for
which nevertheless λw(Fn) ⊆ Fn. To this end, it suffices to find a unitary u ∈ Fn such
that the relative commutant λu(Fn)′ ∩ On is not contained in Fn. This is possible. In
fact, one can even find unitaries in a matrix algebra Fkn such that λu(On)′ ∩ On is not
contained in Fn. The existence of such unitaries was demonstrated in [19]. The relative
commutant λu(On)′ ∩ On coincides with the space (λu, λu) of self-intertwiners of the
endomorphism λu, which can be computed as

(λu, λu) = {x ∈ On : x = (Adu ◦ ϕ)(x)}. (13)

In [20], an explicit example was given of a permutation unitary u ∈ P4
2 and a unitary v

in S2 \ P2 such that v ∈ (λu, λu). Notice that λuϕ(v)(Fn) = λu(Fn) naturally gives rise
to a subfactor of the A.F.D. II1 factor with finite Jones index.

Problem 5.1. Provide a combinatorial algorithm to construct and possibly “classify”
pairs (u, v) with u ∈ Pkn and v ∈ (λu, λu) ∩ (Sn \ Pn).

An alert reader could spot intriguing resemblance of this problem with the classifi-
cation of the so-called modular invariants (see [5]), although it is possible that this is
nothing more than a formal analogy.

Furthermore, in [20] a striking example was found of a unitary element u ∈ F2

for which the relative commutant λu(O2)′ ∩ O2 contains a unital copy of O2. In this
case the proof is non-constructive and involves a modification of Rørdam’s proof of
the isomorphism O2 ⊗ O2

∼= O2, [52]. As a corollary, one obtains existence of a uni-
tal ∗-homomorphism σ : O2⊗O2 → O2 such that σ(F2⊗F2) ⊆ F2. It is not clear though
whether such a σ can be an isomorphism.
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Problem 5.2. Does there exist an isomorphism σ : O2⊗O2 → O2 such that σ(F2⊗F2) ⊆
F2 or, better yet, σ(F2 ⊗F2) = F2?

At present, we still do not know whether the method described above captures all
possible cases or not, and thus we would like to pose the following problem.

Problem 5.3. Does there exist a unitary w ∈ On such that λw(Fn) ⊆ Fn but there is
no unitary u ∈ Fn such that λw|Fn

= λu|Fn
?

Under certain additional assumptions, condition λw(Fn) ⊆ Fn implies w ∈ Fn, [20].
In particular, this happens when:

(i) λw(Fn) = Fn. If moreover λw|Fn
= id then w = t1, t ∈ U(1), and thus λw is a

gauge automorphism of On;
(ii) λw ∈ Aut(On);
(iii) λw(Fn)′ ∩ On = C1;
(iv) w ∈ Sn and Dn ⊆ λw(Fn).

5.2. Endomorphisms preserving Dn. Cuntz showed in [24] that if a unitary w be-
longs to the normalizer NOn

(Dn) of the diagonal Dn in On then the corresponding en-
domorphism λw globally preserves Dn. The reversed implication was left open in [24].
This problem was investigated in depth in [30]. In particular, examples of unitaries
w 6∈ NOn

(Dn) such that λw(Dn) ⊆ Dn were found therein, and the following conve-
nient criterion of global preservation of Dn was given.

Theorem 5.4. Let k ∈ N and let w ∈ U(Fkn). For i, j = 1, . . . , n let Eij : Fkn → Fk−1
n

be linear maps determined by the condition that a =
∑n
i,j=1Eij(a)ϕk−1(SiS∗j ) for all

a ∈ Fkn . Define by induction an increasing sequence of unital selfadjoint subspaces Wr of
Fk−1
n so that

S1 = span{Ejj(wxw∗) : x ∈ D1
n, j = 1, . . . , n},

S̃r+1 = span{Ejj((Adw ◦ ϕ)(x)) : x ∈ Sr, j = 1, . . . , n},

Sr+1 = Sr + S̃r+1.

We agree that S0 = C1. Let R be the smallest integer such that SR = SR−1. Then
λw(Dn) ⊆ Dn if and only if λw(DRn ) ⊆ Dn.

The above theorem leads to the following corollary, [30].

Corollary 5.5. Let w be a unitary in Fkn . If wD1
nw
∗ = ϕk−1(D1

n) then λw(Dn) ⊆ Dn.
Thus if u ∈ Fkn , z ∈ U(F1

n) and u(zD1
nz
∗)u∗ = ϕk−1(zD1

nz
∗) then A = λz(Dn) is

λu-invariant.

The second part of the above corollary deals with one of the motivations for investiga-
tions of the question when λw preserves Dn. Namely, this information can be useful when
searching for MASAs of On globally invariant under an endomorphism. The simplest
examples involve product type standard MASAs, arising as λz(Dn) for some Bogolubov
automorphism λz of On, z ∈ U(F1

n). Existence of invariant MASAs is in turn helpful in
determining entropy of an endomorphism, as demonstrated in [54, 53].
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