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Abstract. We consider large Wigner random matrices and related ensembles of real symmetric

and Hermitian random matrices. Our results are related to the local spectral properties of these

ensembles.

1. Introduction. Wigner random matrices were introduced by E. Wigner in the 1950s
([41], see also [2, 1]). Let {Xi,j}1≤i<j be a family of independent, identically distributed,
centered, real (or complex)-valued random variables independent from a family of {Yj}j≥1

independent, identically distributed, real-valued random variables. An n× n matrix Wn

is defined as

Wn(i, j) = Wn(j, i) =: wi,j =

{
Xi,j if i < j,

Yi if i = j.
(1)

We assume that E|X1,2|2 = σ2 <∞. The matrix Wn is called a real symmetric (Hermitian
in the complex case) Wigner random matrix. The Euclidean norm of any fixed column of
Wn is proportional to

√
n. Therefore, it is natural to conjecture that typical eigenvalues

of Wn are of order of
√
n. We define

Mn =
1

2σ
√
n
Wn. (2)

The main result about the global distribution of the eigenvalues of Mn goes back to
Wigner and is known as the Wigner Semicircle Law ([41, 2, 1]). To formulate this result,
we first define the distribution function of the Wigner Semicircle Law

F (t) =


1 if t > 1,
2
π

∫ t
−1

√
1− x2 dx if − 1 ≤ t ≤ 1,

0 if −∞ < t < −1.

(3)
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Let us denote by x1 ≤ x2 ≤ . . . ≤ xn the (ordered) eigenvalues of Mn defined in (2). We
denote their empirical distribution function by Fn. In other words,

Fn(x) =
1
n

#{1 ≤ i ≤ n : λi ≤ x}. (4)

The Wigner Semicircle Law states that under the above conditions on the distribution
of the matrix entries, the empirical distribution function Fn(x) converges almost surely
to F (x) for all values of x. The immediate corollary of the Wigner Semicircle Law is

Theorem 1. Let x1 ≤ . . . ≤ xn denote the ordered eigenvalues of an n × n Wigner
random matrix Wn defined in (1). If k

n → γ ∈ (0, 1), then xk
2σ
√
n
→ F−1(γ) as n → ∞

a.s. where F (t) is defined in (3).

The archetypal examples of Wigner random matrices are the Gaussian Unitary En-
semble (GUE) of Hermitian random matrices and the Gaussian Orthogonal Ensemble
(GOE) of real symmetric random matrices. The GUE ensemble is defined as

A =
1
2

(B +B∗), (5)

where the entries of B are i.i.d. complex Gaussian random variables, so that Re bj,k and
Im bj,k are independent from each other and have N(0, σ2) distribution.

In a similar fashion, the GOE ensemble is defined as

A =
1
2

(B +Bt), (6)

where the entries of B are i.i.d. N(0, 2σ2) random variables. Thus, A is a real symmetric
random matrix with independent N(0, (1 + δi,j)σ2)-distributed entries for 1 ≤ i ≤ j ≤ n.

The joint distribution of the matrix entries in the GOE/GUE ensembles is given by
the formula

P( dA) = C(β)
n exp

(
− β

4σ2
Tr(A2)

)
dA, (7)

where β = 1 for GOE, β = 2 for GUE, and dA is the Lebesgue measure on the space of
n× n real-symmetric (Hermitian) matrices.

The other special value of β in (7), β = 4, corresponds to a so-called Gaussian Sym-
plectic Ensemble (GSE) of n × n quaternion self-dual Hermitian matrices. We refer the
reader to [25] for the details.

There are explicit formulas for the k-point correlation functions of eigenvalues in the
Gaussian ensembles (see e.g. [25, 1]). In particular, the k-point correlation function in
the GUE ensemble are determinantal and the k-point correlation functions in the GOE
and GSE ensembles are Pfaffian. These formulas greatly simplify the analysis of the local
spectral properties of Gaussian ensembles.

In Section 2, we will study the fluctuation of the k-th eigenvalue of a Wigner ran-
dom matrix about the appropriate quantile of the Wigner Semicircle Law provided
k, n − k → ∞ as n → ∞. The first result in this direction is due to J. Gustavsson
([19]) who studied the GUE case. Later, Gustavsson’s results were extended to a suffi-
ciently large class of Wigner Hermitian random matrices by T. Tao and V. Vu ([37]). In
Section 2, we will discuss the extension of the Gustavsson, Tao–Vu results to the Wigner
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real symmetric random matrices as well as to the Wishart Ensemble of sample-covariance
random matrices and Unitary Ensembles of Hermitian random matrices.

Section 3 is devoted to finite rank perturbations of Wigner random matrices

Mn =
1√
n
Wn +An.

Here Wn is a random Wigner Hermitian matrix and An is a deterministic, finite rank
matrix. In [8, 9], M. Capitaine, C. Donati-Martin, and D. Féral studied the distribution
of the largest eigenvalues of the deformed matrix provided the marginal distribution of
the matrix entries of Wn is symmetric and satisfies the Poincaré inequality. We extend
the results of [8] by lifting the assumption that the marginal distribution is symmetric.
In particular, the third moment is not necessarily zero.

Finally, in Sections 4 and 5, we apply the resolvent technique to study recursive
relations for local linear statistics in the bulk and at the edge of the spectrum of large
random matrices.

2. Gaussian fluctuations of eigenvalues in Wigner random matrices. Let
x1 ≤ . . . ≤ xn, as above denote the ordered eigenvalues of an n × n Wigner random
matrix Wn = {wij}ni,j=1. Without loss of generality we can assume that Var(wij) = 1

2

for 1 ≤ i < j ≤ n, so σ = 1/
√

2. We wish to study eigenvalue number k = k(n), xk, as
k and n − k tend to infinity with n. Let k

n → γ ∈ (0, 1) as n → ∞. Theorem 1 states
that xk converges, with probability 1, to a particular value corresponding to the quantile
determined by γ. Our goal is to study how, and on what order, xk fluctuates about that
value.

To study the fluctuations of xk, we first consider the case when Wn is drawn from the
Gaussian ensembles. The result can then be extended to a more general class of Wigner
matrices by applying a university result by Tao and Vu called the Four Moment Theorem
(see [37] and [38]).

The result below was first proven by Gustavsson [19] in the case when Wn is drawn
from the GUE. Following Gustavsson’s notation, we write k(n) ∼ nθ to mean that k(n) =
h(n)nθ, where h is a function such that, for all ε > 0,

h(n)
nε
−→ 0 and h(n)nε −→∞,

as n→∞.

Theorem 2 (The bulk, [26]). Let x1 < x2 < . . . < xn be the ordered eigenvalues from
a random matrix drawn from the GOE, GUE, or GSE. Consider {xki}mi=1 such that
0 < ki − ki+1 ∼ nθi , 0 < θi ≤ 1, and ki

n → ai ∈ (0, 1) as n→∞. Define si = si(ki, n) =
F−1(ki/n) and set

Xi =
xki − si

√
2n

( logn
2β(1−s2i )n

)1/2
, i = 1, . . . ,m,

where β = 1, 2, 4 corresponds to the GOE, GUE, or GSE. Then as n→∞,

P[X1 ≤ ξ1, . . . , Xm ≤ ξm] −→ ΦΛ(ξ1, . . . , ξm),
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where ΦΛ is the cdf 1 for the m-dimensional normal distribution with covariance matrix
Λi,j = 1−max{θk : i ≤ k < j < m} if i < j and Λi,i = 1.

Theorem 3 (The edge, [26]). Let x1 < x2 < . . . < xn be the ordered eigenvalues from
a random matrix drawn from the GOE, GUE, or GSE. Consider {xn−ki}mi=1 such that
k1 ∼ nγ where 0 < γ < 1 and 0 < ki+1 − ki ∼ nθi , 0 < θi < γ. Set

Xi =
xn−ki −

√
2n
(

1−
(

3πki
4
√

2n

)2/3)((
1

12π

)2/3 2 log ki

βn1/3k
2/3
i

)1/2
, i = 1, . . . ,m,

where β = 1, 2, 4 corresponds to the GOE, GUE, or GSE. Then as n→∞,

P[X1 ≤ ξ1, . . . , Xm ≤ ξm] −→ ΦΛ(ξ1, . . . , ξm),

where ΦΛ is the cdf for the m-dimensional normal distribution with covariance matrix
Λi,j = 1− 1

γ max{θk : i ≤ k < j < m} if i < j and Λi,i = 1.

Remark 4. The GUE (β = 2) case in Theorems 2 and 3 was shown by Gustavsson
in [19].

Remark 5. In the case m = 1, Theorem 2 can be stated as follows. Set t = t(k, n) =
F−1(k/n) where k = k(n) is such that k/n → a ∈ (0, 1) as n → ∞. If xk denotes
eigenvalue number k in the GOE, GUE, or GSE, then, as n→∞,

xk − t
√

2n
( logn

2β(1−t2)n )1/2
−→ N(0, 1),

in distribution where β = 1, 2, 4 corresponds to the GOE, GUE, or GSE.

Remark 6. In the case m = 1, Theorem 3 can be stated as follows. Let k be such that
k →∞ but k

n → 0 as n→∞ and let xn−k denote eigenvalue number n− k in the GOE,
GUE, or GSE. Then it holds that, as n→∞,

xn−k −
√

2n
(

1−
(

3πk
4
√

2n

)2/3)((
1

12π

)2/3 2 log k
βn1/3k2/3

)1/2
−→ N(0, 1),

in distribution where β = 1, 2, 4 corresponds to the GOE, GUE, or GSE.

Remark 7. One can omit the assumption that ki/n → ai in Theorem 2 and the con-
clusion still holds. To see this, first consider the case m = 1. Let xk denote a sequence
of eigenvalues from the bulk with k = k(n) (where k/n does not necessarily converge as
n→∞). Since k/n < 1, there exists a subsequence, say k′ = k(nl), such that k′/nl → a

as l → ∞ for some a ∈ (0, 1). By Theorem 2, the centered and scaled eigenvalues from
the subsequence xk′ converge to the standard normal distribution. It follows that every
subsequence has a further subsequence which converges in distribution to the standard
Gaussian distribution. Therefore, the entire sequence must converge in distribution to
the standard Gaussian distribution.

1Cumulative distribution function
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A similar argument allows one to omit the assumption that ki/n → ai in the case
m > 1.

Remark 8. It is also possible to extend Theorems 2 and 3 to other random matrix ensem-
bles. In particular, for the complex Wishart distribution, the p non-negative eigenvalues
x1, . . . , xp have probability density given by

Pp(x1, . . . , xp) = Cn,p
∏

1≤i<j≤p

(xi − xj)2

p∏
i=1

x
αp
i e−xi ,

where αp = n − p and Cn,p is a normalizing constant. The eigenvalues of the complex
Wishart distribution form a determinantal random point process and hence Pp(x1, . . . , xp)
can be rewritten as

Pp(x1, . . . , xp) =
1
p!

det
(
Sp(xi, xj)

)
1≤i,j≤p ,

where

Sp(x, y) =
p−1∑
j=0

φ
(αp)
j (x)φ(αp)

j (y),

with

φ
(αp)
j (x) =

√
j!

(j + αp)!
xαp/2 exp(−x/2)Lαpj (x),

and L
αp
j are the generalized Laguerre polynomials.

One can then follow Gustavsson’s proof for the GUE [19] in which Gustavsson uses
the asymptotic expansion for the Hermite polynomials. For the complex Wishart case,
the kernel Sp(x, y) is given in terms of the Laguerre polynomials.

Remark 9. Theorems 2 and 3 should also be extended to a more general class of unitary
ensembles. That is, for a Hermitian n × n matrix H with probability distribution given
by

P( dH) = Cne
−Tr v(H) dH,

where
v(x) = γ2jx

2j + . . .+ γ0, γ2j > 0.

In such ensembles, the eigenvalues form a determinantal random point process where
the kernel is given in terms of orthogonal polynomials with respect to the exponential
weight e−v(x). The asymptotics of such orthogonal polynomials has been recently studied
using a Riemann–Hilbert approach (see e.g. [12, 11]).

T. Tao and V. Vu extended Gustavsson’s GUE results to a sufficiently large class
of Hermitian Wigner matrices using the technique developed in [37] and [38] to prove
the universality of the local distribution of the eigenvalues in Wigner matrices. The key
ingredient of their approach is the Four Moment Theorem proved for Hermitian matrices
(see Theorem 15 in [37] and Theorem 1.13 in [38]). The technical conditions imposed in
[37, 38] on the distribution of matrix entries are the exponential decay of the marginal
tail distribution

P(|wi,j | > tC) ≤ exp(−t), (8)
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for all |t| > C1, and the requirement that the first four moments of the marginal distri-
bution coincide with the Gaussian moments.

Extending the Four Moment Theorem to the real symmetric case, one obtains the
following theorem.

Theorem 10 (Real Symmetric Wigner Matrices, [26]). The conclusions of Theorems 2
and 3 also hold with β = 1 when x1 ≤ x2 ≤ . . . ≤ xn are the ordered eigenvalues of any
other real symmetric Wigner matrix Wn = (wij)1≤i,j≤n where wij has exponential decay,
mean 0 and variance (1 + δij)/2 for 1 ≤ i ≤ j ≤ n and E(w3

ij) = 0, E(w4
ij) = 3/4 for

1 ≤ i < j ≤ n.

We now turn our attention to outlining the proof of Theorem 2. The first step, namely
Theorem 1, immediately follows from the Wigner Semicircle Law and the fact that the
almost sure convergence of the empirical distribution function Fn(x) to the Wigner Semi-
circle distribution function F (x) implies the almost sure convergence of the quantiles.

To prove Theorem 2, we remark that {xk < t} = {#([t,∞)) < n − k}, where #(I)
denotes the number of the eigenvalues in the interval I. Thus, one is interested in studying
the asymptotic distribution of the counting random variables #(I) in the limit n → ∞.
We will outline the proof of Theorem 2 for the GOE in the case when m = 1 (see
Remark 5). In the proof of the GUE case of Theorem 2, Gustavsson relies on the fact that
the GUE defines a determinantal random point process. Gustavsson utilizes a theorem
due to Costin, Lebowitz, and Soshnikov ([10, 22, 34]).

Theorem 11 (Costin-Lebowitz, Soshnikov). If Var(#GUEn(In))→∞ as n→∞, then

#GUEn(In)− E[#GUEn(In)]√
Var(#GUEn(In))

−→ N(0, 1),

in distribution as n→∞.

Remark 12. We stated the theorem here in terms of the GUE, but the result is actually
more general and holds for any sequence of determinantal random point fields.

Our goal is to prove a version of Theorem 11 for the GOE and the GSE. The difficulty
here is that there is no general Central Limit Theorem for counting random variables for
Pfaffian random point processes. To do this, we utilize the fact that Gustavsson already
proved the GUE case of Theorems 2 and 3 in [19] and we use the result due to P. Forrester
and E. Rains (see [16]) that relates the eigenvalues of the different ensembles.

Theorem 13 (Forrester-Rains). The following relations hold between matrix ensembles:

GUEn = even(GOEn ∪GOEn+1)

GSEn = even(GOE2n+1) · 1√
2
.

Remark 14. The result by Forrester and Rains in [16] is actually much more general.
Here we only consider two specific cases.

Remark 15. The multiplication by 1/
√

2 denotes scaling the (2n+ 1)× (2n+ 1) GOE
matrix by a factor of 1/

√
2.
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Remark 16. The first statement can be interpreted in the following way. Take two
independent matrices from the GOE: one of size n× n and one of size (n+ 1)× (n+ 1).
Superimpose the eigenvalues on the real line to form a random point process with 2n+ 1
particles. Then the new random point process formed by taking the n even particles has
the same distribution as the eigenvalues of an n× n matrix from the GUE.

From Theorems 11 and 13 we are able to show that if Var(#GUEn(In)) → ∞ as
n→∞, then

#GOEn(In)− E[#GOEn(In)]√
2 Var(#GUEn(In))

−→ N(0, 1),

in distribution as n→∞.
Set

In =
[
t
√

2n+ ξ
( log n

2(1− t2)n

)1/2

,∞
)
.

Then the proof in the GOE case is completed by computing E[#GOEn(In)] and
Var(#GUEn(In)) and noting that

P

[
xk − t

√
2n(

logn
2(1−t2)n

)1/2 ≤ ξ
]

= P
[
xk ≤ t

√
2n+ ξ

( log n
2(1− t2)n

)1/2
]

= P[#GOEn(In) ≤ n− k]

= P
[

#GOEn(In)− E[#GOEn(In)]√
2 Var(#GUEn(In))

≤ n− k − E[#GOEn(In)]√
2 Var(#GUEn(In))

]
= P

[
#GOEn(In)− E[#GOEn(In)]√

2 Var(#GUEn(In))
≤ ξ + ε(n)

]
,

x1 < . . . < xn are the ordered eigenvalues of a GOE matrix and ε(n)→ 0 as n→∞. We
refer the reader to [26] for the details.

3. Deformed Wigner matrices. In this section, we study deformed Wigner matrices
given by

Mn =
1√
n
Wn +An = Xn +An,

where Wn is a random Wigner Hermitian matrix satisfying some technical assumptions
on the marginal distribution of matrix entries and An is a deterministic, finite rank
Hermitian matrix.

Perturbations of classical matrix models have been studied in several different con-
texts. In [4], J. Baik, G. Ben Arous and S. Péché studied perturbations of Wishart
matrices, called spiked population models. They consider YN , a p × N complex matrix
whose columns are i.i.d., centered, Gaussian with covariance matrix Σ, and study the
asymptotic spectrum of SN = 1

N Y ∗NYN . The size of YN grows taken to infinity in such a
way that N, p → ∞, p/N → c ≥ 1. In the classical case (known as the Wishart model)
Σ = I, and the limiting behavior of the spectral measure is the Marchenko–Pastur law.
We recall that the Marchenko–Pastur distribution is supported on the interval [a, b] where
a = (1−c−1/2)2, b = (1+c−1/2)2, and its density equals c

2πx

√
(b− x)(x− a). The largest
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eigenvalue converges to the edge of the support of this distribution, with fluctuations given
by the Tracy–Widom distribution ([23]).

In the perturbed model, all but finitely many of the eigenvalues of Σ are equal to one.
Once an eigenvalue of Σ is large enough, a phase transition occurs and the largest eigen-
value of SN leaves the support of the Marchenko–Pastur law. These results are extended
to the case when the matrix entries are not necessarily Gaussian in [5]. J. Baik and J. Sil-
verstein show the limiting distribution of the eigenvalues converge to the same universal
limit as in the Gaussian case. Additionally, the fluctuations of the largest eigenvalues are
shown to be universal in the sense that they do not depend on the distribution of the
entries of YN .

The additive analog of the spiked population model are deformed Wigner matrices.
As before, we shall denote a Wigner Hermitian matrix by Wn. We assume that the
n2 random variables (Wn)ii,

√
2 Re((Wn)ij)i<j ,

√
2 Im((Wn)ij)i<j are independent and

identically distributed with distribution µ. This distribution has zero expectation and
variance σ2.

Deformed Wigner matrices were first studied in [17]. Z. Füredi and J. Komlós consider
real symmetric random matrices where the entries have the same non-zero mean. This
can be viewed as adding a rank one perturbation to a real symmetric Wigner matrix
with zero mean on the entries. They specifically consider Wn + C where Wn is a real
symmetric matrix with independent, identically distributed entries of mean zero, and C

is a matrix with each entry equal to c. In this model the entries are not rescaled, so the
largest eigenvalue is O(n) and the second largest eigenvalue, given by the edge of the
semi-circle, is O(

√
n). The fluctuations of the largest eigenvalue are Gaussian and only

depend on the second moment of the entries of the random matrix.
The more difficult case when the constant matrix is scaled so that the largest eigen-

value is the same order as the edge of the semi-circle. This case is considered in [14]. In
this paper, Féral and Péché show the existence of a phase transition. When the eigenvalue
of the scaled constant matrix is larger than σ the fluctuations of the largest eigenvalue
are Gaussian and only depend on the variance of the entries. When the eigenvalue is less
than σ the fluctuations are given by the Tracy–Widom distribution and in the case when
the eigenvalue equals σ the fluctuations are a generalized Tracy–Widom distribution.

Recently, more general perturbations have been considered. S. Péché [28] considered
perturbations to GUE matrices of the form 1√

n
Wn + An, where Wn is a GUE matrix

and An is any finite rank Hermitian perturbation. Due to the unitary invariance of the
GUE, the spectrum of the deformed matrix depends only on the spectrum of An. Her
results are extended to the general Wigner case by M. Capitaine, C. Donati-Martin and
D. Féral in [8]. Both papers show that when the largest eigenvalue of An is sufficiently
large, the largest eigenvalue of Mn leaves the support of the semi-circle and converges to
the same limit, independent of the distribution of the matrix entries. In contrast to the
Wishart case, the fluctuations of the largest eigenvalues are shown to depend on both the
distribution of matrix entries and the form of the perturbation. In [8], the fluctuations of
the largest eigenvalue are given by a convolution of the matrix entries with a Gaussian.

In [8], M. Capitaine, C. Donati-Martin and D. Féral assume the marginal distribution
µ(dx) of the entries of Wn is symmetric and satisfies the Poincaré inequality: there exists
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a positive constant C such that for any differentiable function f : R → C such that∫
|f |2(x) dµ(x) <∞,

∫
|f ′|2(x) dµ(x) <∞ one has

Var(f) ≤ C
∫
|f ′|2(x) dµ(x), (9)

where Var(f) =
∫
|f − E(f)|2 dµ.

The Poincaré inequality assumption implies that all moments are finite and the tail
distribution decays exponentially (see e.g. [1]). The odd moments of symmetric distri-
butions are 0; in particular the third moment vanishes. The assumption that the third
moment vanishes is quite important in the above mentioned results, as it removes the
lowest order error term.

The deterministic matrix, An, is Hermitian and similar to a diagonal matrix with
finitely many non-zero eigenvalues. The non-zero eigenvalues of An are denoted by θ1 >

. . . > θJ . The multiplicity of θj is denoted by kj for j = 1, . . . , J . The value of J and
each kj do not depend on n.

Hermitian matrices induce a measure on the real line, called the empirical spectral dis-
tribution (ESD), given by its eigenvalues. Given Xn, a Hermitian matrix, with eigenvalues
λ1 ≤ . . . ≤ λn, the ESD is defined as µXn = 1

n

∑n
i=1 δλi . We recall that for a rescaled

Wigner Hermitian matrix Xn = 1√
n
Wn, the Wigner semicircle law states that the ESD

converges a.s. to the semicircle, whose density is given by 1
2πσ2

√
4σ2 − x2 1[−2σ,2σ]. Fur-

thermore, if the fourth moment is finite the largest eigenvalue of 1√
n
Wn converges to 2σ

a.s. [2] with the fluctuations given by the Tracy–Widom distribution, assuming moment
conditions on the distribution are met ([39, 40, 32, 38]).

In the deformed Wigner model, the semi-circle still holds on the global level, but the
location of largest eigenvalue undergoes a phase transition when the largest eigenvalue of
An is sufficiently large. The first result of [8] gives the location of the largest eigenvalues
of MN . Let k be the number of eigenvalues, counting repetitions, of An that are greater
than σ. Label these eigenvalues θ+

j , for j = 1, . . . , k. Then the k largest eigenvalues of Mn

converge almost surely to ρ+
j = θ+

j + σ2

θ+j
. The (k + 1)-th largest eigenvalue converges to

2σ a.s. An equivalent statement is true for all eigenvalues of An that are less than −σ,
labeled θ−j . This implies that all the other eigenvalues lie in the support of the semicircle.
To be precise, let

K = {ρ−j }j ∪ [−2σ, 2σ] ∪ {ρ+
j }j and Kε = K +

[
− ε

2
,
ε

2

]
, (10)

then for n large Spect(Mn) ⊂ Kε almost surely.
The results of [8] can be extended to the case of non-symmetric marginal distribution:

Theorem 17 ([30, 29]). Let Mn be a sequence of deformed Wigner matrices with distri-
bution of the entries that satisfies the Poincaré inequality, Jσ+ be the number of j’s such
that θj > σ, and Jσ− be the number of j’s such that θj < −σ. Then

1. For all j = 1, . . . , Jσ+ and i = 1, . . . , kj, λk1+...+kj−1+i → ρj almost surely.
2. λk1+...+kJ

σ+ +1 → 2σ almost surely.
3. λk1+...+kJ−J

σ−
→ −2σ almost surely.

4. For all j = J − Jσ− + 1, . . . , J and i = 1, . . . , kj, λk1+...+kj−1+i → ρj almost surely.
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The convergence in probability has been established in [29]. The almost sure conver-
gence has been proved in [30]. The next results concerns the distribution of the outliers,
i.e. the eigenvalues of MN corresponding to θj > σ.

Theorem 18 ([30]). Let 1 ≤ j ≤ Jσ+ (so that the eigenvalue θj of An is such that
θj > σ). Then the sequence of random vectors(√

n (λk1+...+kj−1+i − ρj), i = 1, . . . , kj
)

is bounded in probability. In addition, the following bound holds with probability 1

λk1+...+kj−1+i − ρj = O
( log(n)√

n

)
, i = 1, . . . , kj . (11)

One can study the limiting distribution of
(
cθj
√
n (λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
in some special cases. For example, the following result holds.

Theorem 19 ([8, 30]). Suppose that the orthonormal eigenvectors of An corresponding
to θj, 1 ≤ j ≤ Jσ+ , depend on a finite number Kj of canonical basis vectors of Cn
(without loss of generality we can assume those canonical vectors to be e1, . . . , eKj ), and
their coordinates are independent of n. Let

cθj =
θ2
j

θ2
j − σ2

. (12)

Then the kj-dimensional vector(
cθj
√
n (λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
converges in distribution to the distribution of the ordered eigenvalues of the kj × kj
random matrix Vj defined as

Vj = U∗j (Wj +Hj)Uj , (13)

where Wj is a Wigner random matrix of size Kj with the same marginal distribution of
the matrix entries as WN ,
Hj is a centered Hermitian Gaussian matrix of size Kj, independent of Wj, with inde-
pendent entries Hst, 1 ≤ s ≤ t ≤ Kj, with the variance of the entries given by

E(H2
ss) =

1
β

(m4 − 3σ2

θ2
j

)
+

2
β

σ4

θ2
j − σ2

, s = 1, . . . ,Kj , (14)

E(|Hst|2) =
σ4

θ2
j − σ2

, 1 ≤ s < t ≤ Kj , (15)

and Uj is a Kj × kj such that the (Kj-dimensional) columns of Uj are written from the
first Kj coordinates of the orthonormal eigenvectors corresponding to θj.

When the eigenvectors of An are delocalized, the limiting distribution of(
cθj
√
n (λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
does not depend on µ (provided certain technical conditions are satisfied). Here we present
the simplest case.
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Theorem 20 ([8]). Let Mn be a sequence of deformed Wigner matrices with distribution
µ of the entries that satisfies the Poincaré inequality, but is not necessarily symmetric.
Let the deformation, An be of the form An = diag(θ, 0, . . . , 0) with θ > σ. Then

√
n(λ1 − ρθ)→

(
1− σ2

θ2

)
{µ ∗ N (0, vθ)},

where convergence is in distribution, µ ∗N (0, vθ) denotes the mixture of µ and N (0, vθ),
and vθ = 1

2

(
m4−3σ4

θ2

)
+ σ4

θ2−σ2 , with m4 =
∫
x4 dµ(x).

The proof of Theorem 20 was given in [8] for symmetric µ. Once Theorem 17 is
extended to the non-symmetric case, the same arguments as in [8] immediately extend
the result of Theorem 20 to the non-symmetric case as well. The full proofs of Theorems
17, 18, and 19 will appear in [30]. Below, we sketch the main ideas of the approach in [29]
that proves convergence in probability in Theorem 17 by extending the technique of [8, 9]
to the case of non-symmetric distribution µ. The approach employed in [30] relies on the
ideas developed in [6, 7].

In order to find the asymptotic spectrum of the Mn we follow the techniques of [8]
and study the Stieltjes transform of the expectation of the ESD Mn. Given a probability
measure, µ, on R its Stieltjes transform is given by

g(z) =
∫

dµ(x)
z − x

,

for z ∈ C\R. Of particular interest to us is the Stieltjes transform of the ESD of a matrix
and the Stieltjes transform of the semi-circle distribution.

The Stieltjes transform of the expectation of the empirical spectral distribution of a
matrix Mn is

gn(z) = E
(
Trn(Gn(z))

)
,

where E denotes expectation, Trn denotes normalized trace, and Gn(z) = (zIn −Mn)−1

is the resolvent of Mn. We take advantage of gn(z) being the trace of the a resolvent
by using resolvent identities and estimates. The Stieltjes transform of the semi-circle
distribution can be characterized as the solution to

σ2g2
σ(z)− zgσ(z) + 1 = 0, (16)

that decays to zero as |z| → ∞.
Our goal is to show that gn satisfies the same algebraic equation with a small er-

ror term. This will allow us to show gn(z) approaches gσ(z). We will then study the
contribution of the order 1/n term to get the location of the large eigenvalues.

We begin with the resolvent identity

0 = −I −GA−GX + zG,

and then take normalized trace and expectation to get:

0 = −1− E[Trn(GA)]− 1
n

∑
i,j

E[GijXji] + zE[Trn(G)]. (17)

The following cumulant expansion [24] is used to separate the E[GijXji] term. Given ξ,
a real-valued random variable with p+ 2 finite moments, and φ a function from C → R
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with p+ 1 continuous and bounded derivatives, then

E(ξφ(ξ)) =
p∑
a=0

κa+1

a!
E(φ(a)(ξ)) + ε (18)

where κa are the cumulants of ξ, |ε| ≤ C supt
∣∣φ(p+1)(t)

∣∣E(|ξ|p+2), C depends only on p.
After expanding and estimating the error terms we have:∣∣∣∣σ2g2

n(z)− zgn(z) + 1 +
1
n

E(Tr(GA)) +
κ4

2n
E
[( 1
n

∑
i

G2
ii

)2
]∣∣∣∣ ≤ P5(| Im z|−1)

n3/2
. (19)

Here and throughout the paper, Pk denotes a polynomial of degree k with coefficients that
do not depend on n. The leading coefficient of Pk is always positive. Note that the third
cumulant terms give the contribution of order O(n−3/2) at the right hand side of (19). If
we assume the third moments vanish then the error term is O(n−2). In (19) the leading
order terms satisfy equation (16), this allows us to show that |gn(z)− gσ(z)| is O(n−1).
Then the resolvent identity and cumulant expansion are applied to the O(n−1) terms to
determine their leading order term. This gives

E[Tr(Gn(z)An)] =
J∑
j=1

kjθj
z − σ2gσ(z)− θj

+
P10(| Im z|−1)

n1/2
, (20)

and

E
[( 1
N

∑
i

G2
ii

)2
]

= g4
σ +

P7(| Im z|−1)
n1/2

, (21)

∣∣∣∣σ2g2
n(z)− zgn(z) +

1
n

J∑
j=1

θj
z − σ2gσ(z)− θj

+
κ4

2n
g4
σ(z)

∣∣∣∣ ≤ P17(| Im z|−1)
n3/2

. (22)

This equation gives:

gn(z) = gσ(z) +
1
n
gσ(z)−1

( J∑
j=1

kjθj
z − σ2gσ(z) + θj

+
κ4

2
g4
σ(z)

)∫
dµsc(x)
(z − x)2

+
P17(| Im z|−1)

n3/2
. (23)

The support of the ESD of the expectation of Mn is given by the singularities
of its Stieltjes transform. Equation (23) thus gives that the support is [−2σ, 2σ] and
{ρ1, . . . , ρJ}. The [−2σ, 2σ] part comes from the order 1 terms and gives the semicircle.
The {ρ1, . . . , ρJ} comes from the order n−1 term and gives the extremal eigenvalues. To
get the convergence in probability of the eigenvalues let F = {t ∈ R : d(t,K) ≥ ε}, where
K is defined in (10). Then it follows from (23) that

P
(
|Zn| ≥ n−1−ε) ≤ E[|Zn|2]

n−2−ε =
O(n−3)
n−2−ε = O(n−1+ε).

So P[Trn(1F (Mn)) ≥ O(n−1−ε)] → 0 and along any subsequence that grows faster
than n1+ε the probability of an eigenvalue being outside of K is summable so by Borel–
Cantelli theorem there are almost surely no eigenvalues outside of K.
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The final step is to show that the number of eigenvalues of An at θi is equal to the
number of eigenvalues of Mn in a small neighborhood of ρθi . To do this, we introduce a
continuous family of matrices that interpolate between An and Mn. Using Weyl’s eigen-
value inequalities, it is shown that multiplicity of eigenvalues is preserved.

The proof of Theorem 18 relies on the results about fluctuations of resolvent entries of
standard Wigner matrices (see Theorems 1.1, 1.3, and 1.5 in [30]). Consider a fixed eigen-
value θm of An such that θm > σ and denote by v(1), . . . , v(km) those of the eigenvectors
of An that correspond to the eigenvalue θm. Let Θ(m) be an m×m matrix

Θ(m)
ij =

√
n
(
〈v(i), Rn(ρm)v(j)〉 − gσ(ρm)

)
=
√
n
(
〈v(i), Rn(ρm)v(j)〉 − 1

θm

)
,

where Rn(z) = (z −Xn)−1 is the resolvent of a standard Wigner matrix Xn = 1√
n
Wn.

Below we formulate Lemma 4.3 from [30] which plays the central role in the proof.

Lemma 21. Let y1 ≥ . . . ≥ ykm be the ordered eigenvalues of the matrix Θ(m). Then,
almost surely,

√
n
(
λk1+...+kj−1+i − ρm

)
= − 1

g′σ(ρm)
yi +O

( log2(n)√
n

)
, i = 1, . . . , kj . (24)

The limiting distribution of
√
n (〈u,Rn(z)v〉 − gσ(z)〈u, v〉) is studied in Theorems

1.1, 1.3, and 1.5 in [30].

4. Multivariate resolvent identities at the edge of the spectrum. Consider the
Gaussian Orthogonal Ensemble (GOE), that is random matrices An = 1√

n
(aij)nij=1 where

aij = N (0, 1 + δij), i ≤ j, are independent Gaussian random variables with mean zero.
The complex analog is the Gaussian Unitary Ensemble (GUE). In this case A =

1√
n

(aij)nij=1 is a Hermitian matrix with aij = xij + iyij . Here the upper triangular
entries xij and yij , i < j, are independent Gaussian random variables with mean zero,
N (0, 1

2 ), while the diagonal entries xii are N (0, 1).
Consider the resolvent matrix G(z) = (A− 2− zn−2/3)−1, Im z > 0. We will use the

shorthand (A − z)−1 = (A − z · I)−1. To consider the joint distribution of the largest
eigenvalues at the edge of the spectrum, we rescale the eigenvalues as

λ
(n)
j = 2 + ξ

(n)
j n−2/3, j = 1, 2, . . . , n, (25)

where λ(n)
1 ≥ λ(n)

2 . . . ≥ λ(n)
n are the ordered eigenvalues of An. Let

gn,L(z) = n−2L/3 TrGLn(z) = n−2L/3 Tr(An − 2− zn−2/3)−L =
n∑
1

(ξ(n)
j − z)−L, (26)

for positive integers L = 1, 2, . . . .
It can be shown ([36]) that for L ≥ 2, gn,L(z) is a “local” statistic of the largest eigen-

values in the GOE in a sense that only the eigenvalues from a O(n−2/3)-neighborhood
of the right edge of the spectrum give non-vanishing contribution to gn,L(z) in the limit
n→∞. For L = 1, the linear statistic n−2/3 TrGn(z) is not local in the above sense since
the main contribution comes from the eigenvalues in the bulk of the spectrum. However,
the centralized statistic gcn,1(z) = n−2/3(n+ TrGn(z)) is again a local one. In [36] it was
shown that the joint moments of gn,L(z), L > 1, and gcn,1(z) satisfy certain recursive
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identities in the limit n → ∞. Similar results were obtained for the GUE, as well as for
the Wishart real and complex random matrices at the hard edge of the spectrum. One
expects these identities do not depend on the marginal distribution of matrix entries.

Let

mL(z1, . . . , zL) = E
L∏
k=1

n−2/3(n+ TrG(zk)), Im zk > 0. (27)

Clearly, gn,L(z) = mL(z, . . . , z). One can extend the recursive identities from [36] to
mL(z1, . . . , zL), L ≥ 1.

Theorem 22. Let mL be defined as above for the GOE. For L ≥ 2 we have

z1mL−1 −
∂mL

∂z1
−mL+1

∣∣
zL+1=z1

− 2
L∑
k=2

[ 1
zk − z1

∂mL−1

∂zk
− 1

(zk − z1)2
mL−1 +

1
(zk − z1)2

mL−1

∣∣
zk→z1

]
= O(n−1/3), (28)

where mL−1 = mL−1(z2, . . . , zL). For L = 1 we have

z1 −m2

∣∣
z2=z1

− ∂m1

∂z1
= O(n−1/3). (29)

Theorem 23. Let mL be defined as above for the GUE. For L ≥ 2 we have

z1mL−1 −mL+1

∣∣
zL+1=z1

−
L∑
k=2

[ 1
zk − z1

∂mL−1

∂zk
− 1

(zk − z1)2
mL−1 +

1
(zk − z1)2

mL−1

∣∣
zk→z1

]
= O(n−1/3), (30)

where mL−1 = mL−1(z2, . . . , zL). For L = 1 we have

z1 −m2

∣∣
z2=z1

= O(n−1/3). (31)

For an explanation of the appearance of (zk−z1)−1 see (34) below. When all variables
are set equal, one obtains equations that agree with [36].

Proof of Theorem 22 (GOE). Let g(z) = gcn,1(z) = n−2/3(n+ TrG(z)), and begin with

n1/3(2 + z1n
−2/3)mL(z1, . . . , zL) = n1/3(2 + z1n

−2/3)E
L∏
k=1

g(zk).

We rewrite the first factor using the resolvent identity

(A− z)−1 = (B − z)−1 − (A− z)−1(A−B)(B − z)−1, (32)

obtaining

n1/3g(z1) = n1/3
(
n−2/3(n+ TrG(z1))

)
= n2/3 − n2/3(2 + z1n

−2/3)−1 + (2 + z1n
−2/3)−1n−1/3 TrAG(z1).

This substitution gives us

(n2/3 + z1)mL−1(z2, . . . , zL) + n−1/3E Tr
(
AG(z1)

) L∏
k=2

g(zk).
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To deal with the second term, we use the special case of (18) for mean zero Gaussian
random variables ξ,

Eξf(ξ) = Var(ξ) Ef ′(ξ) (Eξ = 0). (33)

We have

n−1/3
∑
ij

EAijGji(z1)
L∏
k=2

g(zk) = n−4/3
∑
ij

E
∂

∂Aij

[
Gji(z1)

L∏
k=2

g(zk)
]
,

obtaining

− n−4/3
∑
ij

E
[
Gji(z1)Gji(z1) +Gjj(z1)Gii(z1)

] L∏
k=2

g(zk)

+ n−4/3
∑
ij

EGji(z1)
L∑
k=2

−2n−2/3
(
G2(zk)

)
ij

∏
r 6=k

g(zr).

We rewrite

− n−4/3
∑
ij

E
[
Gjj(z1)Gii(z1)

] L∏
k=2

g(zk) = −E
[
n−2/3(n+ TrG(z1))

]2 L∏
l=2

g(zl)

+ 2n1/3En−2/3(n+ TrG(z1))
L∏
l=2

g(zl)− n2/3E
L∏
l=2

g(zl).

Combining these equations and simplifying algebraically gives

O(n−1/3) = z1mL−1(z2, . . . , zL)− En−4/3 TrG2(z1)
L∏
k=2

g(zk)

− En−4/3(n+ TrG(z1))2
L∏
k=2

g(zk)− 2
L∑
k=2

En−2 Tr
[
G(z1)G2(zk)

]∏
r 6=k

g(zr).

We may now rewrite these expressions in terms of the mL (27). Using another resolvent
identity

(B − z1)−1(B − z2)−1 =
1

z2 − z1
(B − z2)−1 − 1

z2 − z1
(B − z1)−1,

we rewrite

G(z1)G2(zk) =
n2/3

zk − z1
G2(zk)− n4/3

(zk − z1)2
G(zk) +

n4/3

(zk − z1)2
G(z1). (34)

Simplifying gives the desired identity (22). The proof of (23) is very similar and is left to
the reader.

5. Resolvent identities in the bulk for Gaussian and Wishart ensembles. In
this section we consider local statistics in the bulk of the spectrum of Gaussian and
Wishart ensembles. We consider the GOE and GUE as defined in the previous section.
We are concerned with the joint moments of the collection of random variables

gn,l(z) = n−l TrGln(z), l ≥ 1,
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where Gn(z) = (An − λ0 − n−1z)−1, Im z > 0, −2 < λ0 < 2. Let K be a multi-index,
K = (k1, k2, . . . ), with finitely many non-zero natural numbers ki ≥ 0. Let

mn,K(z) = E
∏
l≥1

(
n−l TrGln(z)

)kl .
For clarity we may suppress the dependence on n and z.

Theorem 24 (Bulk GOE). Let An = 1√
n

(aij)nij=1 be a GOE matrix. For non-zero multi-
indices K we have

λ0mK+e1 = −mK −mK+e2 −mK+2e1 − 2
∑
l≥1

lklmK−el+el+2 +O(n−1), (35)

with boundary condition

λ0me1 = −1−me2 −m2e1 +O(n−1). (36)

Theorem 25 (Bulk GUE). Let An = 1√
n

(aij)nij=1 be a GUE matrix. For non-zero multi-
indices K we have

λ0mK+e1 = −mK −mK+2e1 −
∑
l≥1

lklmK−el+el+2 +O(n−1), (37)

with boundary condition

λ0me1 = −1−m2e1 +O(n−1). (38)

Now let us consider the real and complex Wishart (Laguerre) ensembles. Let An,N be
an n×N matrix with independent standard normal entries aij = N (0, 1). Assume that
N ≥ n and N − n = ν is fixed. Let Mn,N = n−1AAt. The limiting (Marchenko–Pastur)
distribution of the eigenvalues of Mn,N is supported on the interval [0, 4] and has density
1

2π

√
(4− x)/x. Let λ0 be in the bulk of the spectrum, i.e. λ0 ∈ (0, 4). Similarly to the

Wigner case, we define
mn,K(z) = E

∏
l≥1

(n−l TrGln(z))kl ,

where Gn(z) = (Mn,N − λ0 − n−1z)−1, Im z > 0.

Theorem 26 (Bulk Real Wishart). Let Mn,N be a real Wishart matrix. For non-zero
multi-indices K we have

mK+e1 = − 1
λ0

mK −mK+e2 −mK+2e1 − 2
∑
l≥1

lklmK−el+el+2 +O(n−1), (39)

with boundary condition

me1 = − 1
λ0
−me2 −m2e1 +O(n−1). (40)

Theorem 27 (Bulk Complex Wishart). Let Mn,N be a complex Wishart matrix. For
non-zero multi-indices K we have

mK+e1 = − 1
λ0

mK −mK+2e1 −
∑
l≥1

lklmK−el+el+2 +O(n−1), (41)
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with boundary condition

me1 = − 1
λ0
−m2e1 +O(n−1). (42)

Proof of Theorem 26 (Bulk Real Wishart). Here we consider the boundary term in the
real Wishart case. We begin with (λ0 + n−1z)me1 = (λ0 + n−1z)En−1 TrG(z), where

G(z) = (AAt − λ0 − zn−1)−1.

The resolvent identity (32) gives

G(z) = −(λ0 + zn−1)−1 + (λ0 + zn−1)−1AAtG, (43)

and therefore
(λ0 + n−1z)me1 = −1 + n−1

∑
ijp

EAipAjpGji,

where i, j = 1, . . . , n and p = 1, . . . , N . We use the Gaussian decoupling formula (33)
with ξ = Aip and f(ξ) = AjpGji,

EAipAjpGji = Var(Aip)E
(∂Ajp
∂Aip

Gji +Ajp
∂Gji
∂Aip

)
.

In this setting we have
∂Gkl
∂Aip

= −Gki(AtG)pl − (GA)kpGil, (44)

which gives

(λ0 + n−1z)me1

= −1 + n−2
∑
ijp

EδijGji − n−2
∑
ijp

EAjpGji(AtG)pi − n−2
∑
ijp

EAjp(GA)jpGii

= −1 + n−1E TrG− n−2E Tr(GAAtG)− n−2E(TrGAAt)(TrG).

Using the simple identity GAAt = I + (λ0 + n−1z)G, we see that the right hand side
equals

−1− (λ0 + n−1z)n−2E TrG2 − (λ0 + n−1z)E(n−1 TrG)2 +O(n−1).

This gives us the boundary condition (40).
Next we consider non-zero multi-indices K. Let gK =

∏
l≥1(n−l TrGl)kl . Using (43)

we have

(λ0 + n−1z)mK+e1 = −mK + n−1E(TrAAtG)gK = −mK + n−1
∑
ijp

EAipAjpGjigK .

Applying the Gaussian decoupling formula (33) with ξ = Aip and f(ξ) = AjpGjigK ,
we have EAipAjpGjigK = Var(Aip)E ∂

∂Aip

(
AjpGjigK

)
. By using (44) the right hand side

becomes

n−1E
[
δijGjigK −Ajp

(
Gji(AtG)pi + (GA)jpGii

)
gK +AjpGji

∂gK
∂Aip

]
.

To compute the last term we use

∂ TrGl

∂Aip
= −2l(AtGl+1)pi. (45)
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Putting this together we have

(λ0 + n−1z)mK+e1

= −mK + E(n−1 TrG)gK − E(n−2 TrAAtG2)gK − E(n−1 TrAAtG)(n−1 TrG)gK

= −2 E
∑
l≥1

lkl(n−l TrGl))kl−1
(
n−l−2 TrAAtGl+2

)∏
r 6=l

(n−rGr)kr +O(n−1).

By using GAAt = I + (λ0 + n−1z)G, the right hand side becomes

−mK − (λ0 + n−1z)n−2E(TrG2)gK − (λ0 + n−1z)n−2(TrG)2gK

− 2(λ0 + n−1z)E
∑
l≥1

lkl(n−l TrGl)kl−1
(
n−l−2 TrGl+2

)∏
r 6=l

(n−r TrGr)kr +O(n−1).

This gives us the identity (39). The proofs of (27), (24) and (25) are similar and left to
the reader.
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