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Abstract. We will show that the conditional first moment of the free deformed Poisson random
variables (¢ = 0) corresponding to operators fulfilling the free relation is a linear function of the
regression and the conditional variance also is a linear function of the regression. For this purpose
we will first demonstrate some properties of the Wick product and then we will concentrate on
the free deformed Poisson random variables.

1. Introduction. In this article we consider a linear mapping H > f — ay € A from
a real Hilbert space H into the algebra A of bounded operators acting on a real Hilbert
space which satisfies the commutation relations

aray = (f,g)I  f,g€H. (1)
For the real Hilbert space H with complexification H. = H ® ¢H we define its full Fock

space I'(H) as the closure with respect to the norm of CQ P, HE™, where 2 is the
vacuum vector. We introduce the scalar product

H?:1<fj79j> ifm=n

0 ifm#n @)

<f1®~-~®fnagl®"'®gm> = {
where f1 ®...® f, € H®" and g1 ® ... ® g € HE™. Given the full Fock space T'(H)
and f € H we define the annihilation operator ay : I'(H) — I'(H) and its adjoint with
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respect to scalar product, the creation operator, ay: I'(H) — T'(H), as follows:

apQl:=0, arfi®...® fu:=(f,f1)f20...© fa, (3)

ayQd:=f, atfi®... 0 fn=fR@AHA®...Q f (4)
These operators are bounded, satisfy the commutation relation (1), and afyy = af + a,
(see [I]). It was also shown in [I] that the scalar product is strictly positive. Anal-
ogously we define the right creation and annihilation operators, denoted by a” and a™,
respectively. Fix an orthonormal basis {e;}icr of H.. We use the notation i to denote
a multiple index, i.e., i = (i1,...,%,) € I"™. The length of such a multiple index will be
denoted by |i|. The empty set () is also regarded as a multiple index, of length zero. Let
A denote the family of all multiple indices and A,, the subfamily of all multiple indices
of length n (n > 0). We put

ep =0, ¢,:=e€;,Q...0¢;,, i=(i1,.-.,in) € Ay (n>1).
Then {e;} is an orthonormal basis of the full Fock space I'(H). For a { € T'(H) we have
€= & with & e HE" (n>0).
n>0

Since {e;}ica, is an orthonormal basis of H®" with respect to the free scalar product,
we have

fn = Z <6£, §n>61

i€AR

where the series converges in I'(H). Since

<6£, §n> = <6£, §>, i€A, n>0,

E= 0 len&dei= Y (e &nes, (5)

n>0 i€A, i€A

it follows that

where the last series converges in I'(H). Analogously we can deduce for any linearly
independent vectors {e; };cr (not necessarily an orthonormal basis).

2. Conditional expectation of Wick product. Let A be the algebra generated
by the creation and the annihilation operators. Let W be a bounded linear operator
W :T(H) — A such that for all g, g1,...,9, € H

Wg1®m®gnQ:gl ... Ggn, (6)
n—1 )
W, .. Wy, Q=01®...®gn+n, where nec @H, (7)
=0
W, =W, (8)
n—1 )
Wiie 0mR2=0n®...@g +n, wherenePH". 9)
1=0

Additionally, we assume that each Wy, g g4, and Wy o o/ can be expressed as finite
. . . * *
combinations of the some elements ag  ...ag  ag. - g, where mi,my € N

and w(k) € {1,...,n} (1 <k <n). Let B=alg(1,Wy,,...,W;,) be the von Neumann
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algebra B C B(I'(H)), generated by 1,Wy,,..., Wy, , where f1,...,f, € H are fixed
linearly independent vectors. We assume that the vacuum vector €2 is cyclic and separating
for B and each element x € B can be represented as
z=> aW. (10)
ceC
where C = (J,2, Cs, Co = {Q}, Cro = {@_1 frwy = w(k) € {1,...,n} for 1 < k < n}
and the series (10|) converges in the weak-star operator topology.

We define the vacuum expectation state E : B — C as E(X) := (XQ, Q).

In particular, from we get Wi on = D ccc@We. Using @ and the fact
that vectors fi,..., f, are linearly independent, we get W§ o o, = Zcec,\qgn aWe.
It means that W7 o o can be expressed as a finite linear combination of W, where
ceC.

Take any vector g € H, and denote the orthogonal projection of g onto the linear
span of f1,..., fn by P(g). Then we have

(9, fi) = (P(9), fi) VYie{l,...,n}. (11)
LEMMA 2.1. If my,ma € N and f;,9; € H (i,j € N), then
E(wau)@m@fn(ml)agl s agmwfﬂ/(l)@)..-@f,r/(mz))
= E(W),0)8.@Frimy @P(01) - - OP(gm) Wi 1@ ®F 1) ) (12)
for any (i), 7'(i) € {1,...,n}, i e N.
Proof. Take any wa(1>®--~®fw<m1>7 wa/(1)®~~®fw Then

I(mg)
E= E(wau)@---@fw(m)azl "'a;anw’(n@---@fw'(mz))
= (W) ®8 ) T - g W )@@ gy S Q).
If my = mo 4+ m, then from @D
FE = <a;1 .. .a;mfwf(l) ® ... ® frr(ma)s fr(my) @+ @ fﬂ(1)>
= <g1 ®. . ®Im ® fr)® - ® fri(mag) frm) ®--- @ fﬂ(1)>.
If we use then

m mo
E= H<gj7f7r(m1+1fj)> H<f7r’(j)af7r(m2+1fj)>-
j=1 j=1
From we get
m ma
E= H<P(gj)a fw(m1+1—j)> H<f7r’(j)a fw(m2+1—j)>
Jj=1 J=1

=(P(g1) ®...® P(gm) @ frr(1) ® -+ @ frr(ma)s fre(my) @ - @ fr1))

Inverting the above steps we get

* *
E(Wfr<1)®~~®fw(m1)agl ceelg, wa’(1)®~~~®fw'<m2))

= E(Wf‘rr(l)®--'®f7r('rn,l)a*P(gl) e a*P(gm)Wf,r/(l)®---®f7r/(m2))' (13)
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If m1 % mo + m then

E= E(Wf'rr(l)®”'®f7r(m1)a;1 s aZmwa’(1)®---®fw’(m2))
= <Wf7r(1)®"'®f7r(7n1)a;1 s aZm wa’(1)®---®fw’(m2)ﬂ’ Q>
_ * * *
= <agl N agm Wf-/r’(l)®"'®f7r’(7n2)ﬂ’ Wf‘/r(l)®®f7r(m1)Q>. (14)

(m1)

of Wi, )&...0f. 2 for some k < my. Let Wy o op Q= oo W
and a,, € R. So, we get

Using assumptions @) and @) we can express W 1)®-..8F Q as a linear combination

ppEC) XPpPb™ T

*

_ * *
E= <a91 t angfw’U)@‘“@fw’(mg)Q’ Wfﬂ'(l)®“'®f7r(m1)Q>

my
_ * *
= <ag1 .. angfﬂ/(1)®~--®fw/(m2)Q7 Z WZPbGCb O‘PbeQ>

b=0
mi
= <a;1 "'a;mwa/(1)®~--®f7r/(m2)Q?Z Z O‘Pbpb>' (15)
b=0 pp€Cl
If b # m 4 my then it follows from that
(a5, Wty @ D ) = 0. (16)
pr€Cy

In particular, we can write

/. * *
E = <ag1 "'agmwa/(1>®---®fw/<m2>ﬂ’ E ozpbpb>
ppECy

- <a}(91) + 0P (g ) Whet (188 iy S Z apbpb> =0 (17)
preCy

Denote by J : T'(H) — I'(H) the reversing order operator, J(g1®. . .®gn) = gn®. . .®g1
and J(Q) = Q.
If b = m + msy then

/_ * * E
I— <0,g1 e agmwa,(1)®___®fw,(m2)ﬂ, apbpb>
prECh

_ * *
= <agl .. .O,ngf”,(l)@m@fﬂ_,(mz)Q, Z OépprhQ>.

pr€CH
From @[) and assumption b = m + mg

/. * * X *
B= <a91 O W) © @ Frr gy S Z O‘PbWJ(pb)Q>
pp€Cy

_ * * *
- E : an<ag1 e .agvnWfﬂ'(1)®"'®f7r’(m2)Q7WJ(pb)Q>-
Pr€Ch



REMARKS ON CONDITIONAL MOMENTS 139

From
E’ — Z apb<a}3(gl) - a};(gm)Wf‘lr/(l)®"'®f7r/(m2)Q’ W;(pb)Q>

pp€Cy
= (@b o0 Wharin- 0 i @ D @0 Wipn©2)
prECy
= <a}§(g1) e a}‘;(gm)wa,(1)®m®fﬂ,(m2>Q, Z O[pprbQ>. (18)
PrECH

Then the right hand side of equation can be expressed as

my
E= <a;1 : ..a;mWfﬂ/(1)®“'®f‘n/(m2)Q’Z Z aﬂbpb>

b=0 pLeCY

my
_ * *
= <aP(gl) - 'aP(gm)Wffr'<1>®~-®fw’(mz)Q’Z Z aﬂbpb>
b=0 ppeCh

= <a};(91) T a}(gm)wa'<1)®~~®fw’(m2)Q7 W}:<1)®~~®fﬂ<m1)ﬂ>

= (Wt )0 ® Frtmy) CP(g0) - (g )W (1) @@ F s gy Q). (19)
So, we have proved that for all Y1,Y; € {W,;e € C}
E(Yiag, ...a, Ya) = E(Yla}(gl) - a}(gm)Yz). (20)
In particular,
E(wa/(1)®~~®fﬂ/(m2>a’;1 T a;m W;w(1)®~-®fﬂ(m1))
= E(W};’(l)@”'@fw’(m,z)a}‘;(gl) T a;(gm)W;ﬂ(1)®.~.®fﬂ(m1)) (21)

because W}k 1) ®. B can be expressed as finite linear combinations
.

of We,, e; € C.
Of course, this is equivalent to

*
w(mg)’ wa(1>®~~®fw<m1>

E(Wfﬂ(1)®~“®fﬂ(m1)a91 <o Qg wa/(1)®~~®fw'<m2))

=E(W), )00 frimy) OP@1) - - WP(gu) Whr0) @@ sy ) ™

Take any Y1,Ys € B, and by , write Y] = EpEC ozi(,l)Wp and Yo = >, al@)Wi.

Then we have
E(Z 041(,1)1/(/})%1 .., Z a§2)Wi)

peC ieC
= Z az(,l) Z aZ@)IE(Wpag1 ..ag, W)

peC e

2

= Z ozg,l) Z ag )E(Wpap(gl) oeap(gyWi)

peC i€C

2
= E(Z O‘él)WPQP(gl) o AP(gm) Z 0%(' )Wi)' (22)
peC ieC

COROLLARY 2.2. E(Yiay, ...ay, Y2) = E(Yiap,) ... ap,,)Y2) for all Y1,Ys € B.
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LEMMA 2.3. If mi,ma,mg,ms €N, fi,g; € H (i,5 € N) then

E(Wfﬂ'(l)®"'®f‘n(m3)a/;l s a;;ml agm1+1 s ag'ml+7n2 wa/(1)®...®fﬂ/(m4))
= E(Wi, )@@ Frimg) WP(g1) - - QP9 ) EP gy 41) - - CP gy 4mn) Wi (1)@ @ Frnyy) (23)
for any (i), 7’'(i) € {1,...,n}, i € N.

Proof. The proof is by induction on my. If m; = 0 then we apply Lemma [2.1] to get the
result. Suppose that is true for some m;. Take any Wfﬂ<1>®---®fw<m3>’ Wfﬂ(1>®---®fw<m4>
with m3 = my4 —mgo +my + 1, and denote fr/(1) ® ... ® frr(m,) by ®. Then we have

"o, __ * ok *
E" .= E(me)@,,@fmg)agagl Oy Qg g We)

= <wa(1)®m®fﬂ(m3)a;a;l g Og e Og o, We 2, Q).
By @ and @
E" = <a;1 .. .azmlagml+1 Qg iy Ry g fr(mg) @ @ fﬁ(1)>
= (g, fﬁ(m3)><a;1 .. .a;ml g i1+ O 1y @5 fr(ma—1) @ .. @ fﬂ(1)>
= (g, fﬁ(m3))<a;1 . .a;ml Agp g1 -+ = O 1y WL, wa(1>®m®fﬂ(m3_1)ﬂ>
= (g, fﬂ(ma)>E(Wfﬂ(1)®___®fﬂm371)azl .. .a;m R Wa). (24)
By induction and
E" = (P(g), fﬂ(mg))IE(Wfﬂ(l)®___®fw(m371)a;(gl) . a};(gml)ap(gm1+1> .. .ap(gm1+m2)Wq>)
= (P(9): fr(ms) (@ (g1) - - OP(g ) VPG 11) -+ - CP(guny 1) P frnmg—1) ® - @ fr1))
= (@B(g1) (g )PP (s 1)+ OP (911, 20) D OP(g) Frma) © - @ Fr(1))
= (a*P(g)a}?(gl) R a*P(gml)aP(9m1+l) QP (g s my) WY, W;ﬂ(m3)®...®fﬂ1>9>

= ]E(wa<1>®--~®fw<m3>a};(g)a;(m)a;(gml)aP(9m1+1) AP (g ) W) (25)
If mg # m4 — mo +mq + 1 the proof is analogous to the proof of Lemma for the case

mi#Fm+mo. m

Take any Y1,Y; € B, Y1 = Zpec a]g,l)WeE and Yo =), agz)Wi. We have

E(Yia’;;l t Cl;ml Agrmy41 - a9m1+m2Y2)
* * 2
= E(Z ozl(})Wpag1 el Og e g Z ag )Wi)
peC ieC
— 1 (2) * *
— Z aé ) Z a; I[C(I/I/'pag1 Oy Og iy g g WZ)
peC ieC
= E(Yla};(gl) N a;(gml)ap(gml_'_l) N ap(gml_'_ma)}/é). (26)

COROLLARY 2.4.

IE(Ylazl...a Yg)

;ml Agryt1 v Ugmy s
= ]E(Yla}kp(gl) R a*P(gml)aP(g7n1+l) e ap(gml_*_mQ)YQ) (27)

for allY1,Y5 € B.



REMARKS ON CONDITIONAL MOMENTS 141

Fix an orthonormal basis {e;} of H®™. Let G be the von Neumann algebra generated
by {Wer;i € A and ap € R} (where A denotes the family of all multiple indices defined
in the first part). Additionally we assume that each element of G can be expressed in the
form > ;4 e Wer.

THEOREM 2.5. Let P(ey) = P(e] ®...®¢€)) = P(e}) ®...® P(ey), then
E(Z e Wey |B) =D agWp) (28)
1€EA e;EA

where the above series converges in the weak-star operator topology. Here E(X|B) is the
conditional expectation of the element X € G onto B. Recall that a (non-commutative)
conditional expectation on the probability space L*(G,E) with respect to the subalgebra
B C G is a projection onto the corresponding L*(B,E).

Proof. The assumptions ensure that each element W, ¢. 4, can be expressed as a linear

combination of ag_ ...ay ., ---Gg,,, Where mi,my € Nand x(k) € {1,...,n}
(1 <k < n). Corollaries 2.2 and [2.4] give
EMiWy9..09.Y2) = E0We(g)e..0P(g.) Y2) (29)

for all Y1,Y> € B, and of course Wp(y)s..0P(g.,) € B- Analogously we deduce that

E(KW% ®...Q9¢ /Wgt’1®“-®9t;w}/2)

=EMiWh, e ep@. ) Wre,)e..0P@, )Y2) (30)

where ¢/, 17, € Nand m’,m"” € N. Now, for any element ¢ = >, _, aeWer € G we have

E(Yi(Y2) = > agE(YiWeYa) = Y agE(ViWe(epYa) =E(Y1 D aqWpey ) (31)
i€A i€A i€EA

for all Y1,Y5 € B.
Uniqueness. Let us suppose that there exists some variable Y € B (other than
We(g)®...@P(g,)) such that
E(Y1Wg1® ®ngz) =E(M1YY,) (32)
for all Y1,Ys € B. From assumption we get Y = ZpEC apWp =30 ZZEC o; Wi,
By taking any ZbeC oWy and b 7& m, and puttlng Yo =Tin equatlon , for Y7 =
(Zbecb aQWQ) the left hand side of equation (32) becomes

E(YiWy, 0. 0, Ya) = <ng®,,,®ng, > W) =o. (33)
beCh

On the other hand,
E(Y;Y) = <Z S awia, Y %WQQ> = <Z ah, > a@ =0.  (34)
=0 3i€C; beChy beCy beCy

The last equality follows from .
Since the vectors b € C}, are linearly independent, we have o, = 0 for all b € (. This
gives Y =3, a;W;. Rewriting all o;; and W), (where i € Cy,) as a; and W,y,: where
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s €{l,...,n}™ and putting Y1 = W” ,, Yo = I in equation , yields

EYViWy, 6. 00.) = BEVY) Wy @gm Wae) = D a5 (Wime, W) (35)
se{l,...,n}m
for all s’ € {1,...,n}™, which is equivalent to the equation

<W91 ®...Qgm > Wm(1=---’1)>

<W91®-~®!Jm’Wm(” ----- ">>

(Wt W) e (Wi s Wit alyrt)
= : : . (36)
Wpttos Wity oo (Wit Woggnoom) apem)
D
Since the vectors W= (s € {1,...,n}™) are linearly independent, we obtained that

det D # 0. This gives us that a2, is an explicit set (s € {1,...,n}™). Using this result
and we deduce that E(Y;¢Y3) = E(Y1¢5Y2) can be true only for one element from
(B € B.

So, we can define an operator £ : G — B (¢ — £(¢)) by the relation

E(Y1(Y2) = E(Y1€(¢)Y2) (37)

for all Y7,Y5 € B and ¢ € G. It is easy to see that the operator £ is linear. Now, we shall
prove that the operator £(X) is a positive contraction.

Positiveness. Take any ( = ZieA ae;We; € G, then

—e((Sems) (Soawr)
_ g(ZZae/ Wi W) = 30D agaq €W W)

jEAicA jEAicA
= Z Z Qer ey WP Wp = (Z ey WP ) (Z Qey Wpe ) (38)
jEA 1€EA €A €A

which follows from .
Contractiveness. Take any ¢ = ZzeA e We: € G, then

IEQI® = ()R, EQR <Z e Wp(er)S2, > e Wee )Q>

i€A i€A
= <Z ae Ple ZaerP > @ <Z ae;;e;,ZaeiP(e;»
i€A icA i€A i€A

(1)
=(¢,€(Q)) < ICINEQ)I- (39)
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Inequality (IT) is obtained from the Schwarz inequality. Equality (I) follows from

(P(li)®...® P(ly),P(l}) ® ... P(I},))
= [[Py). Py = [, P)) =(h@...@L, Pl ®...® P(I,)) (40)
j=1 j=1

I eH.

r'n

where l1,...,0,,1],...
It only remains to prove that

EWCH") = HEC (41)
for all ¥',0"” € B and ¢ € G. Take any Y1,Y> € B, then
E(Y16 E(O)0'Y,) = E(Y1 6 ¢h Ys) = E(Y1E(V CHYs). 42
(Y10’ E(Q)V'Y2) = E(Y1 V(" Y2) = E(V1E(V' Cb")Y2) (42)
eB eB €gG

So, we have proved that the operation £ defined by equation is a conditional expec-
tation. Using one concludes the theorem. =

3. Conditional moments. The following definition has been introduced in [3]:

DEFINITION 3.1. Free deformed Poisson random variables. Consider (noncommutative)
random variables as elements of the algebra generated by the self-adjoint operators X; =
ajay + \ﬁ(a’} +ayf) + AL, with A > 0. Define the Wick product

Vsone.of =X Vo an/VA— (L )V enhe. o /VA
—(f 1)V e 00, — VAV s ep,  (43)
where U =1 and ¥y = 0.

From we have U; = (X — AI)/V/A (s0, condition is satisfied for ¥ instead
of W). Condition (6] follows from the definition of W. Condition follows from the
equation W; = (X; — AI)/V/A, because Wy, ... ¥,
polynomial (composition) of af ...ayag ...af, where the number of creators is not
greater than n — 1. From by induction we deduce that ¥ ¢ gy, is a polynomial
in Wy,..., ¥y, soif we use we obtain that ¥y o gy, can be expressed as a finite
combination of some elements a;‘cﬂ(l) ...a}ﬂml)afm) Oy where my,ms € N and
m(k) € {1,...,n} (1 <k < n). Analogously we deduce that (9) holds.

We define the right deformed Poisson random variables X} = a%* a’}—l—ﬁ (a%*+a’)+AI
and their Wick product

\I/;1®---®fn®f = X;\Ij%@m@fn/ﬁ - <f’ f">\Iﬂ}l®---®fn,71®f/\/X
- <f7 fn> ;1®~~~®fn71 - \/X\D;1®~‘.®f'rb (44)

=a% ...a% + w where w is some
fl fn

where U(, =T and ¥j = 0.
Simple calculations show that

U =V, Ve C. (45)
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In particular holds for all finite linear combinations of C. If we apply both sides
of to €2, then we get

Wen = We Ve € C. (46)

Let B = alg(1,%y,,..., Uy, ) be the algebra generated by 1, ¥, ..., ¥y , and respec-
tively B" be the algebra generated by 1,¥% ..., ¥% . From it follows that B" C B’
(commutant of B). Now let T € B’. Then, in particular, for any n € C we have
TV, = ¥,T. This applied to Q gives TV,Q = Tn = ¥, TQ = Viqn, which follows
from . T can be linearly extended to the dense subspace of C, so T' € B". Similarly
(B") = B and B = (B)”. Hence B is a von Neumann algebra. Using this we can easily
conclude that the vacuum vector €2 is cyclic and separating for the algebra B.

Given linearly independent vectors fi, ..., f, € H, we denote by H, .y ) the linear
span of fi,..., f,. Then, as a consequence of , each element £ € I'(H(y, ... s,)) can be

written as
§=> > osf. (47)

n>0 feCy,
So, for this £ and any f’ € C' we have
r r (46)
=33 wpa @ apUpf' =Wef’ (48)
o n>0feC, n>0 feC,

where the last series converges in I'(H(y,, .. s,))- By linearity of ¥ the above equation
holds on the dense subspace C.
If x € B then
af =00 =020 =V,q0f". (49)
So, this yields that each element of B can be introduced in the form of equation .
Analogously we prove the above property for G.

PROPOSITION 3.2.

n
]E(Xfo|Xf1""’an) :Zaini (50)
=1
n 2 n
E(X;()'Xfla"wan) = (Zaini> +>\C(ZO¢Z‘Xﬁ> (51)
i=1 i=1

where ¢ = (||f0H2 - Hp(f0)||2)-

Proof. This follows from Theorem and . Write the orthogonal projection of fj
onto the span of fi,..., fi as the linear combination P(fy) = >._, a;f;. Then (since
(Xfo - )‘I)ﬁ = \Ilfo)

E((Xp, = ADVAIXf, o0, X)) = E(W 5| Xy, X))

= Up(py = (zn: 0 Xy, = AT) [V

i=1
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Now we compute (equation ([43))
Vi = ‘vao‘llfo/\/X - ”fOHZ\I]fo/\/X - ||f0||21 - \/X\Ilfo
= X5y (Xgo = AD/A = [l foll*(X g, = AD/A = [ fol’L = (X5, — AD).

So we have

E(X 1, (Xpy = AD/A = [ fol*(X g, = AD/A = [ fol’T = (Xp, = AD[ Xy, Xy,

—E(Uy050Xs0s s X1) = Up(repse) = i(i aiXy,) (En: aiXj, = A1)
”P—(Z 00Xy, = M) — [[P(f0) T - (za, =)
(Zazxﬁ) 2+ [ P(fo)]? (Za,xﬁ) + AL

=1

>,\,_.

This proves that

B X Xp) = (Do 0iX) + AN~ PGP (Z @i Xy,). m
i=1

COROLLARY 3.3. The conditional variance is a linear function of Xy¢,,..., Xy,
Var(X | Xpy,- .0 X)) = cA(Z aini) (52)
i=1

where ¢ = (|| foll* = | P(fo)l?)-
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