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Abstract. In analogy with earlier work on the forward-backward case, we consider an explicit

——

construction of the forward-forward double stochastic product integral [] (14dr) with generator
dr = )\(dAT ®RdA — dA ® dAT). The method of construction is to approximate the product
integral by a discrete double product ﬁ (RYY)) = I( ﬁ (Rﬁ,{’i})) of second
(4,k)ENpy XNy, (4,k)ENy, XNy,
quantised rotations R%Lﬁ) in different planes using the embedding of C™ @C" into L?(R)® L*(R)
in which the standard orthonormal bases of C™ and C" are mapped to the orthonormal sets
consisting of normalised indicator functions of equipartitions of finite subintervals of R. The
limits as m,n — oo of such double products of rotations are constructed heuristically by a new
method, and are shown rigorously to be unitary operators. Finally it is shown that the second
quantisations of these unitary operators do indeed satisfy the quantum stochastic differential
equations defining the double product integral.

1. Introduction. In earlier work [2] the first author constructed an explicit family of
unitary operators (3W{) ., . on the Hilbert space L*(R) ® L*(R) as limits
of forward-backward directed discrete double products constructed as follows. For fixed

mand n we first form the discrete directed double product I (R%:],?) where
(4:k) ENm XNy,
R%’,]Z) is the (m 4+ n) x (m + n) matrix got by embedding the 2 x 2 rotation matrix

through the angle A %, where A is a fixed real parameter, into the intersections

of the j-th and (m + k)-th rows and columns, and completing the (m 4+ n) x (m + n)
matrix by putting 1 in the remaining diagonal and 0 in the off-diagonal positions. The
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(m+n) X (m+n) matrix II (R%ZIZ)) is regarded as an operator on the direct sum
(5,k) ENpn XNoy

L?(R)® L?(R) by embedding the direct sum C™ @ C™ into L*(R) & L?(R) by mapping the
standard orthonormal bases in C™ and C" to the orthonormal sets in L?(R) consisting of
the normalised indicator functions of equipartitions into m and n subintervals respectively

of the intervals [a,b] and [s,t[. 8W! is then constructed heuristically as the limit as
m,n — oo of this operator. An explicit form for W is found using a double version

of the limiting procedure originally used [5] to construct the so-called time-orthogonal
unitary dilation [6].

Using their explicit form the operators 2W! were shown [2] rigorously to be unitary.

In [3] it was shown that the second quantisations I'(3W{) in the Fock space

D(ZA(R) & LA(R)) = T(LA(R)) © T(LA(R))

constitute the family of double stochastic product integrals & [T%(1+ A(dAT ® dA — dA®
dA")) in so far as they satisfy the stochastic differential equations which define these
double products. The construction is motivated by the heuristic approximation

ST+ MdAT @ dA — dA @ dAT))
~ H exp{l+i)\ W(a;[@bk—aj@b;i)}
(J,k)ENm XNy,

——

~ [ T©®E

(4,k) ENp, XN,

= r{ ﬁ Rgg;':g}
(

3,k)EN,, XN,

where the (aj,a;f) and (b, b;i) are the creation and annihilation pairs formed from the
normalised increments of the creation and annihilation processes.

The original motivation for studying double products came from quantum groups,
where a purely algebraic “indefinite integral” form of them was used to construct ex-
plicit solutions of the quantum Yang-Baxter equation [8]. This motivation prompted the

choice of the “forward-backward” form [] of double product for study. On the other
hand “causal” double products living in the single Fock space I'(L?(R)) of the form
[T (1+XdAT(2)dA(y) — dA(x) dAT(y))) have recently [4] become of interest in con-

0<z<y<t
H(_Bctizé);l with quantum versions of Lévy area L(t), and in particular of the Lévy area
formula [9] [I0] for its characteristic function E[e®*L()] = sech(%!) which is that of the
Gamma distribution, one of the family of Meixner distributions [I1]. Such causal double
products are closely associated with double products of rectangular type, for example
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through the formula

—

[T (1+A@AT(x)dA(y) — dA(x) dAT(y)))
= ] Q+AdAT(z)dA(y) — dA(x) dAT(y)))
a<z<y<b

CT6( + A(dAT @ dA — dA ® dAT))
[T (+A@AT () dA(y) — dA(z) dAT(y)))
b<z<y<c
where in the middle product the single Fock space I‘(LQ(R)) is identified with the double
Fock space I'(L?([—00,b[)) @ I'(L*([b, oc[)) using splitting at b. For this reason it is of

interest to study “forward-forward” rectangular double products o H (1+\(dAT®@dA —

dA ® dA')) (henceforth we usually write H instead of H ) by methods similar to those
of [2, B]. However the method of the present paper differs from that of [2] in that, instead
of embedding 2 x 2 matrices into (m + n) x (m + n) matrices by filling in the missing
diagonal terms as 1s, we fill in all the missing terms as 0s. This new method allows for
a direct evaluation of the limit as m,n — oo without going through the iterated double
limit procedure of [5]. In addition it will be shown [4] that a modification of the new
method allows explicit construction of the corresponding causal product, from which a
quantum version of the Lévy area formula will follow.

The paper is organised as follows. In Sections 2 and 3 we recall the definition and
properties of quantum stochastic double product integrals. In Section 4 we compute the
matrix product I1 (14MG-F)) where MGF) is the (m+n)x (m-+n) matrix formed

(4,k)ENpy XN,
from a given 2 x 2 matrix M by embedding the four elements of M at the four intersections

of the j-th and (m+k)-th rows and columns and taking all remaining elements to be 0. In
Section 5 we find the limit as m,n — oo of the corresponding operator on L?(R) & L?(R)

in the case when M is the rotation through the angle A4/ %. Unitarity of this
operator is established in Section 6. In Section 7 it is shown that its second quantisation

——

is indeed 2 [T% (1 + A(dAT ® dA — dA® dA')) insofar as it satisfies the quantum stochastic
differential equations defining the latter.

2. Quantum stochastic double product integrals: definition. Let 7 =
C(dAT,dA,dT) denote the Ito algebra spanned by the stochastic differentials of the
standard creation and annihilation processes of quantum stochastic calculus [7] and the
time process T equipped with the product defined by the quantum It6 product rule

dAY dA 4T
dAT 0 0 0
dA | dI' 0 0
dr 0 0 0
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Let dr be an element of the tensor product Z ® 7.

—

The double product [](1+dr) is a family (5 Hi(1+dr))a<b o< of operators, indexed by
pairs of finite half-open subintervals ]a, b],]s,t] C R, each acting in the tensor product
F(L*(Ry)) ®@ F(L?*(Ry)) with itself of the Fock space F(L*(R;)) over L?(Ry). The

operator ZHZ(I + dr) is defined in two different but equivalent ways as
oA+ T +dr) - ()
[T+ ETIC +dr) (i),

Here, in the first definition (i) the inner “decapitated” simple product integral

Zf[i(Hdr):

ﬁg(l + dr) is defined to be the solution X (¢) at time ¢ of the quantum stochastic differ-
ential equation
dxh?? = (X2 +1%)dr'?, X(s)=0

in which the superscripts 1, 2,3 denote places in the tensor product Z ® P ® Z, where P
is the algebra of iterated stochastic integral processes living in F(L?(Ry)) and the first
copy of Z in ZT® 7T is taken to be the non-unital (left) system algebra, so that X € TQ P.
Specifically, since 7 is nilpotent, we have

—
—

Hi(l +dr)=X(t) = /< <tdr(-,a3) + /< . dr(-,x1)dr(-, z2) (1)

S

which is of the form dA' ® P_ +dA ® P, + dT ® Py where P_, P, and P, are iterated
integrals over the interval ]s, ¢]. Thus we can define the simple product integral

gH(HHg(Hdr)) = T[(1 +dAT @ P_ + dA® P, +dT ® Fy)
as the solution Y (b) at b of the quantum stochastic differential equation
dY =Y(dAT@ P. +dA®@ P, +dT ® P,), Y(a)=1 (2)

in which the unital algebra P is the (right) system algebra.
Similarly in the second definition (i) the inner decapitated product integral

Zﬁ(l + dr) is the solution U(b) at time b of the stochastic differential equation
aut?? = (U 1Y dr*?, Ua) =0

in which the second copy of Z in Z®Z is taken to be the (right) system algebra, which is
of the form Q_ ® dAT +Q, ® dA+ Qo ®dT where Q_, Q. and Qg are iterated stochastic
integrals over the interval ]a,b] and can define the simple product integral

7 = v
[1(1+2]10 +an) =TI + Q- ©dA" + Q. @ dA+ Qo ©d1)

as the solution V'(t) of the stochastic differential equation
dV =V(Q-®dAT+ Q4 ® dA+ Qo ®dT), V(s)=1. (3)

Let us prove that the two definitions (i) and (ii) are equivalent.
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THEOREM 2.1. If Y and V denote the solutions of the stochastic differential equations
and then Y (b) = V(t).

Proof. We recall the product rule It(a)It(y) = It(af3) for iterated stochastic integrals
[1]. Here for o = (g, a1, 2,...) € B, (Q®" Z) an element of the tensor space over Z,
we define I*(a) by linear extension of the rule that for each ag € C = ®"Z, I'(ag) = apl
and for each n-th rank homogeneous product tensor dL;y ® dLy ®...®dL, € ®" T with
dLy,dLsy, ... dL, € T

s<a1 <Tp<...<Tp <t
The product af is defined by

(@B =D afuf

AUB=N,
Here the sum is over all 3" ordered pairs (A, B) whose union is N, = {1,2,...,n}, the
notation aﬁ“ indicates that the homogeneous component a4 of a of rank |A] is to be
placed in the copies of Z within the n-fold tensor product ®" Z labelled by the elements
of AC {1,2,...,n} so that, with 653‘ defined analogously, all n copies of Z within ®" Z
are occupied by the combination aﬁlﬁ‘%l, and finally double occupancies are reduced to
single occupancies by using the multiplication map in Z.
Using this multiplication rule we can solve iteratively

I+ TLo+a) =1+ @en{ Y (¥ I[em)) o

m,n=1 A;UAU...UA,,=N,, j=1

Here the inner summation is over all ordered m-tuples (A1, As,..., A,,) of non-empty
subsets whose union is N,, and the notation is as follows. For A; = {a1,as,... 7a‘A”}
with a1 < a2 < ... < ajs,| we define dri™+4; to be the element Hiijll drimtar of

T ®Im+a1’m+a2""’m+a|“ﬂ where the superscripts indicate places within the (m + n)-
fold tensor product (®™ Z) ® (®" I). (In fact by nilpotence of Z dr’™*+45 = 0 whenever
|A;] > 2 so that the inner summation may be restricted to subsets which are either
singletons or pairs).

A similar argument shows that, with a similar notation,

ﬁg(1+gﬁ(1+dr)) :1+(1};®1§){ i (X ﬁdr3k7m+’“>}, (5)

m,n=1 B;UBsU...UB,=N,, k=1

where now the inner summation is over all ordered n-tuples (B, Ba, ..., By,) of non-empty
subsets whose union is N,,,. That the sums and are equal follows from the fact
that

> ewmv= 3 I1 (@)™

AjUALU...UA,,=N,, j=1 MeMp n (§,k)EN,, XN,

= > ﬁ drBrmtk, (6)

B1UByU...UB,,=N,, k=1
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Here M,, ,, denotes the set of all m x n matrices M = [M; ] ryen,, xn, with each
M; . € {0,1} and such that each row (M1, M; o, ..., M;,) and each column (M ., Ma j,
.oy My, ;) contains at least one entry 1. (dr)™si* is by definition dr if M, = 1 and
void (formally 1 in the product) if M;; = 0 and the superscripts m + j,k refer to
places in (Q" Z)®(®" Z). The equality of the three sums (6]) is established using the
correspondence

keAjeMy,=1<j€DB, n

The forward-backward, backward-forward and backward-backward double products

— ——

I1 (14dr), T] (1+dr)and J] (1+dr) are defined by appropriately replacing stochastic
differential equations driven on the right by ones driven on the left. For example

bﬁt(l . sT1(1+ I+ ar))
o IT: (1-+ 21101+ ).

—

where ﬁ’;(l + dr) is the solution X (t) at t of the stochastic differential equation
dXh®3 = dr (X1 +17), X(s)=0

and Hi(l + Zﬁ(l + dr)) is the solution V (¢t) at ¢ of
AV = (Q- ®@dAt + QL @ dA+ Qo dT)V, V(s)=1

where, as before, Zﬁ(l + dr) is expressed as Q_ ® dAT + Q4 ® dA+ Qo ® dT.

3. Quantum stochastic double product integrals: properties. By nilpotence of 7
each element dr of Z ® Z has a unique quasi-inverse, that is an element dr satisfying

dr +dr +dr dr = dr +dr + dr dr = 0;
in fact dit = —dr + (dr)?.

THEOREM 3.1. & [[L(1 + dr) has multiplicative right inverse b []1(1 + d7).

—

Proof. Denote & []t(1 4 dr) by Y and 2 [ (1 + dF) by Y so that

YY:Zﬁ(HﬁQ(Hdr)) gﬁ(uﬁg(udm).

We compute the differential at time b of the product Y'Y using the Leibniz-Ité formula
as

(YY) = (dY)Y +Y(dY) + (dY) (dY)

:Y(ﬁi(udr)+ﬁ§(1+df)+ﬁ§(1+dr)ﬁ§(1+dm)y
—Y(X + X +XxX)Y, .
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where

X = ﬁg(l +dr), X= ﬁg(l + dr).

Let us now compute the differential at time ¢ of X + X+XX ; again using the Leibniz-It6
formula it is

d(X + X + XX)

= dX +dX 4 (dX)X + X d(X) + (dX)(dX)

= (X+D)dr+di (X +1)+ (X +1)drX + Xdir (X +1) + (X + 1) drdi (X +1)

= (X + 1)(dr + di + dr di)(X +1) =0,
independently of ¢ > s. SinceAX(s)—l—)A((s)—i—X(s))A((s) = 0 it follows tha‘EX+X+XX =0.
It follows from (7)) that d(Y'Y") = 0 independently of b > a. Since Y (a)Y (a) = 1 it follows
that YY = 1, that is that Zﬁg(l + dF) is a right inverse to Zﬁg(l +dr). m

Elementary adjunction properties of quantum stochastic integrals show that

(Zﬁi(1+dr))T :Zﬁ’;(l +drt)

where on the left 1 denotes the Hilbert space adjoint and on the right the tensor product
involution on Z ® 7 of the natural involution on Z in which dA" and dA are mutually
adjoint and dT is self-adjoint. It follows from Theorem 3.1 that the condition drf = d#

is necessary and sufficient for % [T%(1 + dr) to be coisometric. Isometry, and hence also
unitarity, is more difficult to characterise. We shall show by direct construction that,
in the case dr = A\(dA" ® dA — dA ® dA"), which satisfies the coisometry condition,

®TIL(1 + dr) is unitary.

a f
)
be a given 2 X 2 matrix. For 1 < j < 7 < mand 1 < k < k' < n we consider the
(m+n) x (m+n) matrix

MOTHRRD) = o) (5 + B ) (m+ K| + 5 [m+ k) (G| + 6 [m + k) (m + K|
where for 1 < 1,1’ < m+n the dyad |I) (I'| is the (m 4+ n) x (m + n) matrix with a single
non-zero element 1 at the intersection of the I-th row and !’-th column. We shall also

4. Some matrix products. Fix m,n € N throughout this section. Let M = [

find it convenient to write MU+ %% a5 a 2 x 2 matrix whose elements are themselves
matrices, namely
M GaRED) 0<|j> <j/| 5|j> <k’/| }
vIk) 'L o lk) (K|

where now the dyads |7) (5|, |7) (K'], |k) (| and |k) (k'| are respectively m x m, m X n,

n x m and n x n matrices. Then given a second 2 x 2 matrix M = 3 ? ] the product
M-I kK ppGaa'skE) g
ad|j)(3'l]7)(7"] + BN [R) (7' aBli) (i ||3) (k| + Ba]5) (k|
valk) )|+ oAk [[R) R Blk) (' ]]7) K| + 00 k) (k|
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We use the abbreviated notation M»Jik:k) = pfUsk) Then it follows from the fact
that 1) (I'| [I”) (I""] = 0 unless I’ = 1" that

MUR prGHED) — (8)

unless either j = 7' or k = k'.

We are interested in the discrete double product [ ; vyen, s, (L + MU#)) where T is
the (m + n) x (m + n) identity matrix. To evaluate it we first introduce some notation.
a g ] b [ Qoo 01

y

0 Q10 a11

v-th power, so that the elements of the resulting 2 x 2 matrix M" are given by

We temporarily denote the matrix M = [ ] and raise it to the

1

(M7)jk = Z Qujg, Oty Oty g~ - OO, K-
fi1,82,.80—1=0

Then we define monomials of total degree v by

Ay o, (X yBy7,0) = Qogy Oty o Ol 3 ** " Oy 10,

( ) =
by toreety—r (6 557, 6) = vog, 00, g, Qg 5+~ Qg1
Chr oyt 1( B, ) = Qg Oy o o s * " " V105
iy o, (O 5’% 0) = oag, 0y g, O g~ Qg1 (9)
so that
MY — Zl: { Ut 1 (05 5 750) bg o,y (@5 857, 0)
ste o b Citetoma (@ 0,7,0)  dyga (@ 8,7, 0)

For # € {0,1} we denote 1 — §f by b.

Now we can state

THEOREM 4.1. For an arbitrary 2 x 2 matrizc M = { @ ? } ,
v
[I aruod=1+3" 3
(4:K) €N XN, v=141,8,....4—1€{0,1}

[ Aty oot (a7 8,7, 5)Aﬁ17ﬁ27--'7ﬁu—1 bu17ﬁ27---7uu71 (O(, 8,7, §)Bﬁ1,ﬂ2>---7ﬁu—1
Chr ooty 1 (a’ 8,7, 5)01117?127--»7%—1 d’i17u27--47uu—1 (057 8,7, 5)Dﬁ17ﬁ27---7ﬁu—1

where the monomials ag, g, 4, 1> by garofors Citarepor 00 dyy g, g, are defined
by @D and the m X m, m X n, n x m and n X n matrices Afvt2tv—1  Bhifz, b1
Chutzrbvt gnd Dbt2fv-1 gre defined by
(G == =§=2)- (' == ot +4 1))
(B1+f2+.FHo—1)!

B2ty — — —1)-(n—(bi+bo+...4b,_ oo .
R e gi<s (0

0 ifj=j,
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1,2, o1y _(m*jfl)(m*jfz)"‘(m*j*(ﬁ1+ﬂ2+...+ﬁy_1))
(B ik = (1 +t2+ ... +H-1)!
(k—1)(k—=2)---(k—(b1+ba+...+b,_1)) (1)
(b1 +bo+ ... +by_q)! ’
oty U=DG=2) -ttt Eo1))
(Chrfztoot) ;= (f1+82+...+f1)
m—k—1n—-k—2)---(n—(01+ba+...+b,_1))

, 12
(b1+b2+...+b,/,1)! ( )
(m(m—l)-~~(m—(ﬁ1+ﬁ2+“.+ﬁ,,,1))
) (ﬁ1+ﬁ2+;~.+ﬂu71+1)/!
(Dftzbvony, ) = ((k —k—1)(k _’Zb_li)b;f..._ﬁibf)ﬁﬁmwwﬁ)) ifk<k (13)
0 if k> k.

Proof. In view of
I a+m9»)

(4,k)ENp XNy,

Sy Y 5 3

v=1 1o,y —1=0 1<51<G2 <. <Jitgq oot 44, ST 1Sk1<ka<...<Fiyp) 4hpt...4b, 157

MGk ppGaskiesy) oL Uit tiat bty 1Ko 4o b g, )

oo 1
=1+ > ) >
v=1 1 fe,fly1=0 1<51<Go<-o.<Jitgq 4.4, SM 1Sk <ka<..<Kiiby4byy  yb, <7
{ Oé‘j1><j1 5’j1><k‘1’ } { Of‘j1+n1><11+ﬁ1| ﬁ’j1+ﬁ1><k1+b1| }
7’k1><j1’ 6’k1><k1‘ 7’k1+b1><j1+ﬁ1’ 6’k1+b1><k1+b1|
[ ittt )1ttt | Bliens ot (R, | }
VN Er o1 4ton ) Gta ot | O R 1t tbn ) Kbyt |

= Z |: aul,.uyﬁufl(oﬁﬁv’y?5)Aﬁ17“"ﬁl/71 bﬁlwwﬁy71(04767'776)'8&1,“‘7%71 :|

B1yeesfiv—1 1,1
f1,f2 1 €{0,1} cﬁ1,m,ﬁy71(a7ﬁ”776)c dﬁl;-wﬁ,q(a?ﬁ"}/va)D ,

where Ay fo,fn_19 bﬂl,ﬁ2 ..... fo—1s Chiflo,.fu—1 and dﬁlvﬂ?v'”vﬂ’/—l are defined by @ and the
mxm, mxn, nxmand n X n matrices Aff2ofv—1 Blitaotuor - Oz feo1 gnd
Divfzofe—1 gre given by

Zj<j1<j2<~~<j1+ul+u2+...+ul,,1 <j’

biborte 1y o
(A b 1)]7]/ - ZlSlﬁ<k2<...<k1+b1+b2+...+b <n 1 lf] <J

v—1—

0 otherwise,

> 3 1,

J<g1<g2<c o <Jitty g+, g < 1Ski<ka<o..<kiypyqboy b, ;<K

v—1—

(Chrfzbomt)y ;= > > L

1<51 <2< <Jraty +ot.. 1 <J kSk1<ka<..<Fiyp,4b,, b, <0

(Bﬂlaﬁ?w"aﬁufl)j7k
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ZlSJ&<j2<~.~<j1+n1+n2+‘.‘+nu,1 <m

(Divdzmtomry ) = 1 ifk <k

Zk‘<k1<k‘2<...<k1+b1+|,2+___+bV_1 <k’

0 otherwise.

Carrying out the counting sums we obtain Aft-#2:fv—1 Bivfzeboo1 Cfnfz -1 and

5. Limit of a product of rotation matrices. Now let real numbers )\, a,b,s,t be
fixed with A 20,0 <a<band 0 < s <t. Form,n €N let

b—a)(t—
b, — [ E=DE=3)
mn
We are interested in the double product of (m + n) x (m + n) rotation matrices

(9) (m+k)
1 .- 0 e 0 o0
— G) 0 -+ co8Omy -+ —sinbp, -+ 0
Rm,n = H
(4,k) €Ny XNy,
(m+k) 0 -+ sinf,, -+ cosbyp, -+ O
L 0o --- 0 e 0 1]
which we can express as in the previous section as

Rm,n = H (I + M(J’k)) (14)

(4,k)ENm XN,

where the 2 x 2 matrix M is given by

M | cos Ompn—1 —sinby,, _ g $(Orn)? $(Om.n)c(Om.n)
- sin 6y, p o8O —1 | —5(0mn)c(Omn) $(0pn)?
and
s(ﬁm,n) = sin ?, C(Qm,n) = COS ? .

We use the matrix to construct an operator Wy, , on L?(R)® L?(R) by embedding
the standard orthonormal basis in C™*" as the orthonormal set ((Xj,O), 0,x%), J =

1,2,....m k=1,2,..., n) where x; and xj}, are the normalised indicator functions
b—a (G=1)(b—a) i(b—a)
=2 ifa+T——<z<a+"——
X;j(z) = " "o "
0 otherwise,
t— . (k—1)(t—s) k(t—s)
() = = s+ ———<r<s+ ——

0 otherwise,

and defining W, ,, to be the identity I on the orthogonal complement of the latter or-
thonormal set. Our objective in this section is to show informally that the limit
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W = limy, p—o00 Wim,n) exists as an operator on L?(R) & L*(R) of the form

_[I+A4 B
W‘{ C I—i—D}

where I is the identity operator on L?(R) and A, B, C and D are integral operators on
L?(R) whose kernels are to be determined from limiting forms of the m x m, m xn, n xm
and n x n matrices Ay, n, Bmn, Cmn and Dy, 5, defined by writing

Im + Am,n Bm,n
C’m,n In + Dm,n '

We use and Theorem 4.1 (in which the dependence on m,n is suppressed) to
write these matrices in the form

[fon 2e]-5

C
o e v=141,82,...#-1€{0,1}

l%,m b O ) AR B0 by (G Bl 5

Rm,n = |:

.....

Cor bt (O ) ORI 5 iy oy (B ) DEEE 5

where
R (em’n) = (_2)117—01111 (em,n)Tﬁhﬁz (em,n)ﬂiz,ﬁs (em,n) .. Tﬁuflo(em,n%
O (em’n) = (_2)117—01111 (em,n)Tﬁhﬁz (em,n)ﬂiz,ﬁs (em,n) Ty _11(0mn )
Ct1 tzretoor (Fmn) = (_2)”7'11:11 () T2 0 Omn) Teo s (Ormn) -+ 7o 10O ),
dﬁl’ﬁ2’m’ﬂ"71 (Oé, B, g 6) = (_2)117—11111 (9m,n)7ﬁ17ﬁ2 (em,n)ﬂiz’ﬁs (em,n) .. Tﬁu—ll(em,’ﬂ)7
Ty (Om.n) is defined by
5(Om.n)? ift=0,8'=0

$(Omn)C(Om.n) ifg=0,4 =1
—5Ommn)c(Omn) =114 =
S(Qm,n)2 if ﬁ =1, Ij/ =1

T4 (Om,n) =

and Agﬁjﬁf’m’ﬁyil, B%:ﬁzwwﬁu—17 C}ﬁ:gmm’ﬁufl and Dgéz"ﬁ’fw“vﬁufl are given by ’ ,

and .
Let us consider the limiting form of A, ,. By for j < j', (AE;;B;-”'“’”H)M, is
given by
((j’—j— D' —j—=2)--0'—j— +ﬁ2+---+ﬁu_1))>
(B1+f2+.. +h-)!
(n(n—l)-~-(n—(b1+b2—|—...+b,,_1))>
(b1+b2+...+by_1+1)! '

Thus for large m,n

g O Y S ST |
(Afdobir). o (j/ — j)ftiete b phubhate bt | (15)
mn P M4 o4 A )by +bo 4 A by + 1)

which is of order mfi T2t Hhv1pbi+bato4by 1+l for generic 5/ > j. On the other hand,
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denoting by
Pﬂvﬁ'(ﬂlvﬁ% .. 'aﬁv—l) = Ilal < l <v: ﬂl—l 7é ﬁl|

the number of changes in parity in the sequence t = o, fi1,2,. .., 01,0, = 1,
Aty 2oty -1 (Omon) = (=2)"Togy (0 ) e 2 (On ) oot (Omen) - Ty 10 (Omyn)

o :t(_2)lls(0m n)2(V—Po,o(ﬁ17ﬂ2a~-,ﬁu71)) (s(em’n)c(em’n)>Po,O(ﬁlvﬁ%-..yuu—l)

B

emm

=+(-2)" (sin Orm.n

2v—Pyo(t#1,42,--.v—1)
) (

Po,o(f1,82,-flv—1)
COS )

~ 1(72)1, <9m7n)QV—PO,O(ﬁl»?i%---,ﬁu—l)
2
MN2(b—a)(t — s)\ v~z Pootr 2, mtv—1)
- s (M0
(o (R (16)
which is of order (mn)~=2Fo.0(1.42..8v-1)) Thus, only when
1
— §P0,0(ﬁ17ﬁ2,---7ﬁu71) =t +fo+...+ho1=b1+bs+...+b1+1
1
= §(ﬁ1+ﬂ2+-'~+ﬁu—l+b1+b2+-~-+bu—1+1):ga

that is Povo(ﬁl’ﬂQ""’ﬁVfl) = v, can the product aﬂ17ﬂ27~..,ﬂu—1(9m,n) A%:%’m’ﬁyil ap-
proach a non-zero limiting form as m,n — oo. This happens only when v = 2N is even
and the sequence (0,1, f2,...,4,-1,0) = (0,1,0,1,...,0,1,0) with

fh=bo=f3=bs=...=bon_o =fon_1 =1,
and becomes
(Al,O,l,...,O,l)‘ o (j = HN N
mn 7 (N —1)!N!

Also
a101...01O0mn) = (=2)2N (70,1 (Oimn) T1,0(Om.n))

= (—1)N22N (sin Han cos 07;’”)2]\[ =~ (=) (O )N = (7/\2(b —a)lt = 5))N.

N

Thus for j < 5’

(N —a)t =) \N (G = )N
[Am.nljr =~ ( mn ) (N —1)IN!

_ (=)' =) \NH (A= 5)N (b—a)
( m ) (N-1INl' m

The corresponding operator >, ;i< [Am,nlsi7 [X5) (X5 acts on f € L?(R) by

(Tt bl f) (x)

1<j<j’<N

i’(b—a)
_ (b—a)(j" —J) AQ t—s)) \/ﬁ at
B Z ( m ) N — 1)INT /+<J,1)(b L FW)dyx;(z)
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(b= ) = \VLRE )Y R e
> ,<Z< ( m ) (N=DIN! J, @=ne=a) 1) YX gy im10-0) (2)
<i<i’<m m

— )V (A2t = )Y
N/<Z (xvy)(y(N_)1)| ( (N' ))

where the function <® is defined by

1 fa<z<y<d
<Z (x,y) = .
0 otherwise.

fy)dy

Summing over all such v we see from and that in the limit the operator
represented by the matrix A,,, approximates the integral operator ? AL with kernel

[eS) _ N(_\2 —s N+1
(ker{gAL}) (z,y) = <G (WNX_:O@ )N(!(Jé fl)! .

In the same way it can be shown that as m,n — oo the matrix D,, , approximates
the integral operator D% with kernel

(ker{5 D}) (w,y) = <L (z,9) > (y—a

N=0

PV (=20~ a)) N+
NI(N +1)!

Now consider the limiting form of

B = Z Z by to...., ﬂy—l(9m,n)B%:£ﬁ’m’ﬁufl,
v=1 f1,f2,....n—1€{0,1}
where, on the one hand
1
(fr+fo+ . )01 +b2+.. 4+ 1)
(m—j—1)(m—-j—=2)(m—j—-—1-(++.. +8-1))
k—1k=2)-(k=1—=(0b14+ba+...+by_1))
_ \fittet A He—1 b1 tbot. by 1
~_ (m—J) k an
(ﬁl + ﬁQ +.oot ﬁufl)!(bl + b2 +...+ byfl)!

which is of order mf T2t Hhv—1pbr1+bat+bu1 o1 generic 4, k, and on the other hand

bﬁhﬁzwwﬁu—l (em,n) = (_2)1/7—0111 <9m,n>7ﬁ17ﬁ2 <9m~,n>7ﬁ2,ﬁ3 (emm) o 7—ﬁN711(‘9m,n)
L(A2(b—a)(t —s)\¥—3Poaltrtz, 1)
> 4(—2) (M)

22mn
which is of order (mn)~(=2Fo1(t b2 8-1)) - Again for there to be a non-zero limiting
form we must have Py 1 (41,82, ..,8,—1) = v, which requires that v = 2N + 1 is odd and

(OvﬂlvﬁQa-“aﬁV—lvl) = (07170717-“7170’1)

(Bt )0 =

with
fi=bto=f3=bs=...=fon_1=boy =1
and becomes
(i ) I
; ; (N1)2
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Also
bl,O,...,l,O(em,n) = (_2)2N+1TO,1(em,n)(Tl,O(em,n)TO,l(Gm,n))N (18)
0 0 2N+1
_(_ No2N+1 . m,n m,n
=(-1)"2 (sm—cos 5 )
=X2(b—a)(t—s)\N [(b—a)(t—s)
~ (=1 N N 2N+1 — )
( ) (0 ’ ) A( mn ) mn

Thus

B ],k,NA<_A2(b—a)(m—j)(t—s)k>N 1 [(b—a)t—s)
m,nij, e (

m n N2 mn

and the operator represented by the matrix B,, ,, approximates the integral operator b Bt
with kernel

0 2 — —s N
(ker {5BL}) (z, ) = Mo (@)xb(v) Y X (N!))(zy )
N=0

where x% denotes the indicator function of the interval [a, b[. Similarly, as m,n — oo the
operator represented by C,, , approximates the integral operator b Ot with kernel

(=A%t —2)(y —a))™
(V1?2

(ker{3C1}) (2, y) = = MXE (WXL (@) Y

N=0

where the change of sign occurs because, instead of 7

0,1,..,01(0mn) = (—2)2N+1(71,0(9m,n)70,1(9m,n))Nﬁ,0(9m,n) = —bt1 0ty 1 (Om,n)-

We summarise the results of this section in:
THEOREM 5.1. As m,n — oo the operator W, ) approaches the matriz of operators
I+5AL 4B ]

bet I+tD!

on L?(R) ® L?(R) where the integral operators 8 AL, Y Bt *C* and b D! have kernels

s’ a s’ a

(ker (A () = <0 () 3 WD A=)

v = |

Feart NN +1)!
00 2 — — s N
(ker{bBt})(x y) = MG (@)x (y Z —A (N?)(Qy )

. (=Nt —=x —a))V
(ker{3C1}) (2,y) = =A% ()X (z ZO ( (N?)(zy )
00 —x 2 —a N+1
(ker (D)) () = < <x,y>NZ_0(y )N(!(]\)} ibn! ’

6. Unitarity. We introduce the integral operator A’ whose kernel is <%. Then

_ )N-1
ker{(A0"} = <t @) U (19)
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and so
T+02A  =exp {-N2(t —s)AL}, T+°D! =exp{-N2(b—a)Al}. (20)
Using the fact that
ker(SB) = (S ® I)ker(B), ker(BS) = (I® S*)ker(B), (21)

where S is a bounded operator on L?(R?) and the kernel of an integral operator is
regarded as an element of L?(R?) = L?(R?) ® L?(R?), and the relations

—z)N x—s)N
(A" = U, (a0 @ = T @)

the kernels of 8 AL, 2Bt C? and % D! can be expressed alternatively as

(ker{gAZ}) (z,y) = X* <g (z,y) (x& exp{=N*(y — 2)AT}xL) (23)
(ker {3 BL}) (2, 9) = Axa () (exp{=A2(y — $)Al}xq) ()
= e () (exp{=X*(b — ) (A1) " Ix) () (24)
(ker{5CL}) (2,y) = =Axa(¥) (exp{=A*(y — ) AL}XL) (2)
= — A, (@) (exp{=N*(t — 2)(A2) " }xa) (), (25)
(ker {5 DL}) (2, 9)N* = <L (z,9)(xb, exp{—=A*(y — 2)AL}X0), (26)
respectively.
Notice that
oDl =140 L0i= (B (27)
THEOREM 6.1. The operator YW is unitary.
. . - I+ A B
b t __ _ *
Proof. We lighten notation by writing ;W! = W = [ c I+D } Then W* =
g ;:4 7 fD* and we have to show that
(I+A)I+ A+ BB " =(I+A"I+A)+C*C=1, (28)
(I+AC*+BI+D")=(I+A")B+C*(I+D)=0, (29)
C(I+A*)+(I+D)B*=B*(I+ A)+ (I +D*)C =0, (30)
CC*+(I+D)YI+D*)=B*B+({I+D*I+D)=1. (31)

To prove we observe that, from
(I+A)(I+ A*) =exp{-N*(t — s)A"} exp{—\(t — s) (AZ)*}. (32)
Regarding A = % Al as a function of ¢ > s for fixed s, a and b we deduce from that
%{(I + A)(I+ A"} = —Nexp{—N(t — s)AL} (AL + (AZ)*) exp{—A?(t — s)(A2)*}.
Now (AL + (AL)*) is the integral operator with kernel
(@,y) = <o (2,9)+ <q (1,7) = Xa(@)xa(y)-
Hence by (1)), £{(I 4+ A)(I + A*)} is the integral operator with kernel
(z,y) = =2 (exp{(t — 5)Ag}xa) (z) (exp{(t — 5)A7}xG) (v)- (33)
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Also, from
ker B(z,y) = A4 (y) (exp{—\*(y — s)Ap}xE) (2)

and so using
(ker BB™)(z,y) :/kerB(x,z) ker B(y, z) dz
R

=2 [ (exp-X( — IATIG) (@) fexpl N (2 — )AL () s

:/\2(/ exp{—A*(z — ) Ag}(|x0) (xo]) exp{—A*(z — s) g}dz)(%y).

Thus 4 (BB*) is the integral operator with kernel

(,y) = N (exp{=A*(t — $)Af}xq) () (exp{=A(t — $)Af }xq) (v)- (34)
Combining and we see that
d

o (I+A)(I+A")+BB*} =0

for all ¢ > s. Since (I + A)(I + A*) + BB* = I when ¢ = s, it follows that (I + A)(I +
A*)+ BB* =T for all values of t > s. Hence the first part of is proved. The second
part is proved similarly using . follows from by exchanging the roles of the
intervals [a, b[ and [s, ¢[.

We prove the first equation of (29), that is (I + A)C* + B(I + D*) = 0. Since

(ker C*)(z,y) = —Ax%(y) (exp{=A?(t — »)(AL)* }x%) (),
we have
(ker(I + A)C*)(z,y) = AxL(y) (exp{=N*(t — s)AL } exp{ — N*(t — y)(AL)* }x4) (x)
and since

(ker B)(z,y) = A5 (x) (exp{ =N*(b — 2)(AL)* }x%) (1),
(ker B(I + D*))(x,y) = Axs(x) (exp{—=A*(b — a) AL} exp{=A?(b — 2)(AL)* }x) ().

Hence we need to show that
Xa() (exp{ =A%t — s) A%} exp{—A*(t — y)(A})" }x0) (2)
= x5 (@) (exp{=A*(b— a) AL} exp{—=A*(b — 2)(AL)" }xL) (v)-  (35)
From (19),
(AD™{(AL)*} X0 ()
- / <aym) <o) < g<zm_1,zm>%%‘)” (o) dm 1 - 21

Zm — )"
= Xg(if)/ Mdzm dZm,1 le
2<21 <20 < . <2 <b n:
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b - r(b—2pn)" (b—a)"™"
= Xa(z / (=1) dzm dzm—1 . .. dz
) <21<22< .. <Zm <b ;0 rl (n—r)! ' '

Sy b o

s (m+r)!  (n—r)!

and so the left hand side of is

& (—/\2(t _ 8))m ( )\2 t _ )7n+r (b— a)n—r
a(@)x4( :
Xa@)xi) z(:)

| —r)!
oo m! (m+r)!  (n—r)

Similarly the right hand side becomes
> _)\2 b—a))™ )\2 _ J} m4r t— g)nr
enty) 3 EXC-a)" Z e

m! (m+r
m,n=0 =0 + )

Writing the first triple sum as

oumin E—8)™ (b—z)™t" (t—y)" (b—a)" "
S ey | ) ((mf@! ) ((n>r)!

n=0r=0m=0

and the second as

m+n (b _ a)m (t - y)m+r (b — x)n (t — S)nfr
ZZ Z (=X\2)m+ m! (m+7)! n! (n— )

n=0r=0 m=0

establishes the equality by the substitutions m’ =n —r, n’ = m +r and v’ = r in the
former.

The second equation of is established similarly. is deduced from by
exchanging [a,b[ and [s,t]. m

The proof of the next theorem is closely analogous to that of the corresponding result
for the forward-backward case, Theorem 6.1 of [2], and will not be given here.

THEOREM 6.2. The family of unitary operators (SW3)a<b.s<t is a forward evolution in
a and b for fired s and t, and also in s and t for fivred a and b, that is for a < b < c and
s<t<u

ZWtS yW? =Wy, ZW: ZWtu = ZW:
7. Construction of the double product integral. When dr = \(dAT®@dA—dA®dAT)
becomes

—
—

[[E(+dr) = MdAT @ a(x}) — dA @ a'(x ))—)\QdT®/ dAT(z) dA(y)

=A(dAT ®a(xt) —dA®al(x ))—AQdTe@/taT(Xg)dA(y)

where we denote by a'(u) and a(u) the creation and annihilation operators of strength

—

u € L*(R). Combining this with the analogous expression for Zﬁ(l + dr) the two alter-
native definitions of the double product ® [T4(1 + dr) are
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(i) The solution at b of the quantum stochastic differential equation
t
dy = Y{/\(dAT ®a(xt) —dA®a'(xt)) -\ dT ® / a’(x¥) dA(y)}, (36)

with initial condition Y (a) = I.
(ii) The solution at ¢ of the quantum stochastic differential equation

b
av = V{Ma' () @ dA — a(x}) © daT) - )\2/ o () dA) ©dT )}, (37)
with initial condition V'(s) = I.

THEOREM 7.1. The second quantisation T(CW1)of SW! solves for fixed a, s and t

S

and b > a, and solves for fired a, b and t and s >t

Proof. Let us establish that I'(3 W) solves (36). We have to show that, for fixed a, s and
tand b>a

b
rw) =1+ [ TEWH{AEA! @) @ ald) - dA) 9 al (1))

@ e [}

or, equivalently, by the first fundamental formula of quantum stochastic calculus [12],
that for arbitrary f1, g1, fo and go € L*(R),

(n)remae(e)) - {(5)- ()
-/ M) (e(I)rema o atie( ) ) i
-/ " Mala) (e(I1)rewnueaoene() o
_ /ab A2 <e(£) rewh(re [ at () dA(y))e(§§> > dx.
Since this holds when b = a, using the fundamental theorem of calculus it is sufficient to
show that
(o) reme ()
i) (e 1)remdir e e ()
a0y (e 1) rema o atene(2) )

92

(oMY rewnes [ aton aawe(2)). (38)

g2
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The left hand side of is
i < fl b t (f2> >
s ((5) o
{E G ) e () am ()
db g2 g1 g2

= {55 (ALt + (hkBim) + (it + (nbDim) fo (9

o= () reme(r))

We express the three terms on the right hand side of similarly as multiples of © as
follows. The first term is

s (e(M)rewia e anine(2)) < rno [ wwae. o

For the second we use the commutation relation

rewpat () =at (ow () rewey =t ( #BX Yrews
SR PG ) (I+eDp)xs ) "

to express it as
()
92
f
g2

where

b Bt
00 (< (5) (0 s T

e 5 (e ()
= = Af2(b) ((fr,0BIXE) + (91, (T + 5 D7)XL)) ©. (42)

To deal with the third term we use the evolution property, Theorem 6.2, together with
to write it as

< (i) (QWJ)(I®/:ai(xg))e(£)>92(y)dy

fl) TEWHTEWH (T @ a*(x?))e(§z> > 92(y) dy

I
(
(f1>,r<zwz>u® a*(xz>>r<2W;>e(§j>>92<y> dy
(
(

(
r

fi ZBé/X‘qs/ oy 2
MYt (e rewnrewe(2) ) m

fi bBYXY fa
91>’aT < (I+5D})x¥ )P(gwj)e<92>>gz(y) dy

. / (B + (g1, (T + DY) ga(y) dy ©. (43)
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Thus we have to prove that

d
%(<flaZA§f2> + <f17ZBtng> + <917chf2> + <917ZD§.92>)

— \(D) / 0a(x) dz — Mfa(b) ((F1, S BxE) + (g1, (T + DX

e / ((F1, 8 BUXY) + (g0, (I + 5 D)X ) ga(y) dy. (44)

To do this we use the kernels of the operators bAf, ZBtS, bOs and % Df given by Theo-
rem 4.1 to compare the terms on the two sides of (44]) which are sesquilinear in (f1, f2),
(f1,92), (g1, f2) and (g1, g2), respectively. For (f1, fz) we have, on the left,

d oo )N (=A2(t — 5))NH1
%<f17a tf2) = db//fl Nz_:o(y N(!(N+1)! f2(y) dy du
A R U b o Uit
o[ ﬁ(m)é} R T fa(w) dedy
I A e ) s
b)/ fi) 2 NI(N + 1)1 de
using the fundamental theorem of calculus, and on the right
2(b — 2\ v — sV
AROLBN =20 [ [ G > O I gy
F bf:c)N(f)\z(tfs))N+1
b)/a fl(l’)NZ_O NI(N +1)! de

as required. For (f1,g2), on the left we have, differentiating under the integral and again
using the fundamental theorem of calculus,

(2200 =2 (y = 5)"
db<f17a £ 92) //fl P (V)2 92(y) dy da
t N2y — )Y
= (0 / nae [ [ fe )(NESU(V@’! D2 (o) dy

1

i [ (b — 2)N (—A2(y — 5)) N
7/\f1(b)/s z)dr — A //f1 Z N'N+1). g2(y) dy dz,

=1
and on the right,

M0 [ aatade =3 [ (LB 2t0)
:)\fl(b)/gg dx+/\3///f1 i A Z_S))Ngg(y)dzdydx

=0

o F (b /\2( s)M
_Afl(b)/s z)dx — A //f1 Z N,N+1) 92(y) dy d.

=0
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For (g1, f2), on the left we have

204 N
51791 PO fa) = A*/ /91 =l ]\3;3)(11 «) f2(y) dx dy

oo

ARG /t Z )\Qt—x b—a))Nd%

=0

and, on the right,
—Af2(0){g1, (I + 5D7)x%)

t e y— 1) 2 N+1
:*Af2(b)/s 1(z) dr — Afa(b // Gi(z Z N ]\?—f—bl). 2)) dy dx

=0

))N+1

B t_ t_ et (t )N+1( )\Q(bfa

A0 [ ante)de = 250) [ 9x) S Ry
¢ % (CA2( — V(b — a Y

= *Afz(b)/ gi(z) Z S (Ny))(zb : dz.

N=0
Finally for (g1,¢2), on the left we have

d ) d [t Y — (y — )N (=X*(b—a) N
%<91,2Dt92>=%/ / gi(x Z N,NJ(rl) 2) 92(y) dx dy
N=0

2 - V(A2 (b —a)V
——/\//91 NXZ:O (V1)2 92(y) dr dy

while on the right we have
t
2 [ g1, (4 + 2Dl d

= [ @l d:

_)\2/5 //gl(x) < (z ]\,i:o y- N' )\2(531?))']“1 da dy go(2) dz
= [ () d:

N / /91 ), (2 io/ A2§31?)?NH dy dz g () dz
= [ gl d:

7A2/ / e NZO Z]\—[ijlv)“( (§v+1)))'NH g2(2) da dz
:—,\2/5 /gﬁ gi(x EN?;(Z) ) 92(y) dx dy.

The proof that (W) solvcs is similar. m
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