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Abstract. A positive semi-definite block matrix (a state if it is normalized) is said to be

separable if it is the sum of simple tensors of positive semi-definite matrices. A state is said to

be entangled if it is not separable.

It is very difficult to detect the border between separable and entangled states. The PPT

(positive partial transpose) criterion tells us that the partial transpose of a separable state is

again positive semi-definite, as was observed by M. D. Choi in 1982 from the mathematics side.

In this expository note, we explain the facial structures of the cone of all PPT block matrices,

which are naturally characterized by pairs of subspaces of (small) matrices. We also discuss which

faces of PPT’s induce faces of separables, and which faces of separables are induced by PPT’s.

1. Introduction. The notion of entanglement originated from quantum mechanics, and
has no counterpart in classical mechanics. On the mathematics side, this may be explained
by the distinction between commutative order structures and non-commutative order
structures: it is well-known that a nonnegative continuous function of two variables is
the limit of the sums of nonnegative continuous functions of separable variables. In the
language of the tensor products of C∗-algebras, the positive cone (C(X)⊗C(Y ))+ of the
tensor product of commutative C∗-algebras C(X) and C(Y ) of all continuous functions
on compact Hausdorff spaces X and Y coincides with the tensor product C(X)+⊗C(Y )+

of the positive cones.
This is not the case for matrix algebras, the simplest non-commutative case, because

the positive cone (Mn ⊗Mm)+ of the tensor product of matrix algebras Mn and Mm

is strictly larger than the tensor product M+
n ⊗ M+

m of positive cones M+
n and M+

m.
Throughout this note, Mn denotes the C∗-algebra of all n × n matrices with complex
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entries, and Mm×n denotes the inner product space of all m× n matrices with complex
entries.

The notion of entanglement has been studied extensively by quantum physicists since
nineties in the relations with possible applications to quantum information theory and
quantum computing theory. We refer to the book [3] for related material. Entanglement
is a block matrix in (Mn ⊗Mm)+ which does not belong to M+

n ⊗M+
m. One of the main

research topics in entanglement theory is to distinguish entanglement from block matrices
in M+

n ⊗M+
m, whose elements give rise to separable states.

It is easy to see that if a block matrix gives rise to a separable state then its block
transpose is still positive semi-definite. This gives us a necessary condition for separability.
The positive semi-definite block matrix with positive semi-definite block transpose is said
to be of positive partial transpose (PPT). In this expository note, we explore the boundary
structures, or equivalently facial structures of the two cones; the cone consisting of PPT’s
and the cone consisting of separable states (up to scalar multiple).

Recall that a matrix itself represents a linear functional on the matrix algebra with
respect to the Hadamard product. In this correspondence, a positive semi-definite matrix
represents a positive linear functional on the matrix algebra, and a density matrix repre-
sents a state, a unital positive linear functional on the matrix algebra. Throughout this
note, we do not distinguish matrices themselves from linear functionals. In this sense, ev-
ery element in M+

n ⊗M+
m is a positive linear functional on Mn⊗Mm, which is separable.

We call that just a separable state by abuse of terminology.
The whole structures of operator algebras heavily depend on the order structures,

as is seen in the Gelfand–Naimark–Segal representation theorem. In this vein, operator
algebraists have studied various types of positive linear maps between operator algebras,
and how to distinguish them, since fifties [41], [42]. For example, Choi [11] showed that
there is a non-decomposable positive linear map between M3 by exhibiting an example
of a positive semi-definite biquadratic form which is not the sum of squares of bilinear
forms. Woronowicz [48] also showed that there exists a non-decomposable positive linear
map from M2 into M4 by exhibiting a special block matrix in M4⊗M2, which is nothing
but an example of an entangled state with positive partial transpose. The same thing has
been done in M3⊗M3 by Størmer [43]. Recently, many mathematicians are interested in
entanglement theory itself. See [1], [2], [28] and [44], for example.

In the second section of this note, we introduce various kinds of entanglement and
positive linear maps, and explain dualities between them. In the third section, we charac-
terize faces of various cones introduced in the second section, and explain how to describe
faces using the duality. In the last section, we exhibit some examples in the 3⊗ 3 case.

Throughout this note, we are concerned with subspaces of the inner product space
Mm×n which is inner product space isomorphic to Cn ⊗ Cm. This is why we do not use
the convenient bra–ket notations of physicists, which is natural to describe elements of
Cn⊗Cm. Every vector will be considered as a column vector. If x ∈ Cm and y ∈ Cn then
x will be considered as an m× 1 matrix, and y∗ will be considered as a 1×n matrix, and
so xy∗ is an m × n rank one matrix whose range is generated by x and whose kernel is
orthogonal to y. For a vector x, the notation x will be used for the vector whose entries
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are conjugates of the corresponding entries. The notation 〈·, ·〉 will be used for bilinear
pairing. For natural numbers m and n, we denote by m ∧ n the minimum of m and n.
Finally, {eij : i = 1, . . . ,m, j = 1, . . . , n} denotes the usual matrix units in Mm×n.

2. Entanglement and positive maps. In this section, we will explain what is entan-
glement and investigate dualities between entanglement and positive linear maps in ma-
trix algebras. Basically, entanglement is a positive semi-definite block matrix in Mn⊗Mm

which cannot be expressed as the sum of simple tensors of positive semi-positive matrices
in Mm and Mn. We also introduce a bilinear pairing between Mn ⊗Mm and the space
L(Mm,Mn) of all linear maps from Mm to Mn. This pairing allows us to understand
various cones of block matrices or positive linear maps as dual cones with respect to this
pairing.

2.1. Entanglement. For an m× n matrix z ∈Mm×n with the i-th row zi, we write

z̃ =
m∑
i=1

zi ⊗ ei ∈ Cn ⊗ Cm

and define the convex cones Vs and Vs in Mn ⊗Mm by

Vs = conv {z̃z̃∗ ∈Mn ⊗Mm : rank z ≤ s},
Vs = conv {(z̃z̃∗)τ ∈Mn ⊗Mm : rank z ≤ s},

for s = 1, 2, . . . ,m ∧ n, where∑
(aij ⊗ eij)τ =

∑
aji ⊗ eij

denotes the block transpose, or partial transpose by the language of quantum physics, and
convX denotes the convex hull generated by X.

By a simple calculation, we have

x̃y∗x̃y∗
∗

= yy∗ ⊗ xx∗

for x ∈ Cm and y ∈ Cn, and so it follows that

V1 = M+
n ⊗M+

m = V1.

We also have the following chain of inclusions;

V1 ⊂ V2 ⊂ . . . ⊂ Vm∧n = (Mn ⊗Mm)+,

V1 ⊂ V2 ⊂ . . . ⊂ Vm∧n.

We say that a positive semi-definite block matrix A ∈ (Mn⊗Mm)+ is separable if A ∈ V1,
and entangled if it is not separable. A block matrix in Vs \Vs−1 is said to be of Schmidt
number s. See [40].

For example, the matrix 
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


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is separable in M2 ⊗M2 since it is z̃z̃∗ with the rank one matrix z =
(

1 0
1 0

)
. On the

other hand, the rank one matrix

A =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


is entangled, since it is z̃z̃∗ with the rank two matrix z =

(
1 0
0 1

)
. If a positive semi-

definite matrix A is not of rank one, then it is extremely difficult to determine whether
it is separable or entangled. Note that the block transpose

Aτ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


of A in M2 ⊗M2 is not positive semi-definite.

2.2. Positive partial transpose. If z = xy∗ is a rank one matrix with column vectors
x and y, then

(z̃z̃∗)τ = w̃w̃∗, with w = xy∗,

is positive semi-definite by a direct simple calculation. So, we have

V1 ⊆ Vm∧n ∩ Vm∧n,

to get a necessary condition for separability, which is called the PPT (positive partial
transpose) criterion by quantum physicists. See [12] and [38].

We define
T = Vm∧n ∩ Vm∧n.

A positive semi-definite block matrix is said to be of positive partial transpose (PPT) if
it belongs to T. The PPT criterion says that if a positive semi-definite block matrix is
separable then it is of PPT. In the case of M2⊗Mn, it was shown by Woronowicz [48] that
the converse holds if and only if n = 2 or 3. In other words, T = V1 in M2 ⊗Mn if and
only if n ≤ 3. Choi [12] also gave an example of a non-separable PPT matrix in M3⊗M3.
Many examples of PPT entangled states have been found by quantum physicists. See [4],
[5], [14], [15], [25], [26] and [40], for examples.

2.3. Positive linear maps. A linear map φ : Mm → Mn is said to be positive if
φ(M+

m) ⊂M+
n . It is said to be s-positive if φs : Ms(Mm)→Ms(Mn) is positive, where

φs : [xij ] 7→ [φ(xij)],

and s-copositive if φs : Ms(Mm)→Ms(Mn) is positive, where

φs : [xij ] 7→ [φ(xji)].

We denote by Ps (respectively Ps) the convex cone of all s-positive linear maps (respec-
tively s-copositive linear maps). The transpose map t : Mn →Mn is a typical example of
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positive linear map which is not 2-positive. A linear map is said to be completely positive
(respectively completely copositive) if it is s-positive (respectively s-copositive) for every
s = 1, 2, . . . . The following is very useful to deal with completely positive linear maps
between matrix algebras. See [10] and [31].

Theorem 2.1. For a linear map φ : Mm →Mn, the following are equivalent :

(i) φ is completely positive,
(ii) the matrix

[φ(eij)] =

φ(e11) · · · φ(e1n)
...

. . .
...

φ(em1) · · · φ(emm)


in Mm(Mn) = Mn ⊗Mm is positive semi-definite,

(iii) φ is (m ∧ n)-positive,
(iv) φ is of the form

φV =
∑
V ∈V

φV ,

where φV : X 7→ V ∗XV for V ∈Mm×n and V is a subset of Mm×n.

A similar characterization for completely copositive linear maps also holds with the
maps

φV =
∑
V ∈V

φV ,

where φV : X 7→ V ∗XtV for V ∈Mm×n.
A positive linear map φ : Mm → Mn is said to be decomposable if it is the sum of a

completely positive linear map and a completely copositive linear map. We denote by D
the convex cone of all decomposable positive linear maps, that is,

D = Pm∧n + Pm∧n.

There are many examples of indecomposable positive linear maps in the literature. See
[7], [11], [17], [18], [19], [29], [32], [37], [39], [43], [45] and [46], for examples. Especially,
examples of indecomposable positive linear maps were constructed in [47] using PPT
entangled states.

2.4. Dualities. For a block matrix A =
∑m
i,j=1 aij ⊗ eij ∈Mn ⊗Mm and a linear map

φ ∈ L(Mm,Mn), we define the bilinear pairing by

〈A, φ〉 = Tr
[( m∑

i,j=1

φ(eij)⊗ eij
)
At

]
=

m∑
i,j=1

〈φ(eij), aij〉.

Then the pair (T,D) is dual in the sense

φ ∈ D ⇐⇒ 〈A, φ〉 ≥ 0 for every A ∈ T,
A ∈ T ⇐⇒ 〈A, φ〉 ≥ 0 for every φ ∈ D,

and similarly for the pairs
(Vs,Ps), (Vs,Ps).
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See [16]. We may summarize these dualities as follows:

Pm∧n ⊂ D ⊂ P1 ⊂ L(Mm,Mn)
l l l

Mn ⊗Mm ⊃ Vm∧n ⊃ T ⊃ V1

These dualities are very useful to detect exposed faces in various situations, and used
to describe maximal faces of P1 [33]. By the duality of the pair (V1,P1), it is also possible
to detect entanglement using a positive linear map. More precisely, a positive semi-definite
block matrix A in Mn⊗Mm is entangled if and only if there exists a positive linear map
φ such that 〈A, φ〉 < 0. This linear map φ is called an entanglement witness by quantum
physicists. See [24].

3. Faces. In this section, we describe facial structures of the various cones introduced
in the previous section, and how they are related with respect to the dualities. In the
case of the cone D of all decomposable maps and T of all PPT’s, it turns out that every
face is determined by a pair of subspaces of m× n matrices. For the case of the cone V1

of separable states, we characterize which faces are induced by the larger cone T.

3.1. Faces for completely positive maps. Recall that every element of Pm∧n (re-
spectively Pm∧n) is of the form

φV : X 7→
ν∑
i=1

V ∗i XVi (respectively φV : X 7→
ν∑
i=1

V ∗i X
tVi ),

where V = {V1, . . . , Vν} ⊂Mm×n. For a given subspace E of Mm×n, we define

ΦE ={φV ∈ Pm∧n : spanV ⊂ E},
ΦE ={φV ∈ Pm∧n : spanV ⊂ E}.

Then the correspondence E 7→ ΦE (respectively E 7→ ΦE) is a lattice isomorphism from
the lattice of all subspaces of Mm×n onto the lattice of all faces of Pm∧n (respectively
Pm∧n) [34].

3.2. Faces for decomposable maps. Therefore, it is easy to see that every face of the
cone

D = conv (Pm∧n,Pm∧n)

is of the form
σ(D,E) := conv (ΦD,ΦE)

for a pair (D,E) of subspaces of Mm×n. This pair is uniquely determined under the
assumption

σ(D,E) ∩ Pm∧n = ΦD, σ(D,E) ∩ Pm∧n = ΦE .

See [36]. It is very difficult in general to determine what kinds of pairs (D,E) give rise to
faces of D. In the case of m = n = 2, we found all faces in terms of pairs of subspaces [6].
See also [35].
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3.3. Faces for positive partial transpose. It is well-known that every face of Vm∧n =
(Mn ⊗Mm)+ is of the form

ΨD = {A ∈ (Mn ⊗Mm)+ : RA ⊂ D̃}

for a subspace D of Mm×n, where RA is the range space of A and D̃ = {z̃ : Cn ⊗ Cm :
z ∈ D}. On the other hand, every face of Vm∧n is of the form

ΨE = {A ∈Mn ⊗Mm : Aτ ∈ ΨE}

for a subspace E of Mm×n. Therefore, every face of T = Vm∧n ∩ Vm∧n is of the form

τ(D,E) := ΨD ∩ΨE

for a pair (D,E) of subspaces of Mm×n. This pair is determined uniquely under the
assumption

int τ(D,E) ⊂ int ΨD, int τ(D,E) ⊂ int ΨE .

3.4. Duality of faces. Let C1 and C2 be convex cones which are dual with respect to
the bilinear pairing 〈·, ·〉 as in the case of D and T. For a subset S of C1, the set

S′ = {y ∈ C2 : 〈x, y〉 = 0 for each x ∈ S}

is an exposed face of C2. In the dual convex cones D and T, it is easy to see that

τ(D,E)′ = σ(D⊥, E⊥)

gives rise to an exposed face of D. It should be noted that not every face of D arises in
this way even in the simplest case of m = n = 2. See [6]. Nevertheless, every face of the
cone T arises from this duality. More precisely, it was shown in [21] that every face of the
cone T is of the form

σ(D,E)′ := {A ∈ T : 〈A, φ〉 = 0 for every φ ∈ σ(D,E)} = τ(D⊥, E⊥) (1)

for a face σ(D,E) of the cone D.
With the information in [6], we can list up all pairs (D,E) of subspaces which give

rise to faces of T in the case of M2 ⊗M2 as follows:

(1, 1) : D = Cxy∗, E = Cx̄y∗

(2, 2) : D = span {xy∗, zw∗}, E = span {xy∗, zw∗} (where x ∦ z or y ∦ w)

(3, 3) : D = {xy∗}⊥, E = {x̄y∗}⊥

(3, 3) : D = V ⊥, E = W⊥

(3, 4) : D = V ⊥, E = M2×2

(4, 3) : D = M2×2, E = W⊥

(4, 4) : D = M2×2, E = M2×2,

where (s, t) in the first column denotes the dimensions of D and E respectively, and x ‖ y
means that x is parallel to y. In the case of (3, 3), V and W are rank two matrices with
nonzero y0, y1, y2 ∈ C2 such that V yi ‖ Wyi for each i = 0, 1, 2 and yi ∦ yj for i 6= j. In
the cases of (3, 4) and (4, 3), V and W are arbitrary rank two matrices.
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Since T = V1 in the case of M2 ⊗M2, this gives us the complete list of faces of the
cone V1 of all separable positive semi-definite block matrices in M2 ⊗M2 in terms of
pairs of subspaces of M2×2.

3.5. Faces for separable states. Let C1 ⊂ C2 be convex sets. A face F1 of C1 is
induced by a face of C2 if it is of the form F1 = C1 ∩ F2 for a face F2 of C2. In this
case, F2 is uniquely determined under the assumption intF1 ⊂ intF2. We says that F1

is induced by F2, or F2 induces F1 if

F1 = C1 ∩ F2, intF1 ⊂ intF2.

The next theorem [8] characterizes faces of T which induce faces of V1. This also implies
the range criterion for separability [26].

Theorem 3.1. Let (D,E) be a pair of subspaces of Mm×n. Then the following are equiv-
alent :

(i) The pair (D,E) gives rise to a nontrivial face τ(D,E) of T which induces a face
of V1.

(ii) There exist x1, . . . , xα ∈ Cm and y1, . . . , yα ∈ Cn such that

D = span {x1y
∗
1 , . . . , xαy

∗
α}, E = span {x1y

∗
1 , . . . , xαy

∗
α}.

In the case of M2 ⊗M2, we note that possible pairs of dimensions of subspaces satis-
fying the conditions in the Theorem 3.1 are

(1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4),

as we have already seen in the previous subsection. In the case of M2⊗Mn, possible pairs
of dimensions of subspaces satisfying the conditions are as follows:

u u uu uu
uu uu

uu
u

uuu
uu
uu
u

uu
uu
uu
uu

uu
uu
uu
uu

uu
uu
uu
u

uu
uu
uu
u

uu
uu
uu

uu
uu
uu

2

4

6

8

10

12

2 4 6 8 10 12
Next, we characterize faces of V1 which are induced by faces of T. For a face F of V1,

we denote by RF the set of all m × n rank one matrices z such that z̃z̃∗ ∈ F , which
generate extremal rays of the cone F . If F is induced by τ(D,E) then we have

D = spanRF , E = spanRF τ ,
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where F τ = {Aτ : A ∈ F}.

Theorem 3.2. For a face F of V1, the following are equivalent :

(i) The face F of V1 is induced by a face of T.
(ii) If xy∗ is a rank one matrix in (spanRF ) \RF then xy∗ /∈ spanRF τ .

4. Examples. Two convex cones V1 ⊂ T in Mn ⊗Mm share faces with each other in
various sense. Some convex cones are themselves faces of both cones. For example, the
face τ(D,E) of T is also a face of V1 in itself whenever dimD or dimE is less than or
equal to m ∧ n by [27].

Some faces of a cone induce faces of the other cone, or are induced by faces of the
other cone. Some faces of the cones are independent of the other cones. In this section,
we give examples of that last kind of faces of T and V1. Faces of T which are independent
of V1 give rise to the notion of ‘edge states’. A PPT entangled state A in T \V1 is called
a PPT entangled edge state if the proper face of T containing A as an interior point does
not contain a separable state. We call that just an entangled edge state in this note.

Let σ(D,E) be a proper face of the cone D. Then we have the following two cases:

intσ(D,E) ⊂ int P1 or σ(D,E) ⊂ ∂P1,

since σ(D,E) is a convex subset of the cone P1, where ∂C = C \ intC denotes the
boundary of the convex set C. We have shown in [21], [23] that

intσ(D,E) ⊂ int P1 ⇐⇒ σ(D,E)′ ∩ V1 = {0}. (2)

Therefore, we see that if σ(D,E) is a face of D with intσ(D,E) ⊂ int P1 then every
nonzero element in the dual face σ(D,E)′ gives rise to an entangled edge state up to
constant multiplications. Furthermore, every entangled edge state arises in this way, since
every face of the cone T arises from the duality, by the relation (1).

4.1. Generalized Choi maps. We begin with the map Φ[a, b, c] : M3 → M3 defined
by

Φ[a, b, c] : x 7→

ax11 + bx22 + cx33 0 0
0 ax22 + bx33 + cx11 0
0 0 ax33 + bx11 + cx22

− x
for x = (xij) ∈ M3, as was studied in [7]. Recall that Φ[2, 2, 2] is the first example [9]
of a 2-positive linear map which is not 3-positive, and Φ[2, 0, 1] is an example [13] of an
extremal positive linear map which is not decomposable. It was shown that Φ[a, b, c] is
positive if and only if

a ≥ 1, a+ b+ c ≥ 3, 1 ≤ a ≤ 2 =⇒ bc ≥ (2− a)2,

and decomposable if and only if

a ≥ 1, 1 ≤ a ≤ 3 =⇒ bc ≥
(3− a

2

)2

.

Therefore, every Φ[a, b, c] with the condition

1 < a < 3, 4bc = (3− a)2
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gives rise to an element of ∂D ∩ int P1, whenever b 6= c. Furthermore, we have a decom-
position

Φ[a, b, c] =
a− 1

2
Φ[3, 0, 0] +

3− a
2

Φ
[
1,

√
b

c
,

√
c

b

]
(3)

into the sum of a completely positive map and a completely copositive map. If we fix b

and c, then we see that the family {Φ[a, b, c] : 1 ≤ a ≤ 3} is a line segment, and so it
suffices to consider the map Φ[2, b, c]. We also see that

Φ[3, 0, 0] = φe11−e22 + φe22−e33 + φe33−e11 ,

Φ
[
1,

√
b

c
,

√
c

b

]
= φµe12−λe21 + φµe23−λe32 + φµe31−λe13 ,

where λ = ( bc )
1/4 and µ = ( cb )

1/4, and so λµ = 1 and λ 6= 1.

4.2. Construction of PPTES with dualities. We denote by τ(D,E) the dual face
of T determined by Φ[a, b, c] in (3) by the relation (1). Then we see that

D = {e11 − e22, e22 − e33, e33 − e11}⊥

= span {e12, e21, e23, e32, e31, e13, e11 + e22 + e33},
E = {µe12 − λe21, µe23 − λe32, µe31 − λe13}⊥

= span {λe12 + µe21, λe23 + µe32, λe31 + µe13, e11, e22, e33},
where λµ = 1 and λ 6= ±1, as before. We see that every nonzero block matrix in τ(D,E)
gives rise to an entangled edge state by (2). Note that

dimD = 7, dimE = 6.

Entangled edge states may be classified by their range dimensions as was studied
in [40]. An entangled edge state A is said to be of type (s, t), or an (s, t)-edge state if the
range dimension of A is s and the range dimension of Aτ is t. By careful choices of block
matrices in τ(D,E), it is possible [22], [23] to find following types

(4, 4), (6, 5), (7, 5), (7, 6)

of entangled edge states in M3 ⊗M3. It is also possible [22] to modify the above con-
struction to find (8, 5)-entangled edge states.

Another method to construct (4, 4)-entangled edge states is to use the notion of unex-
tendable product bases [4], [15]. These examples arise from 4-dimensional subspaces of M3

which have no rank one matrices and whose orthogonal complements have orthonormal
bases consisting of rank one matrices. On the other hand, the construction explained
above arises from 4-dimensional subspaces of M3 which have no rank one matrices and
whose orthogonal complements have six rank one matrices up to constant multiples.
Professor Young-Hoon Kiem informed the author that the latter is the generic case for
4-dimensional subspaces of M3. In other words, every generic 4-dimensional subspace of
M3, in algebraic geometric sense, has no rank one matrices and its orthogonal complement
has six rank one matrices up to constant multiples.

Entangled edge states of types (5, 5) and (6, 6) were also found by Clarisse [14] and Ha
[20], which turned out [30] to be extremal in the cone T, as in the cases of (4, 4)-entangled
edge states.
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4.3. A face of separable states which is not induced by PPT. Consider the Choi
map Φ[2, 0, 1] which is an indecomposable positive linear map in M3 and generates an
extremal ray of the cone P1:

φ : [aij ] 7→

 a11 + a33 −a12 −a13

−a21 a22 + a11 −a23

−a31 −a32 a33 + a22

 .
Let F be the dual face of V1 given by this map, that is,

F = {A ∈ V1 : 〈A, φ〉 = 0}.

Then the set RF of all 3 × 3 rank one matrices z such that z̃z̃∗ ∈ F consists of the
following rank one matrices:0 0 1

0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

1 α γ̄

ᾱ 1 β

γ β̄ 1


where |α| = |β| = |γ| = αβγ = 1. Note that

spanRF = {[aij ] ∈M3 : a11 = a22 = a33}

is a 7-dimensional subspace of M3×3. We also note that a rank one matrix with nonzero
diagonals is in the space spanRF if and only if it is a scalar multiple of the matrix of the
form 1 a b

1
a 1 b

a
1
b

a
b 1


with nonzero complex numbers a and b. Note that the above matrix belongs to
(spanRF ) \ RF whenever |a| 6= 1. Since spanRF τ is the full matrix algebra, we con-
clude that the face F is not induced by a face of T by Theorem 3.2.
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Added in the proof (July 4, 2012). PPT entangled edge states of M3 ⊗ M3 are
completely classified by [49] and [50]. We also refer [51] to further development on the
facial structures for separable states.
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