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Abstract. We study relations between the Boolean convolution and the symmetrization and
the pushforward of order 2. In particular we prove that if pi, u2 are probability measures on
[0,00) then (p1 W p2)® = p§ W ud and if v, vs are symmetric then (1 W 1y)? = V§2) W V§2).
Finally we investigate necessary and sufficient conditions under which the latter equality holds.

1. Pushforward of order 2 versus symmetrization. Let M denote the class of
probability measures on the real line R. We will distinguish two subclasses of M, namely
M?® consisting of symmetric measures (i.e. such that u(—B) = u(B) for every Borel
subset of R) and M™ consisting of those measures which have support contained in the
positive halfline [0, +00).

For u € M we define its two transforms:

G = [P = L6u(2) 1)

z—t’ z
which are analytic functions on C \ R (the former is called the Cauchy transform of u).
If ;1 has compact support then M, is well defined in a neighborhood of 0 and is the
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generating function for the moment sequence fR ™ du(x), m > 0, of u. Note that p € M
is symmetric if and only if its Cauchy transform is odd: G, (—z) = —G.(z) and M, is
even: M, (—z) = M, ().

For 1 € M we define p(®) as the pushforward of u by the function z — 2, i.e.

p®(B) = ({z:2* € B}). (2)

For example, if u is a convex combination Zfil Pida,, then p?) = Ef\il Piy2.
For u € M™ we define its symmetrization as the measure u € M* satisfying

y*(B) = u({a? : z € BY) (3)
for every Eymmetric Borel set B. For example, if y = Zf\;l Dibz,, with x; > 0, then
i =531 pi (0 sz + 06, z;). It was observed in [2] that

1
po= g (6o +6) R (4)

(where X denotes the multiplicative free convolution), whenever ,ug% exists.
The map p — p° is a bijection M1 — M3 and the map v — v(? restricted to M* is
its inverse. For u € M7 we have

Gus(2) = ZGM(22)7 Mys(z) = MM(ZQ)v (5)
while for v € M
2:G 2 (2%) = G, (2) — G (—2), 2M,2) (2%) = M, (2) + M, (—2). (6)

The Boolean convolution is a binary operation on M which can be defined as:
W= 1 W o if and only if

- + -z (7)

or, equivalently,

My(z)  My(2) " Mp(m) " (8)

For € M, t > 0 we define Boolean power u® by
1 t

Go(5) — Gy VR ©)

or

M,(2)
Mtwt = 2 .
pe(2) = )M, (2) +
It is clear that the class M® is closed under the Boolean convolutions and powers.
The same is true for the class M (see Remark 2.7 and Theorem 6.2 in [I]).

(10)

THEOREM 1.1. For py, pio, pp € MV, vy, 09, v € MS and t > 0 we have
(11 W p2)® = pi W i, (u)® = ()™ (11)
and

(1 ¢ VQ)(Z) = 1/£2) W 1/52), (V&Jt)(z) = (1/(2))&. (12)
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Proof. Putting p := p1 W puo we have

11 ( 1 n 1 _ z2> B 1 . 1

Gus(2) 2 \Gu(2?)  Guy(2?) 2Gu (2%)  2Gp,(2%)
which is the reciprocal of the Cauchy transform of u$ W p5. Similarly, putting u, == p
we have

— 2z,

Wi

N PR Eor A N S SR
G (2) z(Gu<z2> t 1)) G, b=

which is the reciprocal of the Cauchy transform of (1)"".
To prove the second part one can put vy := us, v :=pus. m

EXAMPLE. Define

1 /44—
m:= o Tdr  on [0,4] (the Marchenko-Pastur law),
™ x
1
W= 2—\/4 —22dr  on [-2,2] (the Wigner law),
™
1
ay = ———dx on[0,4] (the positive arcsine law),
my/x(4 — )
1
a:=—— dx on [—2,2 the symmetric arcsine law).
N =22 (the sy )
Then
Mn(2) = ——— Mulz) = —~
ml\%) = D zZ) = — %
1+ V1-4z v 14 V1 — 422
1 1
M, Ma(z) =

V1—1422°

=a, and w¥? = a. Hence

a+(2’) = \/ﬁ’

which leads to the relations: m® = w, a5 = a, m®?

(m®)¥? = (m*¥?)* = a and (Ww)@) _ (W(2)>w2 —a..

REMARK. Note that in Theorem [I.I] we cannot replace & by the classical or free convo-
lution. For example, if py := %(5_(1 +0,) and po = %(5_;, + 0p) then
2, @

. 1
pi? wu? = ey while (1 % 12)® = 2 (Basnye + 8as2)

B and w, := w. These measures exist for all

For the free convolution let m; := m
t >0 (see [B, 3]) and

\/4t—(:v—1—t)2d

2mx
with the absolutely continuous part supported on [(1 — V)2, (1+ \/1?)2},

1
wt:—2 t\/4t—x2dx
™

on [—2v/t,2/t]. The moment generating functions are
2

L4+ (1—t)z+ /(1= (1+1)2)? — 4¢22

m; = max{1l —¢,0}dp + x,

Mmt (Z) =
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and
_ 2
11— 42

Therefore if 0 < ¢ # 1 then the measure (mEEt)S = mf is different from (ms)Et = W;.

Note however that formulae would be true if we replaced the Boolean convolution
W by * (resp. by B) and the map p — p® by the map p — pxp, with ¢t € N (resp. p — pHp,
with ¢ > 1), where fi denotes the reflection of p, i.e. i(B) := u(—DB).

th (Z)

THEOREM 1.2. Let v € M and 0 <t # 1. Then the equality
) = ()
holds if and only if v is symmetric.
Proof. Put vy := (I/Lt't)@), Vo 1= (V@))wt, M := M,(z) and N := M, (—=z). Then
M N

My, (%) = (1 0OM 11 " 2[1_ON 1]
~ 2(1—t)MN +t(M + N)
21 —t)M +t][(1 —t)N + 1]
~2(1—t)2MN(M + N) +4t(1 — t)MN +t(1 — t)(M + N)? 4+ 2¢*(M + N)
2[(1 — )M + ][(1 — )N + 4][(1 — t)(M + N) + 21] ’
while
M+ N
My (%) = 1—t)(M+N)+2t
_ 2(1—t)?MN(M+ N)+2t(1 —t)(M + N)*> 4+ 2t>(M + N)
2[1 —t)M +¢][(1 — )N + t][(1 —t)(M + N) + 2t]
Therefore

t(1—t)(M — N)?
[(1—t)M +t][(1 —t)N +¢t][(1 —t)(M + N) + 2t]’

MV2 (22) - MV1 (ZQ) = 2

which proves our statement. m

2. The case of nonsymmetric measures. In this part we are going to study circum-
stances in which the equality

uP e s = (W )@ (13)

holds. Putting m := (u1 @ ,112)(2)7 N2 1= N%Q) & /ig2)7 M = My, (2), N1 = My, (—2),
My := M,,(z) and Ny := M,,,(—z) we have
M1M2 N1N2

M, (%) = , 14

n ) = SO T M, — 3G T I N = N N) (14)
M, + Nyi)(Ms + Na)

M,,(2%) = (M : 15

() = LT N T Mo+ o) — Ok £ N (A 5 V) (15)

THEOREM 2.1. Assume that py € M®, us € M and that holds. Then either us € M®
or i1 = dg-
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Proof. Putting M := M; = N; we have
MTh (22) - an (22)
M?(M — 1)(My — No)?
2(M+M2 _MMQ)(M+N2 —MNQ) (2M+M2+N2 —MM2 —MNQ) ’

which yields our statement. m

From now on we assume that p; = 0., with xg # 0. Then M;(z) = 1/(1 — x92),
Nl(Z) = Ml(fz) = 1/(1 + ZL'()Z) and
M (22) _ M (22) _ $0Z(M2 + NQ)[2M2 — 2N2 — J,‘()Z(Mg + N2 — 2M2N2)]
mn 2 2(1 —ZL'()ZMQ)(].+£L'OZN2)[2—(E%Z2(M2+N2)]

Therefore we have
THEOREM 2.2. Assume that py = 6y, with xo # 0. Then holds if and only if

2M — 2N — z9z(M + N —2MN) =0, (16)
where M := M,,(z), N := M,,(—z).
COROLLARY 2.3. If i1 = 04,, ®o # 0, ua has compact support and if holds then the
mean of o is 0.

Proof. Since ps has compact support, M, is well defined as an analytic function in a
neighborhood of 0, with M,,,(0) = 1. It is sufficient to differentiate both sides of at
z = 0 to see that M/ (0) =0. =

Finally, we confine ourselves to a very particular case.
THEOREM 2.4. Assume that 11 = 0g,, pi2 = Pz, + (1 — p)0s,, with xy # 0, 1 # x2,
0<p<1l. Then holds if and only if
pr1+ (1 —plze =0 (17)
and
Note that is a consequence of Corollary

Proof. Since
p l—p

P 1—p _
= + ,
1+21z 14292

1—z12 1—x92’

M2 = MILQ(Z) N2 = MH (72)

we have
2M5 — 2Ny — LL’()Z(MQ + Ny — 2M2N2)
2z [2px1 +2(1 = p)ag + 202%p(1 — p) (21 — 22)% — 222361:102((1 —p)a; +px2)]
(1—z12) (L +x12)(1 —222)(1 + x22)
4z [pz1 4+ (1 —p)xa]| + 223 [2op(1 — p) (21 — 22)? — 2z125((1 — p)a1 + p2)]
(1—z12) 1+ 212)(1 —222)(1 + x22)
This rational function is equal to 0 if and only if pzq + (1 — p)xs = 0 (which implies, in
particular, that 27 - 22 < 0) and
zop(1 — p)(z1 — 22)* — 2z122((1 — p)x1 + px2) = 0. (19)
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By we have p(x; —x2) = —x2 and (1 —p)(z1 — x2) = 21 so the left hand side of
can be written as

— 212 (xo +2(1—p)zy + 2px2) = —z1xo(xo + 221 + 2x2),

which concludes the proof. =

References

[1] T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175-199.

[2] M. Hinz, W. Mlotkowski, Multiplicative free square of the free Poisson measure and exam-
ples of free symmetrization, Colloq. Math. 119 (2010), 127-136.

[3] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, London Math.
Soc. Lecture Note Ser. 335, Cambridge Univ. Press, Cambridge, 2006.

[4] R. Speicher, R. Woroudi, Boolean convolution, in: Free Probability Theory (Waterloo,
1995), Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997, 267-279.

[5] D. V. Voiculescu, K. J. Dykema, A. Nica, Free Random Variables. A Noncommutative
Probability Approach to Free Products with Applications to Random Matrices, Operator
Algebras and Harmonic Analysis on Free Groups, CRM Monogr. Ser. 1, Amer. Math. Soc.,
Providence, RI, 1992.


http://dx.doi.org/10.4064/sm200-2-5
http://dx.doi.org/10.4064/cm119-1-8

	Pushforward of order 2 versus symmetrization
	The case of nonsymmetric measures

