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Abstract. A (smooth) dynamical system with transformation group Tn is a triple (A,Tn, α),

consisting of a unital locally convex algebra A, the n-torus Tn and a group homomorphism

α : Tn → Aut(A), which induces a (smooth) continuous action of Tn on A. In this paper we

present a new, geometrically oriented approach to the noncommutative geometry of trivial prin-

cipal Tn-bundles based on such dynamical systems, i.e., we call a dynamical system (A,Tn, α)

a trivial noncommutative principal Tn-bundle if each isotypic component contains an invertible

element. Each trivial principal bundle (P,M,Tn, q, σ) gives rise to a smooth trivial noncom-

mutative principal Tn-bundle of the form (C∞(P ),Tn, α). Conversely, if P is a manifold and

(C∞(P ),Tn, α) a smooth trivial noncommutative principal Tn-bundle, then we recover a trivial

principal Tn-bundle. While in classical (commutative) differential geometry there exists up to

isomorphy only one trivial principal Tn-bundle over a given manifold M , we will see that the

situation completely changes in the noncommutative world. Moreover, it turns out that each

trivial noncommutative principal Tn-bundle possesses an underlying algebraic structure of a

Zn-graded unital associative algebra, which might be thought of an algebraic counterpart of a

trivial principal Tn-bundle. In the second part of this paper we provide a complete classifica-

tion of this underlying algebraic structure, i.e., we classify all possible trivial noncommutative

principal Tn-bundles up to completion.

Introduction. The correspondence between geometric spaces and commutative algebras
is a familiar and basic idea of algebraic geometry. Noncommutative Topology started with
the famous Gelfand–Naimark Theorems: Every commutative C*-algebra is the algebra
of continuous functions vanishing at infinity on a locally compact space and vice versa.
In particular, a noncommutative C*-algebra may be viewed as “the algebra of continu-
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ous functions vanishing at infinity” on a “quantum space”. The aim of Noncommutative
Geometry is to develop the basic concepts of Topology, Measure Theory and Differential
Geometry in algebraic terms and then to generalize the corresponding classical results to
the setting of noncommutative algebras. The question whether there is a way to translate
the geometric concept of a fibre bundle to Noncommutative Geometry is quite interesting
in this context. In the case of vector bundles a refined version of the Theorem of Serre and
Swan ([Swa62]) gives the essential clue: The category of vector bundles over a manifold M
is equivalent to the category of finitely generated projective modules over C∞(M). It is
therefore reasonable to consider finitely generated projective modules over an arbitrary
algebra A as “noncommutative vector bundles”. The case of principal bundles is so far
not treated in a satisfactory way. From a geometrical point of view it is not sufficiently
well understood what should be a “noncommutative principal bundle”. However, there
is a well-developed abstract algebraic approach using the theory of Hopf algebras. An
important handicap of this approach is the ignorance of any topological and geometrical
aspects. This paper is part of my thesis concerned with a geometric approach to noncom-
mutative principal bundles. A natural first step towards a theory of “noncommutative
principal Tn-bundles” is to determine the trivial objects, i.e., to determine the trivial
noncommutative principal Tn-bundles.

In Section 1 we introduce the concept of trivial noncommutative principal Tn-bundles.
A dynamical system (A,Tn, α) is called a trivial noncommutative principal Tn-bundle
if each isotypic component contains an invertible element. This definition is inspired by
the following observation: A principal bundle (P,M,Tn, q, σ) is trivial if and only if it
admits a trivialization map. Such a trivialization map consists basically of n smooth
functions fi : P → T satisfying fi(σ(p, z)) = fi(p) · zi for all p ∈ P and z ∈ Tn. From
an algebraical point of view this condition means that each isotypic component of the
(naturally) induced dynamical system (C∞(P ),Tn, α) contains an invertible element.
Conversely, we show that each trivial noncommutative principal Tn-bundle of the form
(C∞(P ),Tn, α) induces a trivial principal Tn-bundle of the form (P, P/Tn,Tn,pr, σ). The
crucial point here is to verify the freeness of the induced action of Tn on P .

In Section 2 we present various examples including noncommutative tori, topological
dynamical systems and certain crossed product constructions.

Section 3 to Section 7 are devoted to a complete classification of trivial noncom-
mutative principal Tn-bundles up to completion. In fact, it turns out that each trivial
noncommutative principal Tn-bundle possesses an underlying algebraic structure of a
Zn-graded unital associative algebra. This structure may be considered as an algebraic
counterpart of a trivial noncommutative principal Tn-bundle and can be classified with
methods from the extension theory of groups. We further present some nice examples of
these algebraically trivial principal Tn-bundles.

Finally, in Section 8 we provide an outlook to non-trivial noncommutative principal
Tn-bundles.

Acknowledgments. We thank Christoph Zellner for proofreading of this paper. In ad-
dition we thank the Studienstiftung des deutschen Volkes for a doctoral scholarship for
my work.
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Preliminaries and notation. All manifolds appearing in this paper are assumed to
be finite-dimensional, paracompact, second countable and smooth. For the necessary
background on principal bundles we refer to [KoNo63]. All algebras are assumed to be
complex. If A is an algebra, we write

ΓA := Homalg(A,C)\{0}
(with the topology of pointwise convergence on A) for the spectrum of A. For elements of
Zn we write k = (k1, . . . , kn) and think of them as multi-indices. In particular, we write
ei = (0, . . . , 1, . . . , 0) for the canonical basis of Zn and 0 = (0, . . . , 0) for its unit element.
A (smooth) dynamical system with transformation group Tn, or simply a (smooth) dy-
namical system is a triple (A,Tn, α), consisting of a unital locally convex algebra A, the
n-torus Tn and a group homomorphism α : Tn → Aut(A), which induces a (smooth)
continuous action of Tn on A. We write

Ak := {a ∈ A : (∀z ∈ Tn) α(z).a = zk · a}
for the isotypic component of (A,Tn, α) corresponding to k ∈ Zn. In order to simplify
the notation we write “NCP” for “noncommutative principal”. We also use concepts of
classical group cohomology: If G is a group we say that a map f : (Zn)p → G is normalized
if

(∃j) kj = 0 ⇒ f(k1, . . . ,kp) = 1G

and write Cp(Zn, G) for the space of all normalized maps (Zn)p → G, the so called p-
cochains. For a detailed background on group cohomology we refer to [Ma95], Chapter IV.
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1. Trivial NCP torus bundles. In this section we present a geometrically oriented
approach to the noncommutative geometry of trivial principal Tn-bundles. In particu-
lar, we will see that this approach perfectly reproduces the classical geometry of trivial
principal Tn-bundles.

Definition 1.1 (Trivial NCP Tn-bundles). A (smooth) dynamical system (A,Tn, α) is
called a (smooth) trivial NCP Tn-bundle, if each isotypic component Ak contains an
invertible element.

Remark 1.2. Note that if (A,Tn, α) is a dynamical system and g1, . . . ,gl ∈ Zn a finite
set of generators of Zn such that each isotypic component Agj

contains an invertible
element, then (A,Tn, α) is already a trivial NCP Tn-bundle. In particular, if 1 ≤ i ≤ n

and Ai := Aei , then (A,Tn, α) is a trivial NCP Tn-bundle if and only if each Ai contains
an invertible element.
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Proposition 1.3 (The underlying algebraic skeleton). Let A be a complete unital locally
convex algebra and (A,Tn, α) a trivial NCP Tn-bundle. If ak ∈ Ak is an invertible element
for each k ∈ Zn and B := A0, then the following assertions hold :

(a) Each map
φk : B → Ak, b 7→ akb

is an isomorphism of locally convex B-modules. In particular, Ak = akB for each
k ∈ Zn.

(b) The space

Ad =
⊕
k∈Zn

Ak =
⊕
k∈Zn

akB

is a dense Tn-invariant subalgebra of A.

Proof. (a) An easy calculation shows that each map φk is a morphism of locally convex
B-modules, and therefore the statement follows from the fact that ak ∈ Ak is invertible.

(b) The space Ad is obviously Tn-invariant by construction. To see that it is a subal-
gebra, take k, l ∈ Zn and choose ak ∈ Ak and al ∈ Al. Then

α(z).(akal) = (α(z).ak)(α(z).al) = (zk+l) · akal

for all z ∈ Tn and we therefore conclude that akal ∈ Ak+l ⊆ Ad. The density statement
is a consequence of the Big Peter and Weyl Theorem for Compact Abelian Groups (cf.
[HoMo06], Theorem 3.51 and Theorem 4.22).

Proposition 1.4. If A is a commutative unital locally convex algebra and (A,Tn, α)
a trivial NCP Tn-bundle, then the map

σ : ΓA × Tn → ΓA, χ.z := σ(χ, z) := χ ◦ α(z)

defines a free action of Tn on the spectrum ΓA of A.

Proof. An easy observation shows that σ defines an action of Tn on the spectrum ΓA.
The crucial part of the proof is to verify the freeness of the map σ, i.e., to show that the
stabilizer of each element of ΓA is trivial. For this, first choose in each isotypic component
Ak an invertible element ak. Now, let χ ∈ ΓA and z ∈ Tn such that χ.z = χ ◦ α(z) = χ.
Then

(χ ◦ α(z))(ak) = χ(α(z).ak) = zk · χ(ak) = χ(ak)

implies that zk = 1 holds for all k ∈ Zn since each element ak is invertible. We thus
conclude that z = (1, . . . , 1), which proves the freeness of the map σ.

Remark 1.5. If P is a manifold, p ∈ P and δp the corresponding point evaluation map
on C∞(P ), then there is a unique smooth structure on the spectrum ΓC∞(P ) of C∞(P )
for which the map

Φ : P → ΓC∞(P ), p 7→ δp,

becomes a diffeomorphism. A proof of this statement can be found in [Wa11], Lemma
6.1.5.
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Proposition 1.6. If P is a manifold and (C∞(P ),Tn, α) a smooth trivial NCP Tn-
bundle, then the map

σ : P × Tn → P, (δp, z) 7→ δp ◦ α(z),

where we have identified P with the set of characters via the map Φ from Remark 1.5, is
smooth and defines a free and proper action of Tn on the manifold P . In particular, we
obtain a principal bundle (P, P/Tn,Tn,pr, σ).

Proof. The smoothness of the map σ is a consequence of [Wa11], Proposition 6.1.6 and
its freeness follows directly from Proposition 1.4. The properness of σ is automatic, since
Tn is compact. Finally, the Quotient Theorem implies that we obtain a principal bundle
(P, P/Tn,Tn,pr, σ) (cf. [tD00], Kapitel VIII, Satz 21.6).

Lemma 1.7. If P is a manifold and φ : C∞(P ) → C∞(P ) an algebra automorphism,
then there is a diffeomorphism τ : P → P such that φ(f) := f ◦ τ−1 for all f ∈ C∞(P ).

Proof. This statement follows from [Gue08], Lemma 2.95.

Remark 1.8 (*-automorphisms). In view of the previous lemma each algebra automor-
phism of C∞(P ) is automatically a *-automorphism.

Proposition 1.9. Let P be a manifold and (C∞(P ),Tn, α) a dynamical system. If
k ∈ Zn and f ∈ C∞(P )k is invertible, then |f | is invariant under the action of Tn,
i.e.,

α(z).|f | = |f | for all z ∈ Tn.

Proof. If z ∈ Tn, then α(z).f = zk · f . On the other hand, Lemma 1.7 implies that there
exists a diffeomorphism τz : P → P such that α(z).g = g ◦ τ−1

z for all g ∈ C∞(P ). Hence,
we get

α(z).|f | = | · | ◦ f ◦ τ−1
z = |zk · f | = |f |.

Remark 1.10. Each principal bundle (P,M,Tn, q, σ) induces a smooth dynamical system
(C∞(P ),Tn, α), where the smooth action of Tn on C∞(P ) is given by

α : Tn × C∞(P )→ C∞(P ), α(z, f)(p) := (z.f)(p) := f(σ(p, z)).

In fact, a proof for the smoothness of the map α can be found in [Wa11], Proposition
6.1.1.

We now come to the main theorem of this section.

Theorem 1.11 (Trivial principal Tn-bundles). Let P be a manifold. Then the following
assertions hold :

(a) If (C∞(P ),Tn, α) is a smooth trivial NCP Tn-bundle, then the corresponding prin-
cipal bundle (P, P/Tn,Tn,pr, σ) of Proposition 1.6 is trivial.

(b) Conversely, if (P,M,Tn, q, σ) is a trivial principal Tn-bundle, then the correspond-
ing smooth dynamical system of Remark 1.10 (C∞(P ),Tn, α) is a trivial NCP
Tn-bundle.
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Proof. (a) In view of Remark 1.2, we may choose for each 1 ≤ i ≤ n an invertible function
fi ∈ C∞(P )i with im(fi) ⊆ T. Indeed, if fi ∈ C∞(P )i is invertible, then the function

gi : P → C, p 7→ fi(p)
|fi(p)|

,

is also invertible and satisfies im(gi) ⊆ T. Moreover, Proposition 1.9 implies that α(z).gi =
zi · gi holds for all z ∈ Tn and therefore that gi ∈ C∞(P )i. Next, we consider the map

ϕ : P → P/Tn × Tn, p 7→ (pr(p), f1(p), . . . , fn(p)).

Since ϕ(p.z) = ϕ(p) · z for all z ∈ Tn, the map ϕ defines an equivalence of principal
Tn-bundles over P/Tn. Thus, the principal bundle (P, P/Tn,Tn,pr, σ) of Proposition 1.6
is trivial.

(b) Conversely, let (P,M,Tn, q, σ) be a trivial principal Tn-bundle and

ϕ : P →M × Tn, p 7→ (q(p), f1(p), . . . , fn(p)),

be an equivalence of principal Tn-bundles over M . We first note that each function
fi ∈ C∞(P ) is invertible. Furthermore, the Tn-equivariance of ϕ implies that fi ∈ C∞(P )i
for all i ∈ In. Therefore each isotypic component C∞(P )i contains invertible elements,
and we conclude from Remark 1.2 that (C∞(P ),Tn, α) is a trivial NCP Tn-bundle.

Remark 1.12. Note that Theorem 1.11 remains valid in the topological category.

2. Examples of trivial NCP torus bundles. In this part of the paper we present a
bunch of examples of (smooth) trivial NCP Tn-bundles.

Example 2.1 (Noncommutative n-tori). Let θ be a real skew-symmetric n × n matrix.
The noncommutative n-torus Anθ is the universal unital C*-algebra generated by unitaries
U1, . . . , Un with

UrUs = exp(2πiθrs)UsUr for all 1 ≤ r, s ≤ n.

Moreover, there is a continuous action α of Tn on Anθ by algebra automorphisms, which
is on generators given by

α(t).Uk := t.Uk := tk · Uk for k ∈ Zn,

where
Uk := Uk11 · · ·Uknn .

In particular, (Anθ )k = C · Uk shows that the triple (Anθ ,Tn, α) is a trivial NCP
Tn-bundle.

Example 2.2 (Smooth noncommutative n-tori). The smooth noncommutative n-torus
Tnθ is the unital subalgebra of smooth vectors for the action α of the previous example.
Its elements are given by (norm-convergent) sums

a =
∑
k∈Zn

akU
k, with (ak)k∈Zn ∈ S(Zn).

Further, a deeper analysis shows that the induced action of Tn on Tnθ is smooth. Thus,
the triple (Tnθ ,Tn, α) is a smooth trivial NCP Tn-bundle. For details we refer to [Wa11],
Appendix E.
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Remark 2.3. Suppose we are in the situation of Example 2.2. If θ = 0, then we get the
trivial NCP Tn-bundle (C∞(Tn),Tn, α). The corresponding trivial principal bundle of
Theorem 1.11 (a) is the (trivial) principal Tn-bundle over a single point {∗}, i.e.,

(Tn, {∗},Tn, q, σTn)

for
q : Tn → {∗}, z 7→ ∗.

Therefore, one should think of noncommutative n-tori as deformations of the trivial
principal Tn-bundle over a single point.

Construction 2.4 (`1-crossed products). Let (A, ‖·‖,∗ ) be an involutive Banach algebra
and (A,Zn, α) a dynamical system. Note that this means that Zn acts by isometries of A.
We write F (Zn, A) for the vector space of functions f : Zn → A with finite support and
define a multiplication on this space by

(f ? g)(k) :=
∑
l∈Zn

f(l)α(l, g(k− l)).

Moreover, an involution is given by

f∗(k) := α(k, (f(−k))∗).

These two operations are continuous for the L1-norm

‖f‖1 :=
∑
k∈Zn

‖f(k)‖,

and the completion of F (Zn, A) in this norm is again an involutive Banach algebra de-
noted by `1(Aoα Zn).

Remark 2.5. If A = C, then `1(Aoα Zn) is just the algebra `1(Zn).

Lemma 2.6. If (A, ‖ · ‖,∗ ) is an involutive Banach algebra and (A,Zn, α) a dynamical
system, then the map

α̂ : Tn × `1(Aoα Zn)→ `1(Aoα Zn), (α̂(z, f))(k) := (z.f)(k) := zk · f(k)

defines a continuous action of Tn on `1(Aoα Zn) by algebra automorphisms.

Proof. Obviously α̂ defines an action. Moreover,

((z.f) ? (z.g))(k) =
∑
l∈Zn

((z.f)(l))(α(l, (z.g)(k− l)))

=
∑
l∈Zn

(zl · f(l))(zk−l · α(l, g(k− l)))

= zk ·
∑
l∈Zn

f(l)α(l, g(k− l)) = (z.(f ∗ g))(k),

‖z.f‖1 =
∑
k∈Zn

‖(z.f)(k)‖ =
∑
k∈Zn

‖zk · f(k)‖ =
∑
k∈Zn

‖f(k)‖ = ‖f‖1

and
((z.f)∗)(k) = α(k, ((z.f)(−k))∗) = zk · α(k, (f(−k))∗) = (z.f∗)(k)

show that each element z ∈ Tn acts as an automorphism of (A, ‖ · ‖,∗ ).
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To see the continuity of α̂, we choose f ∈ F (Zn, A), ε > 0 and a neighbourhood U of
the unity of Tn such that |zk− 1| ≤ ε for all k ∈ supp(f) and z ∈ U . We therefore obtain

‖z.f − f‖1 =
∑
k∈Zn

|zk − 1| ‖f(k)‖ =
∑

k∈supp(f)

|zk − 1| ‖f(k)‖ ≤ ε‖f‖1

for all z ∈ U . Since F (Zn, A) is dense in `1(A oα Zn), α̂ defines a continuous action of
Tn on `1(Aoα Zn) by algebra automorphisms.

Proposition 2.7. If (A, ‖·‖,∗ ) is an involutive Banach algebra and (A,Zn, α) a dynam-
ical system, then the triple

(`1(Aoα Zn),Tn, α̂)

defines a dynamical system.

Proof. The claim is a direct consequence of Lemma 2.6.

Example 2.8. If (A, ‖ · ‖,∗ ) is an involutive Banach algebra and (A,Zn, α) a dynamical
system, then the dynamical system (`1(A oα Zn),Tn, α̂) is a trivial NCP Tn-bundle.
Indeed, for k ∈ Zn define

δk(l) :=

{
1A for l = k

0 otherwise.

Then
z.δk = zk · δk and δk ? δ

∗
k = δ∗k ? δk = 1

show that δk is an invertible element of `1(A oα Zn) lying in the isotypic component
`1(Aoα Zn)k.

Construction 2.9 (The enveloping C∗-algebra). If (A, ‖ · ‖,∗ ) is an involutive Banach
algebra, then any involutive representation (π,H) of A, for some Hilbert space H, satisfies

‖π(a)‖op ≤ ‖a‖.
This follows from the fact π is norm-decreasing since it shrinks spectra and B(H) is a
C∗-algebra. The supremum over all such involutive representations (π,H) is bounded, i.e.,

‖a‖sup = sup
(π,H)

‖π(a)‖op ≤ ‖a‖,

and thus defines a seminorm on A. If this is not already a norm, we divide A by its kernel
to get a normed algebra. Since ‖π(a∗a)‖op = ‖π(a)‖2op for each (π,H), this is a C∗-norm.
The completion of A in this norm is a C∗-algebra and called the enveloping C∗-algebra.

Remark 2.10 (C∗-crossed products). If (A, ‖ · ‖,∗ ) is an involutive Banach algebra and
(A,Zn, α) a dynamical system, then the enveloping C∗-algebra of `1(AoαZn) is denoted
by C∗(Aoα Zn) and is called the C∗-crossed product associated to (A,Zn, α).

Example 2.11. If (A, ‖ ·‖,∗ ) is an involutive Banach algebra and (A,Zn, α) a dynamical
system, then the action α̂ of Lemma 2.6 extends to a continuous action of Tn on the
C∗-crossed product C∗(Aoα Zn) by algebra automorphisms. For details we refer to the
paper [Ta74]. In particular, the corresponding dynamical system

(C∗(Aoα Zn),Tn, α̂)

is a trivial NCP Tn-bundle. This follows exactly as in Example 2.8.
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Example 2.12 (Topological dynamical systems). To each topological dynamical sys-
tem (X,ϕ), i.e., to each pair (X,ϕ), consisting of a compact Hausdorff space X and a
homeomorphism ϕ : X → X, one can associate a C∗-dynamical system. Indeed, choose
A = C(X) and define an action α of Z on C(X) by

(α(k).f)(x) := f(ϕ−k(x)).

By Example 2.11, the associated C∗-crossed product C∗(C(X) oα Z) is a trivial NCP
T-bundle.

Remark 2.13 (2-cocycles). A 2-cocycle on Zn with values in T is a map ω : Zn×Zn → T
satisfying ω(0,0) = 1 and

ω(k, l)ω(k + l,m) = ω(k, l + m)ω(l,m)

for all k, l,m ∈ Zn. We write Z2(Zn,T) for the space of all 2-cocycle on Zn with values
in T.

Construction 2.14 (`1-spaces associated to 2-cocycles). Let (A, ‖ · ‖,∗ ) be an invo-
lutive Banach algebra and ω a 2-cocycle in Z2(Zn,T). The involutive Banach algebra
`1(A×ω Zn) is defined by introducing a twisted multiplication

(f ? g)(k) :=
∑
l∈Zn

f(l)g(k− l)ω(l,k− l)

and an involution
(f∗)(k) := ω(k,−k) · f(−k).

The cocycle property ensures that the multiplication is associative.

Example 2.15. Let (A, ‖ · ‖,∗ ) be an involutive Banach algebra and ω a 2-cocycle in
Z2(Zn,T). Similarly to Lemma 2.6, we see that the map

α̂ : Tn × `1(A×ω Zn)→ `1(A×ω Zn), α̂(z, f))(k) := (z.f)(k) := zk · f(k),

defines a continuous action of Tn on `1(A×ω Zn) by algebra automorphisms. Moreover,
the corresponding dynamical system

(`1(A×ω Zn),Tn, α̂)

turns out to be a trivial NCP Tn-bundle (cf. Example 2.8).

Remark 2.16. Let θ ∈ Alt2(Zn,R) be a skew-symmetric real matrix and consider the
2-cocycle

ω : Zn × Zn → T, ω(k, l) := exp(iθ(k, l)).

Then we obtain a (2-step nilpotent) Lie group H := T×ω Zn which is a central extension
of Zn by the circle group T. The circle T acts continuously on the group algebra L1(H)
by translations in the first argument. The corresponding Fourier decomposition leads to

L1(H)d =
⊕
k∈Z

L1(H)k ∼=
⊕
k∈Z

χk · `1(C×ω Zn),

where `1(C×ω Zn) denotes a `1-version of Example 2.1.
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Example 2.17. The enveloping C∗-algebra of `1(A ×ω Zn) is denoted by C∗(A ×ω Zn)
and is called the twisted group C∗-algebra of G by ω. The action α̂ of Example 2.15
extends to a continuous action of Tn on C∗(A ×ω Zn) by algebra automorphisms (cf.
Example 2.11). The corresponding dynamical system

(C∗(A×ω Zn),Tn, α̂)

is a trivial NCP Tn-bundle as well.

3. Factor systems for trivial NCP torus bundles. In this short section we introduce
a “cohomology theory” for trivial NCP Tn-bundles, which is inspired by the classical
cohomology theory of groups. The corresponding cohomology spaces will be crucial for
the classification part of this paper.

Definition 3.1. Let n ∈ N and B be a unital algebra.

(a) We write CB : B× → Aut(B) for the conjugation action of B× on B.
(b) We call a map S ∈ C1(Zn,Aut(B)) an outer action of Zn on B if there exists

ω ∈ C2(Zn, B×) with δS = CB ◦ ω,

where
δS(k, l) := S(k)S(l)S(k + l)−1.

(c) On the set of outer actions we define an equivalence relation by

S ∼ S′ ⇔ (∃h ∈ C1(Zn, B×)) S′ = (CB ◦ h) · S

and call the equivalence class [S] of an outer action S a Zn-kernel.
(d) For S ∈ C1(Zn,Aut(B)) and ω ∈ C2(Zn, B×) let

(dSω)(k, l,m) := S(k)(ω(l,m))ω(k, l + m)ω(k + l,m)−1ω(k, l)−1.

Lemma 3.2. Let n ∈ N and B be a unital algebra and consider the group C1(Zn, B×)
with respect to pointwise multiplication. This group acts on the set

C1(Zn,Aut(B)) by h.S := (CB ◦ h) · S

and on the product set

C1(Zn,Aut(B))× C2(Zn, B×) by h.(S, ω) := (h.S, h ∗S ω)

for
(h ∗S ω)(k, l) := h(k)S(k)(h(l))ω(k, l)h(k + l)−1.

The stabilizer of (S, ω) is given by

C1(Zn, B×)(S,ω) = Z1(Zn, Z(B)×)S

which depends only on [S], but not on ω, and the following assertions hold :

(a) The subset {
(S, ω) ∈ C1(Zn,Aut(B))× C2(Zn, B×) : δS = CB ◦ ω

}
is invariant.
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(b) If δS = CB ◦ ω, then im(dSω) ⊆ Z(B)×.
(c) If δS = CB ◦ ω and h.(S.ω) = (S′, ω′), then dS′ω

′ = dSω.

Proof. A proof of this Lemma can be found in [Wa11], Lemma 7.3.2.

Definition 3.3. Let n ∈ N and B be a unital algebra. The elements of the set

Z2(Zn, B) := {(S, ω) ∈ C1(Zn,Aut(B))× C2(Zn, B×) : δS = CB ◦ ω, dSω = 1}

are called factor systems for the pair (Zn, B) (or simply (n,B)). By Lemma 3.2, the set
Z2(Zn, B) is invariant under the action of C1(Zn, B×) and we write

H2(Zn, B) := Z2(Zn, B)/C1(Zn, B×)

for the corresponding cohomology space.

4. Classification of algebraically trivial NCP torus bundles. The main goal of
this section is to present a complete classification of the underlying algebraic structure
of a trivial NCP Tn-bundle, i.e., to classify all possible trivial NCP Tn-bundles up to
completion. First, Proposition 1.3 leads to the following definition.

Definition 4.1 (Algebraically trivial NCP Tn-bundles). A Zn-graded unital associative
algebra

A =
⊕
k∈Zn

Ak

with B := A0 is called an algebraically trivial NCP Tn-bundle with base B, if each grading
space Ak contains an invertible element.

We now provide a construction that associates to each algebraically trivial NCP
Tn-bundle A a class in H2(Zn, B) for B = A0.

Construction 4.2 (Characteristic classes). Let (A,Tn, α) be a trivial NCP Tn-bundle.
The set

A×h :=
⋃

k∈Zn
A×k

of homogeneous units is a subgroup of A× containing B× · 1A ∼= B×. We thus obtain an
extension

1 −→ B× −→ A×h −→ Zn −→ 1

of groups. In particular, A×h is equivalent to a crossed product of the form B××(S,ω)Zn for
a factor system (S, ω) ∈ Z2(Zn, B). In this way each algebraically trivial NCP Tn-bundle
A induces a characteristic class

χ(A) := [(S, ω)] ∈ H2(Zn, B).

Lemma 4.3. Each algebraically trivial NCP Tn-bundle A possesses a characteristic class
χ(A) ∈ H2(Zn, B).

Proof. Indeed, this statement immediately follows from Construction 4.2.
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Definition 4.4. Two algebraically trivial NCP Tn-bundles A and A′ with base B are
called equivalent if there is an algebra isomorphism ϕ : A → A′ satisfying ϕ(Ak) = A′k
for all k ∈ Zn. If A and A′ are equivalent algebraically trivial NCP Tn-bundles, then we
write [A] for the corresponding equivalence class.

Proposition 4.5. Let A and A′ be two equivalent algebraically trivial NCP Tn-bundles.
Then their corresponding characteristic classes coincide, i.e.,

χ(A) = χ(A′) ∈ H2(Zn, B).

Proof. If A and A′ are equivalent, then the same holds for their corresponding extensions
of Construction 4.2. Thus, the claim follows from [Ma95], Chapter IV, Section 4.

Definition 4.6 (Set of equivalence classes). Let n ∈ N and B be a unital algebra.
We write Ext(Zn, B) for the set of all equivalence classes of algebraically trivial NCP
Tn-bundles with base B.

Lemma 4.7. Let B be a unital algebra. Then the map

χ : Ext(Zn, B)→ H2(Zn, B), [A] 7→ χ(A)

is well-defined.

Proof. The statement immediately follows from Proposition 4.5.

In the remaining part of this section we show that the map χ is a bijection.

Construction 4.8. Let n ∈ N and B be a unital algebra. Further, let

A :=
⊕
k∈Zn

Bvk

be a vector space with basis (vk)k∈Zn . For a factor system (S, ω) ∈ Z2(Zn, B), we define
a multiplication map

m(S,ω) : A×A→ A

given on homogeneous elements by

m(S,ω)(bvk, b′vl) := b(S(k)(b′))ω(k, l)vk+l, (1)

and write A(S,ω) for the vector space A endowed with the multiplication (1). A short
calculation shows that A(S,ω) is a Zn-graded unital associative algebra with A0 = B

and unit v0. Moreover, each grading space Ai, i ∈ In, contains invertible elements with
respect to to this multiplication. Indeed, if i ∈ In and b ∈ B×, then the inverse of bvi is
given by

S(i)−1(b−1ω(i,−i)−1)v−i.

Thus, A(S,ω) is an algebraically trivial NCP Tn-bundle with base B and characteristic
class χ(A(S,ω)) = [(S, ω)] (cf. Remark 1.2).

Proposition 4.9. If n ∈ N and B is a unital algebra, then each element [(S, ω)] ∈
H2(Zn, B) can be realized by an algebraically trivial NCP Tn-bundles A with

A0 = B and χ(A) = [(S, ω)].
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Proof. This statement is a consequence of Construction 4.8. In fact, if [(S, ω)] represents
a class in H2(Zn, B), then A(S,ω) satisfies the requirements of the proposition.

Proposition 4.10. Let n ∈ N and B be a unital algebra. Further, let A be an algebraically
trivial NCP Tn-bundle with A0 = B. Then A is equivalent to an algebraically trivial NCP
Tn-bundle of the form A(S,ω) for some factor system (S, ω) ∈ Z2(Zn, B).

Proof. Let A be an algebraically trivial NCP Tn-bundle with A0 = B. We consider the
corresponding short exact sequence of groups

1 −→ A×0 −→ A×h −→ Zn −→ 1

and choose a section σ : Zn → A×h . Now, a short calculation shows that the map

ϕ :
(
A =

⊕
k∈Zn

Ak,mA

)
→
(⊕
k∈Zn

Bvk,m(CB◦σ,δσ)

)
,

given on homogeneous elements by

ϕ(ak) := akσ(k)−1vk,

defines an equivalence of algebraically trivial NCP Tn-bundles.

Proposition 4.11. Let n ∈ N and B be a unital algebra. Further, let (S, ω) and (S′, ω′)
be two factor systems in Z2(Zn, B) with [(S, ω)] = [(S′, ω′)]. Then the corresponding
algebraically trivial NCP Tn-bundles A(S,ω) and A(S′,ω′) are equivalent.

Proof. First recall that the condition [(S′, ω′)] = [(S, ω)] is equivalent to the existence of
an element h ∈ C1(Zn, B×) with

h.(S, ω) = (S′, ω′),

Now, a short observation shows that the map

ϕ :
(⊕
k∈Zn

Bvk,m(S′,ω′)

)
→
(⊕
k∈Zn

Bvk,m(S,ω)

)
,

given on homogeneous elements by

ϕ(bvk) = bh(k)vk,

is an automorphism of vector spaces leaving the grading spaces invariant. We further
have

m(S,ω)(ϕ(bvk), ϕ(b′vl)) = m(S,ω)(bh(k)vk, b′h(l)vl)

= bh(k)S(k)(b′h(l))ω(k, l)vk+l

= b[CB(h(k))(S(k)(b′))]h(k)S(k)(h(l))ω(k, l)vk+l

= b(h.S)(k)(b′)(h ∗S ω)(k, l)h(k + l)vk+l

= ϕ
(
b(h.S)(k)(b′)(h ∗S ω)(k, l)vk+l

)
= ϕ

(
m(S′,ω′)(bvk, b′vl)

)
.

Thus, the map ϕ actually defines an equivalence of algebraically trivial NCP Tn-bundles.

We are now ready to state and prove the main theorem of this section.
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Theorem 4.12. Let n ∈ N and B be a unital algebra. Then the map

χ : Ext(Zn, B)→ H2(Zn, B), [A] 7→ χ(A)

is a well-defined bijection.

Proof. Lemma 4.7 implies that the map χ is well-defined. The surjectivity of χ follows
from Proposition 4.9. Hence, it remains to show that the map χ is injective. For this
let A and A′ be two algebraically trivial NCP Tn-bundles satisfying A0 = A′0 = B and
χ(A) = χ(A′). By Proposition 4.10 we may assume that A = A(S,ω) and A′ = A(S′,ω′)

for two factor systems (S, ω) and (S′, ω′) in Z2(Zn, B) with [(S′, ω′)] = [(S, ω)]. Thus,
the claim follows from Proposition 4.11.

5. Zn-kernels. In the previous section we saw that the set of all equivalence classes
of algebraically trivial NCP Tn-bundles with a prescribed fixalgebra B is classified by
the cohomology space H2(Zn, B). Moreover, Proposition 4.5 in particular implies that
equivalent algebraically trivial NCP Tn-bundles correspond to the same Zn-kernel. This
leads to the following definition.

Definition 5.1 (Equivalence classes of Zn-kernels). Let n ∈ N and B be a unital algebra.
We write Ext(Zn, B)[S] for the set of equivalence classes of algebraically trivial NCP
Tn-bundles with base B corresponding to the Zn-kernel [S].

Note that the set Ext(Zn, B)[S] may be empty. The aim of this section is to show how
to classify this set and give conditions for its non-emptiness. The following proposition
basically states that if Ext(Zn, B)[S] is non-empty, then it is classified by the second
group cohomology space H2(Zn, Z(B)×)[S] (cf. [Ma95], Chapter IV, Section 4).

Proposition 5.2. Let n ∈ N and B be a unital algebra. Further, let [S] be a Zn-kernel
with Ext(Zn, B)[S] 6= ∅. Then the map

H2(Zn, Z(B)×)[S] × Ext(Zn, B)[S] → Ext(Zn, B)[S]

given by
([β], [A(S,ω)]) 7→ [A(S,ω·β)]

is a well-defined simply transitive action.

Proof. A proof of this statement can be found in [Wa11], Corollary 7.3.23.

Remark 5.3 (Commutative fixed point algebras). Let n ∈ N and suppose that B is
a commutative unital algebra. Then the adjoint representation of B is trivial and a
factor system (S, ω) for (Zn, B) consists of a module structure given by a homomorphism
S : Zn → Aut(B) and an element ω ∈ C2(Zn, B×). Thus, (S, ω) defines an algebraically
trivial NCP Tn-bundle A(S,ω) if and only if dSω = 1B , i.e., ω ∈ Z2(Zn, B×). In this case
we write Aω for this algebraically trivial NCP Tn-bundle.

Further S ∼ S′ if and only if S = S′. Hence a Zn-kernel [S] is the same as a Zn-module
structure S on B and Ext(Zn, B)S := Ext(Zn, B)[S] is the class of all algebraically trivial
NCP Tn-bundles with fixalgebra B corresponding to the Zn-module structure on B given
by S.
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According to Proposition 5.2, these equivalence classes correspond to cohomology
classes of cocycles, so that the map

H2(Zn, B×)S → Ext(Zn, B)S , [ω] 7→ [Aω]

is a well-defined bijection.

We now give a condition that ensures the non-emptiness of the set Ext(Zn, B)[S] for
a given Zn-kernel S. We first need the following definition:

Definition 5.4. Let n ∈ N and B be a unital algebra. Further, let S be an outer action
of Zn on B and choose ω ∈ C2(Zn, B×) with δS = CB ◦ ω. The cohomology class

ν(S) := [dSω] ∈ H3(Zn, Z(B)×)S

does not depend on the choice of ω and is constant on the equivalence class of S, so
that we may also write ν([S]) := ν(S) (cf. [Wa11], Proposition 7.3.25). We call ν(S) the
characteristic class of S.

The next theorem provides a group theoretic criterion for the non-emptiness of the
set Ext(Zn, B)[S].

Theorem 5.5. Let n ∈ N and B be a unital algebra. If [S] is a Zn-kernel, then

ν([S]) = 1 ⇔ Ext(Zn, B)[S] 6= ∅.

Proof. Again, a proof of this statement can be found in [Wa11], Theorem 7.3.27.

6. Some useful results on the second group cohomology of Zn. Let n ∈ N and
B be a commutative unital algebra. In view of the previous two subsections we now
present some useful results on the second cohomology groups H2(Zn, B×). We start with
some general facts on the set of equivalence classes Ext(Zn, B×) ∼= H2(Zn, B×) of central
extensions of Zn by the abelian group B×. Note that since Zn is free abelian, the set
Extab(Zn, B×) of equivalence classes of central extensions of Zn by the abelian group B×

which are abelian consists of a single element. Further, let Alt2(Zn, B×) denote the set
of biadditive alternating maps from Zn to B× and define for each [ω] ∈ H2(Zn, B×) a
map fω ∈ Alt2(Zn, B×) by

fω(k, l) := ω(k, l)− ω(l,k).

Proposition 6.1. Let n ∈ N and B be a commutative unital algebra. Moreover, let B×

be a trivial Zn-module. Then the following assertions hold :

(a) The map
Φ : H2(Zn, B×)→ Alt2(Zn, B×), [ω] 7→ fω

is an isomorphism of abelian groups.
(b) Moreover, the map

Alt2(Zn, B×)→ (B×)n(n−1)/2, f 7→ (f(ei, ej))1≤i<j≤n,

is an isomorphism of abelian groups.

Proof. This statement is a special case of [Ne07], Proposition II.4.
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Next, we consider the general case of abelian extensions of Z2 by the unit group of
a commutative algebra B. Recall that if (B×, S) is a Z2-module, then Ext(Z2, B×)S ∼=
H2(Z2, B×)S denotes the set of equivalence classes of all B×-extensions of Z2 for which
the associated Z2-module structure on B× is S. Moreover, we write

σω : Z2 → B× ×ω Z2, (k, l) 7→ (1B , (k, l))

for the section of the extension of Z2 by B× corresponding to the cocycle ω∈Z2(Z2, B×)S .

Proposition 6.2. Let B be a commutative unital algebra and (B×, S) a Z2-module.
Further, let e and e′ be generators of Z2. Then the map

β : H2(Z2, B×)S → B×/C, [ω] 7→ bω(e, e′) + C,

is a well-defined isomorphism of abelian groups, where

bω(e, e′) := σω(e)σω(e′)σω(e)−1σω(e′)−1

and
C :=

〈
b′ − S(e)b′ − b+ S(e′)b : b, b′ ∈ B×

〉
.

Proof. The proof will be divided into four steps.
(i) We first show that the map β is well defined. Therefore let ω and ω′ be two cocycles

with [ω] = [ω′] and note that according to [Ma95], Chapter IV, Section 4 there exists an
element h ∈ C1(Z2, B×) such that the map

ϕ : B× ×ω′ Z2 → B× ×ω Z2, (b,k) 7→ (bh(k),k),

is an equivalence of extensions. In particular we get ϕ ◦ σω′ = h · σω, which leads to

bω′(e, e′) = bω(e, e′) + h(e′)− S(e)h(e′)− h(e) + S(e′)h(e).

(ii) Next, let [ω], [ω′] ∈ H2(Z2, B×)S . Then a short calculation leads to

β([ω + ω′]) = β([ω]) + β([ω′]).

Hence, β is a homomorphism of abelian groups.
(iii) Now, let [ω] ∈ H2(Z2, B×)S with β([ω]) = 0, i.e.,

bω(e, e′) = b′ − S(e)b′ − b+ S(e′)b

for some b, b′ ∈ B×, and consider the section σ : Z2 → B× ×ω Z2 given for k, l ∈ Z by

σ(ek + (e′)l) := (b−1σω(e))k((b′)−1σω(e′))l.

Then
σ(e)σ(e′) = σ(e′)σ(e)

implies that σ is a homomorphism of groups. In particular the extension

q : B× ×ω Z2 → Z2, (b, (k, l)) 7→ (k, l),

splits. Thus, [ω] = 0 ∈ H2(Z2, B×)S , which means that the map β is injective.
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(iv) To show that β is surjective, we associate to each b0 ∈ B× a group extension Gb0
of Z2 by B× in the following way: Take Gb0 to be the set of all symbols

b �mu � nv, b ∈ B×, m, n ∈ Z,

with multiplication given by

u � b = e.b � u, v � b = e′.b � v, v � u = b0 � u � v.

It is an easy exercise to show that this multiplication is always associative and makes the
set of symbols a group. This completes the proof.

7. Examples of algebraically trivial NCP torus bundles. We finally give a bunch
of examples of algebraically trivial NCP Tn-bundles.

Example 7.1 (The classical picture). If B = C∞(M) and S = 1, then there exists up
to isomorphy only one algebraically trivial NCP Tn-bundle for which A is commutative.
A possible realization is given by

A :=
⊕
k∈Zn

C∞(M)χk,

where χk denotes the character of Tn corresponding to k ∈ Zn. It is the algebraic skeleton
of the smooth trivial NCP Tn-bundle (C∞(M × Tn),Tn, α), which is induced from the
trivial principal Tn-bundle

(M × Tn,M,Tn,prM , σTn).

This example perfectly reflects the commutative world, in which there exists up to iso-
morphy only one trivial principal Tn-bundle over a given manifold M . On the other hand,
it shows that the situation completely changes in the noncommutative world, where there
exist plenty of algebraically trivial NCP Tn-bundles with base C∞(M) (cf. Proposition
6.1).

Definition 7.2 (The algebraic noncommutative n-torus). A Zn-graded unital associa-
tive algebra

A =
⊕
k∈Zn

Ak

is called an algebraic noncommutative n-torus, if each grading space Ak is one-dimensional
and each nonzero element of Ak is invertible. In [OP95], these algebras are called twisted
group algebras.

Remark 7.3. Note that algebraic noncommutative n-tori are the algebraic counterpart
of Example 2.1.

Example 7.4. Let n ∈ N and B = C. The algebraic noncommutative n-tori are ex-
actly the algebraically trivial NCP Tn-bundles with base C corresponding to the trivial
Zn-module structure on C. Indeed, if A is an algebraic noncommutative n-torus, then a
short observation shows that the short exact sequence

1 −→ C× −→ A×h −→ Zn −→ 1
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of groups is central. By Remark 5.3 and Proposition 6.1, these algebras are classified by

H2(Zn,C×) ∼= (C×)n(n−1)/2.

Lemma 7.5. Let A be an algebraic noncommutative n-torus. Then

(a) Each unit of A is graded, i.e., A× = A×h .
(b) Each automorphism of A is graded, i.e., Aut(A) = Autgr(A).

Proof. The proofs of these statements can be found in [Ne07], Appendix A.

Proposition 7.6. Let n,m ∈ N and B := Bf be the algebraic noncommutative n-torus
corresponding to the cocycle f ∈ Z2(Zn,C×). Further, let (S, ω) ∈ Z2(Zm, B) be a factor
system. Then A(S,ω) is an algebraic noncommutative (m+n)-torus if and only if S leaves
the grading spaces of B invariant and the cocycle ω takes values in B×0

∼= C×.

Proof. Let ⊕
k∈Zn

Cvk, resp.,
⊕
l∈Zm

Bwl

be the underlying vector space of B, resp., of A.
(“⇐”) We first write cl,k ∈ C× for the constant satisfying S(l)vk = cl,kvk. Since

the cocycle ω takes values in C×, the map S is a group homomorphism and thus the
calculation

(vkwl)(vk′wl′) = vkS(l)vk′ω(l, l′)wl+l′ = cl,k′ω(l, l′)vkvk′wl+l′

= cl,k′ω(l, l′)f(k,k′)vk+k′wl+l′

shows that A(S,ω) is an algebraic noncommutative (m + n)-torus corresponding to the
cocycle

f ′ : Zm+n × Zm+n → C×, ((k, l), (k′, l′)) 7→ cl,k′ω(l, l′)f(k,k′).

(“⇒”) Conversely, if A(S,ω) is an algebraic noncommutative (m+ n)-torus, then

(vkwl)wl′ = vkω(l, l′)wl+l′ ∈ Ak,l+l′

and Lemma 7.5 (a) imply that ω(l, l′) ∈ B×0 ∼= C× for all l, l′ ∈ Zm. Moreover,

wl′(vkwl) = S(l′)vkω(l′, l)wl+l′ = ω(l′, l)S(l′)vkwl+l′ ∈ Ak,l+l′

and Lemma 7.5 (b) imply that the map S must leave each grading spaces of B invariant.

Lemma 7.7. Each automorphism of the matrix algebra Mn(C) is inner.

Proof. This is a corollary of the well-known Skolem–Noether Theorem.

Example 7.8. Let B = Mm(C). In view of Lemma 7.7, each outer action of Zn on
Mm(C) is equivalent to S = 1. In particular, Ext(Zn, B)[S] 6= ∅ and Proposition 5.2
implies that the equivalence classes of algebraically trivial NCP Tn-bundles with base
Mm(C) are classified by

H2(Zn,C×) ∼= (C×)n(n−1)/2.
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Example 7.9 (Direct sums). Let A and A′ be two algebraically trivial NCP Tn-bundles
with base B and B′, respectively. Then the direct sum A⊕ A′ is an algebraically trivial
NCP Tn bundle with base B ⊕B′.

Example 7.10 (Tensor products). Let A be an algebraically trivial NCP Tn-bundle with
base B and A′ an algebraically trivial NCP Tm-bundle with base B′ Then their tensor
product A⊗A′ is an algebraically trivial NCP Tn+m-bundle with base B ⊗B′.

8. Perspectives. In this paper we have presented a geometrically oriented approach to
the noncommutative geometry of trivial principal Tn-bundles. Therefore it is just natural
to ask if there is also a reasonable, geometrically oriented approach to the noncommuta-
tive geometry of non-trivial principal Tn-bundles. In classical differential geometry each
principal bundle (P,M,G, q, σ) is locally trivial. Inspired by this fact, we have introduced
an appropriate method of localizing algebras in a “smooth” way. The step from the trivial
to the non-trivial case is then carried out by saying that a (smooth) dynamical system
(A,Tn, α) is a NCP Tn-bundle if “localization” around characters of the fixalgebra Z

of the induced action of Tn on the center CA of A leads to trivial NCP Tn-bundles. In
particular, this approach covers the classical theory of principal Tn-bundles and further
examples are given by sections of algebra bundles endowed with certain actions of Tn by
algebra automorphisms. For details we refer to [Wa11].
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