
NONLOCAL AND ABSTRACT PARABOLIC EQUATIONS
AND THEIR APPLICATIONS

BANACH CENTER PUBLICATIONS, VOLUME 86
INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES
WARSZAWA 2009

LONGTIME BEHAVIOR OF SOLUTIONS OF A
NAVIER-STOKES/CAHN-HILLIARD SYSTEM

HELMUT ABELS

Max Planck Institute for Mathematics in Science
Inselstr. 22, 04103 Leipzig, Germany

E-mail: abels@mis.mpg.de

Abstract. We study a diffuse interface model for the flow of two viscous incompressible New-
tonian fluids of the same density in a bounded domain. The fluids are assumed to be macro-
scopically immiscible, but a partial mixing in a small interfacial region is assumed in the model.
Moreover, diffusion of both components is taken into account. This leads to a coupled Navier-
Stokes/Cahn-Hilliard system, which can describe the evolution of droplet formation and collision
during the flow. We review some results on existence, uniqueness and regularity of weak and
strong solutions in two and three space dimensions. Moreover, we prove stability of local minima
of the energy and show existence of a weak global attractor, which is strong if d = 2.

1. Introduction. In the present contribution we study the Navier-Stokes/Cahn-Hilliard
system:

∂tv + v · ∇v − div(ν(c)Dv) +∇p = −ε div(∇c⊗∇c) in Q,(1.1)

div v = 0 in Q,(1.2)

∂tc+ v · ∇c = m∆µ in Q,(1.3)

µ = ε−1φ(c)− ε∆c in Q,(1.4)

together with the boundary and initial conditions

v|∂Ω = 0 on S,(1.5)

∂nc|∂Ω = ∂nµ|∂Ω = 0 on S,(1.6)

(v, c)|t=0 = (v0, c0) in Ω,(1.7)
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where Q = Ω× (0,∞), S = ∂Ω× (0,∞) and Ω ⊂ Rd, d = 2, 3, is a bounded domain with
C3-boundary. Moreover, ν ∈ C2(R) with ν(s) ≥ ν0 > 0 for all s ∈ R.

This system arises in a so-called diffuse interface model for the two-phase flow of two
viscous, incompressible fluids, which are macroscopically immiscible. Such models take a
partial mixing of the fluids on a small length scale proportional to ε > 0 into account. We
refer to Gurtin et al. [10] for a derivation of this model and to Anderson and McFadden [5]
for a review on diffuse interface models.

Here v is the mean velocity of the mixture, Dv = 1
2 (∇v +∇vT ), p is the pressure, c

is an order parameter related to the concentration of the fluids (e.g. the concentration
difference or the concentration of one component), and Ω is a suitable bounded domain.
Moreover, ν(c) > 0 is the viscosity of the mixture, ε > 0 is a (small) parameter, which will
be related to the “thickness” of the interfacial region, and φ = Φ′ for some suitable energy
density Φ specified below. It is assumed that the densities of both components as well
as the density of the mixture are constant and for simplicity equal to one. We note that
capillary forces due to surface tension are modeled by an extra contribution ε∇c⊗∇c in
the stress tensor leading to the term on the right-hand side of (1.1). Moreover, we note
that in the modeling diffusion of the fluid components is taken into account. Therefore
m∆µ is appearing in (1.3), where m > 0 is the mobility coefficient, which is assumed to
be constant.

Here (1.5) is the usual no-slip boundary condition for viscous fluids, n is the exterior
normal on ∂Ω, ∂nµ|∂Ω = 0 means that there is no flux of the components through the
boundary, and ∂nc|∂Ω = 0 describes a “contact angle” of π/2 of the diffused interface and
the boundary of the domain.

The total energy of the system above is given by E(c, v) = Efree(c) + Ekin(v), where

Efree(c) =
1
2

∫
Ω

ε|∇c(x)|2 dx+
∫

Ω

ε−1Φ(c(x)) dx,(1.8)

Ekin(v) =
1
2

∫
Ω

|v(x)|2 dx.(1.9)

Here the Ginzburg-Landau energy Efree(c) describes an interfacial energy associated with
the region where c is not close to the minima of Φ(c) and Ekin(v) is the kinetic energy of
the fluid. The system is dissipative. More precisely, for sufficiently smooth solutions

d

dt
E(c(t), v(t)) = −

∫
Ω

ν(c(t))|Dv(t)|2 dx−m
∫

Ω

|∇µ(t)|2 dx.

There are only a few results on the mathematical analysis of diffuse interface mod-
els in fluid mechanics and the system above. First results on existence of strong solu-
tions, if Ω = R2 and Φ is a suitably smooth double well potential, were obtained by
Starovŏıtov [13]. More complete results were presented by Boyer [6] in the case that
Ω ⊂ Rd is a periodical channel and f is a suitably smooth double well potential. More-
over, (1.1)–(1.7) was also briefly discussed by Liu and Shen [11].

In this article we review the results of [1] on existence, uniqueness, and regularity of
weak and strong solutions of (1.1)–(1.7). Moreover, it was shown that any weak solution
(v, c) of (1.1)–(1.7) converges to (0, c∞), where c∞ is a solution of the stationary Cahn-
Hilliard equation. With similar techniques we will show in Section 2 stability of local



LONGTIME BEHAVIOR 11

minima of E. Finally, in Section 3, we show the existence of a weak global attractor,
which is a strong global attractor if d = 2.

First of all, let us recall the class of free energy densities Φ used in [1].

Assumption 1.1. Let Φ ∈ C([a, b]) ∩ C2((a, b)) such that φ = Φ′ satisfies

lim
s→a

φ(s) = −∞, lim
s→b

φ(s) =∞, φ′(s) ≥ −α

for some α ∈ R. Furthermore, we assume that ν ∈ C2([a, b]) is a positive function.

We extend Φ(x) by +∞ if x /∈ [a, b]. Hence Efree(c) < ∞ implies c(x) ∈ [a, b] for
almost every x ∈ Ω. We note that the previous assumption yields the decomposition

(1.10) Φ(s) = Φ0(s)− α

2
c2, φ(s) = φ0(s)− αc.

Often c is a just the concentration difference of both components and [a, b] = [−1, 1]. But
it is mathematically useful to consider a general interval.

We note that (1.1) can be replaced by

(1.11) ∂tv + v · ∇v − div(ν(c)Dv) +∇g = µ0∇c

with g = p + 1
2 |∇c|

2 + Φ(c) − µc and µ = µ0 + µ such that
∫

Ω
µ0(x) dx = 0 and µ ∈ R

since µ∇c = ∇( 1
2 |∇c|

2 + Φ(c))− div(∇c⊗∇c).
In the following we will for simplicity assume that ε = 1 and m = 1. But all results

are valid for general ε > 0,m > 0.
Furthermore, let Q(s,t) = Ω × (s, t), Qt = Q(0,t), and Q = Q(0,∞). In the following

BCw(0, T ;X) denotes the set of all weakly continuous functions f : I → X, where I =
[0, T ] if 0 < T <∞ and I = [0,∞) if T =∞. If A ⊂ RN , N ∈ N, is a set, then

C∞(0)(A) = {f : A→ R : f = F |A, F ∈ C∞0 (RN ), suppF ∩A is compact}.

Here and in the following C∞0 (Ω) denotes the space of all smooth and compactly supported
functions f : Ω→ R for a domain Ω ⊂ RN . Moreover,

H1
(0)(Ω) =

{
u ∈ H1(Ω) :

∫
Ω

u dx = 0
}

is the space equipped with the norm ‖u‖H1
(0)(Ω) := ‖∇u‖L2(Ω) and H−1

(0) (Ω) = H1
(0)(Ω)′.

Finally, L2
σ(Ω) = {f ∈ L2(Ω)d : div f = 0, n · f |∂Ω = 0} and W 1

q,0(Ω) = C∞0 (Ω)
‖∇·‖Lq

.
For complete definitions of the function spaces in the following we refer to [1].

Definition 1.2. Let 0 < T ≤ ∞. A triple (v, c, µ) such that

v ∈ BCw(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

0 (Ω)d),

c ∈ BCw(0, T ;H1(Ω)), φ(c) ∈ L2
loc([0, T );L2(Ω)),∇µ ∈ L2(QT )

is called a weak solution of (1.1)–(1.7) on (0, T ) if

−(v, ∂tψ)QT
− (v0, ψ|t=0)Ω + (v · ∇v, ψ)QT

+ (ν(c)Dv,Dψ)QT
= (µ∇c, ψ)QT

for all ψ ∈ C∞(0)([0, T )× Ω)d with divψ = 0,

−(c, ∂tϕ)QT
− (c0, ϕ|t=0)Ω + (v · ∇c, ϕ)QT

= −(∇µ,∇ϕ)QT

(µ, ϕ)QT
= (φ(c), ϕ)QT

+ (∇c,∇ϕ)QT
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for all ϕ ∈ C∞(0)([0, T )× Ω), and if the (strong) energy inequality

(1.12) E(v(t), c(t)) +
∫
Q(t0,t)

(ν(c)|Dv|2 + |∇µ|2) d(x, τ) ≤ E(v(t0), c(t0))

holds for almost all 0 ≤ t0 < T including t0 = 0 and all t ∈ [t0, T ).

Since µ is uniquely determined by c via (1.4), we often simply call (v, c) a weak solution
of (1.1)–(1.7). Finally, replacing [0,∞) by [T,∞), T ∈ R, one defines weak solutions of
(1.1)–(1.7) on [T,∞).

Theorem 1.3 (Global existence of weak solutions). For every v0 ∈ L2
σ(Ω), c0 ∈ H1(Ω)

with c0(x) ∈ [a, b] almost everywhere there is a weak solution (v, c, µ) of (1.1)–(1.7) on
(0,∞). Moreover, if d = 2, then (1.12) holds with equality for all 0 ≤ t0 ≤ t < ∞.
Finally, every weak solution on (0,∞) satisfies

(1.13) ∇2c, φ(c) ∈ L2
loc([0,∞);Lr(Ω)),

t
1
2

1 + t
1
2
c ∈ BUC(0,∞;W 1

q (Ω))

where r = 6 if d = 3 and 1 < r <∞ is arbitrary if d = 2 and q > 3 is independent of the
solution and initial data. If additionally c0 ∈ H2

N (Ω) := {c ∈ H2(Ω) : ∂nc|∂Ω = 0} and
−∆c0 + φ0(c0) ∈ H1(Ω), then c ∈ BUC(0,∞;W 1

q (Ω)).

We note that the regularity statement t
1
2 /(1 + t

1
2 )c ∈ BUC(0,∞;W 1

q (Ω)) with q > d

for any weak solution in the latter theorem is a crucial ingredient for obtaining higher
regularity of weak solutions.

Proposition 1.4 (Uniqueness). Let 0 < T ≤ ∞, q = 3 if d = 3 and let q > 2 if
d = 2. Moreover, assume that v0 ∈ W 1

q,0(Ω)d ∩ L2
σ(Ω) and let c0 ∈ H1

(0)(Ω) ∩ C0,1(Ω)
with c0(x) ∈ [a, b] for all x ∈ Ω. If there is a weak solution (v, c, µ) of (1.1)–(1.7) on
(0, T ) with v ∈ L∞(0, T ;W 1

q (Ω)d) and ∇c ∈ L∞(QT ), then any weak solution (v′, c′, µ′)
of (1.1)–(1.7) on (0, T ) with the same initial values and ∇c′ ∈ L∞(QT ) coincides with
(v, c, µ).

For the following we denote V 1+j
2 (Ω) = H1+j(Ω)d ∩H1

0 (Ω)d ∩ L2
σ(Ω), j = 0, 1. More-

over, for s ∈ (0, 1) we define V 1+s
2 (Ω) = (V 1

2 (Ω), V 2
2 (Ω))s,2, where (., .)s,q denotes the real

interpolation functor.

Theorem 1.5 (Regularity of weak solutions). Let c0 ∈ H2
N (Ω) such that Efree(c0) <∞

and −∆c0 + φ(c0) ∈ H1(Ω).

1. Let d = 2 and let v0 ∈ V 1+s
2 (Ω) with s ∈ (0, 1]. Then every weak solution (v, c) of

(1.1)–(1.7) on (0,∞) satisfies

v ∈ L2(0,∞;H2+s′(Ω)d) ∩H1(0,∞;Hs′(Ω)d) ∩BUC([0,∞);H1+s−ε(Ω)d)

for all s′ ∈ [0, 1
2 ) ∩ [0, s] and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(0,∞;Lr(Ω)) for

every 1 < r <∞. In particular, the weak solution is unique.
.2 Let d = 2, 3. Then for every weak solution (v, c, µ) of (1.1)–(1.7) on (0,∞) there

is some T > 0 such that

v ∈ L2(T,∞;H2+s(Ω)d) ∩H1(T,∞;Hs(Ω)d) ∩BUC([T,∞);H2−ε(Ω)d)
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for all s ∈ [0, 1
2 ) and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(T,∞;Lr(Ω)) with r = 6

if d = 3 and 1 < r <∞ if d = 2.
3. If d = 3 and v0 ∈ V s+1

2 (Ω), s ∈ ( 1
2 , 1], then there is some T0 > 0 such that every

weak solution (v, c) of (1.1)–(1.7) on (0, T0) satisfies

v ∈ L2(0, T0;H2+s′(Ω)d) ∩H1(0, T0;Hs′(Ω)d) ∩BUC([0, T0];H1+s−ε(Ω)d)

for all s′ ∈ [0, 1
2 ) and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(0, T0;L6(Ω)). In partic-

ular, the weak solution is unique on (0, T0).

Finally, because of the regularity of any weak solution for large times, one is able to
modify the proof in [4], based on the Łojasiewicz-Simon inequality, to show convergence
to stationary solutions as t→∞.

Theorem 1.6 (Convergence to stationary solution). Assume that Φ: (a, b)→ R is ana-
lytic and let (v, c, µ) be a weak solution of (1.1)–(1.7). Then (v(t), c(t)) ⇀t→∞ (0, c∞) in
H2−ε(Ω)d ×H2(Ω) for all ε > 0 and for some c∞ ∈ H2(Ω) with φ(c∞) ∈ L2(Ω) solving
the stationary Cahn-Hilliard equation

−∆c∞ + φ(c∞) = const. in Ω,(1.14)

∂nc∞|∂Ω = 0 on ∂Ω,(1.15) ∫
Ω

c∞(x) dx =
∫

Ω

c0(x) dx.(1.16)

All the previous results are proved in [1].

2. Stability of local minima. We assume thatm0 ∈H2
N (Ω) = {u∈H2(Ω) : ∂nu|∂Ω = 0}

with m0(x) ∈ (a, b) for all x ∈ Ω is a local minimum of Efree(c) in the sense that there is
some ε1 > 0 such that

Efree(m0) ≤ Efree(c) if ‖c−m0‖H1(Ω)∩L∞(Ω) ≤ ε0,

∫
Ω

c dx =
∫

Ω

m0 dx.

W.l.o.g. we can assume that
∫

Ω
m0 dx = 0 since by a simple translation of c and Φ we

can always reduce to this case. Furthermore, changing Φ by a constant, we can reduce to
the case that Efree(m0) = 0.

Moreover, we assume that ε1 > 0 is chosen so small that

c(x) ∈ [a′, b′] for all x ∈ Ω

for some a < a′ < b′ < b and that the Łojasiewicz-Simon inequality

|Efree(c)− Efree(m0)|1−θ ≤ C‖DẼfree(c)‖H−1
(0)

(2.1)

holds for all ‖c−m0‖H1
(0)
≤ ε1, where θ ∈ (0, 1

2 ], cf. [4, Proposition 6.3] and [1, Section 3.2].

Here DẼfree denotes the Fréchet derivative of Ẽfree : H1
(0)(Ω)→ R and Ẽfree denotes the

functional obtained from Efree by replacing Φ by a suitable smooth Φ̃ with Φ̃|[a′,b′] =
Φ|[a′,b′], cf. [4, Section 6] for details.

We want to show stability of this stationary solution (0,m0).
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Theorem 2.1. Let R > 0 be arbitrary and assume that c0 ∈ H2
N (Ω) with −∆c0 +φ(c0) ∈

H1(Ω) and v0 ∈ H2(Ω)d ∩H1
0 (Ω)d ∩ L2

σ(Ω) satisfy

(2.2) ‖c0‖H2(Ω) + ‖ −∆c0 + φ(c0)‖H1(Ω) + ‖v0‖H2(Ω) ≤ R.

Then for every 0 < ε ≤ ε1 there is some δ > 0 such that, if

‖c0 −m0‖H1 + E(c0, v0) ≤ δ and
∫

Ω

c0 dx =
∫

Ω

m0 dx,

then there is a unique weak solution (v, c) of (1.1)–(1.7) on (0,∞) such that

‖c−m0‖L∞(0,∞;H1(Ω)∩L∞(Ω)) + ‖v‖BUC([0,∞);H1(Ω)) ≤ ε,(2.3)

as well as c ∈ L∞(0,∞;W 2
r (Ω)), where r = 6 if d = 3 and 1 < r < ∞ is arbitrary if

d = 2, and v ∈ BUC([0,∞);Hs(Ω)d) for every s < 2.

In order to prove the latter theorem, we start with a refinement of the last statement
of Theorem 1.3.

Lemma 2.2. Assume that either κ(t) = t
1
2 /(1 + t

1
2 ) or κ(t) ≡ 1 and c0 ∈ H2

N (Ω) such
that −∆c0 + φ(c0) ∈ H1(Ω). There are some q > 3 and s > 1 such that for any R > 0
there is some C(R) > 0 such that

‖κc‖BUC([0,∞);W s
q (Ω)) ≤ C(R)

for any weak solution (v, c) of (1.1)–(1.7) with

E(c0, v0) ≤ R if κ(t) = t
1
2 /(1 + t

1
2 ),

E(c0, v0) + ‖−∆c0 + φ(c0)‖H1(Ω) ≤ R if κ(t) ≡ 1.

Proof. If s = 1, then the statement is proved as part of the proof of [1, Theorem 1.4].
The proof relies on direct estimates using the bounds given by energy estimate (1.12), [1,
Lemma 3.2], and interpolation. The assumption c0 ∈ H2

N (Ω) and −∆c0 + φ(c0) ∈ H1(Ω)
is only needed for the regularity statements of [1, Lemma 3.2] if κ(t) ≡ 1. The uni-
form dependence of the constants as stated in the lemma can be easily checked going
through the proofs. Moreover, the proof of [1, Theorem 1.4] also shows that there are
some s > 1 and some (slightly smaller) q > 3 such that the statement of the lemma
holds.

The key argument for the stability of the local minimum is contained in the proof of
the following lemma and is based on the Łojasiewicz-Simon inequality (2.1).

Lemma 2.3. For every 0 < ε < ε1 there is some δ > 0 such that, if (v, c) is a weak
solution of (1.1)–(1.7) with

‖c0 −m0‖H1(Ω)∩L∞(Ω) + E(c0, v0) ≤ δ,

then

sup
0≤t<∞

‖c(t)−m0‖H1(Ω)∩L∞(Ω) ≤ ε
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Proof. First of all, we assume that 0 < δ ≤ ε1. Since c ∈ BUC([0,∞);W 1+ε
q (Ω)) and

W 1+ε
q (Ω) ↪→ H1(Ω) ∩ L∞(Ω) due to q > 3, we have

(2.4) sup
0≤t≤T

‖c(t)−m0‖H1(Ω)∩L∞(Ω) < ε1

at least for some T > 0. Moreover, we have

‖c(t)− c0‖H1(Ω)∩L∞(Ω) ≤ ‖c(t)− c0‖1−αW 1+ε
q (Ω)

‖c(t)− c0‖αH−1
(0) (Ω)

≤ C(R)‖c(t)− c0‖αH−1
(0) (Ω)

for some 0 < α < 1 by interpolation and since ‖c‖BUC([0,∞);W 1+ε
q (Ω)) ≤ C(R). On the

other hand, as long as (2.4) holds we have

− d

dt
E(c(t), v(t))θ ≥ C‖∇µ(t)‖L2(Ω) = C‖∂tc‖H−1

(0) (Ω)

for all t ∈ (0, T ) by the same calculation as in [1, Section 7, Proof of Theorem 1.7]. This
implies

sup
0≤t≤T

‖c(t)− c0‖H−1
(0) (Ω) ≤ CE(c0, v0)θ,

where C is independent of T . Hence

‖c(t)− c0‖H1(Ω)∩L∞(Ω) ≤
ε

2
for all 0 ≤ t ≤ T provided that E(c0, v0) ≤ δ for sufficiently small δ independent of T > 0.
Altogether, we have

sup
0≤t≤T

‖c(t)−m0‖H1(Ω)∩L∞(Ω) ≤ ε < ε1

for all T > 0 such that (2.4) holds. But this implies that we can choose T = ∞ in the
latter estimate. Otherwise there would be some 0 < T <∞ such that

ε < sup
0≤t≤T

‖c(t)−m0‖H1(Ω)∩L∞(Ω) < ε1.

But for this T > 0 the previous estimates show that

sup
0≤t≤T

‖c(t)−m0‖H1(Ω)∩L∞(Ω) ≤ ε,

which would be a contradiction.

Next we show smallness and regularity of v if δ > 0 is sufficiently small.

Lemma 2.4. Let R > 0 and let (v, c) be a weak solution of (1.1)–(1.7) on (0,∞) with
initial values (v0, c0) ∈ (H1

0 (Ω)d ∩ L2
σ(Ω))×H2

N (Ω) such that (2.2) and

sup
0≤t<∞

‖c(t)−m0‖H1 ≤ ε1

hold. Then for every ε > 0 there is some δ > 0 such that v ∈ BUC([0,∞);H1(Ω)d) and

‖v‖BUC([0,∞);H1(Ω)) ≤ ε

provided that E(c0, v0) ≤ δ.
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Proof. Let f = µ0∇c. Then v ∈ L∞(0,∞;L2
σ(Ω)) ∩ L2(0,∞;H1(Ω)d) is a weak solution

of

∂tv + v · ∇v − div(ν(c)Dv) +∇p = f in Q,(2.5)

div v = 0 in Q,(2.6)

v|∂Ω = 0 on S,(2.7)

v|t=0 = v0 in Ω,(2.8)

Because of [1, Theorem 4.6], there is some ε2 such that, if

‖v0‖H1 + ‖f‖L2(Q) ≤ ε2,

then (2.5)–(2.8) has a unique solution v′ ∈ L2(0,∞;H2(Ω)d) ∩H1(0,∞;L2
σ(Ω)). Here

‖f‖L2(Q) ≤ ‖µ0‖L2(0,∞;L6(Ω))‖∇c‖L∞(0,∞;L3(Ω)) ≤ C(R)E(c0, v0)
1
2

because of Lemma 2.2. Therefore ‖v0‖H1 + ‖f‖L2(Q) ≤ ε2 provided that ‖v0‖H1 +
E(c0, v0) ≤ δ for some δ > 0 sufficiently small.

Moreover, because of [1, Proposition 4.8], the weak solution v of (2.5)–(2.8) coincides
with the (strong) solution v′. Finally, from the contraction mapping argument in the
proof of [1, Theorem 4.6] it can be easily seen that ‖v‖BUC([0,∞);H1(Ω)) ≤ ε provided that
‖v0‖H1 + E(c0, v0) is sufficiently small. Since

‖v0‖H1 ≤ ‖v0‖
1
2
H2‖v0‖

1
2
L2 ≤ CR

1
2E(c0, v0)

1
4 ,

the same is true if E(c0, v0) ≤ δ for some sufficiently small δ > 0.

Proof of Theorem 2.1. The estimate (2.3) follows from Lemma 2.2 and Lemma 2.3 for
sufficiently small δ. That c ∈ L∞(0,∞;W 2

r (Ω)) and v ∈ BUC([0,∞);Hs(Ω)) for every
s < 2 follows from the regularity results for the system (2.5)–(2.8) in the same way as in
the proof of [1, Lemma 6.2]. Finally, uniqueness follows from Proposition 1.4.

3. Existence of a global attractor. In this section we show existence of a weak global
attractor using the concepts and results of Cheskidov and Foias [8]. We will show existence
of a weak global attractor in the space

X0 = {(v, c) ∈ L2
σ(Ω)×H1

0 (Ω) : c(x) ∈ [a, b] a.e.}.

First of all, we show existence of a bounded absorbing set in X0.

Lemma 3.1. There is some R > 0 such that

BR(0) = {(v, c) ∈ X0 : ‖v‖L2 + ‖c‖H1 ≤ R}

is an absorbing set in the sense that for any R′ > 0 and any weak solution (v, c) of
(1.1)–(1.7) on (0,∞) with ‖v|t=0‖L2 + ‖c|t=0‖H1 ≤ R′ there is some t0 > 0 depending
only on R′ such that

‖v(t)‖L2 + ‖c(t)‖H1 ≤ R for all t ≥ t0.

Proof. W.l.o.g. let
∫

Ω
c0 dx = 0 ∈ (a, b). First of all, since φ ∈ C((a, b)), lims→b φ(s) =∞,

and lims→a φ(s) = −∞, there is some m0 > 0 such that

φ(s)s ≥ −m0 for all s ∈ (a, b).
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Therefore (1.3) (with ε = 1) and (1.6) imply

(µ0, c)Ω = ‖∇c‖2L2(Ω) +
∫

Ω

φ(c)c dx ≥ ‖∇c‖2L2(Ω) − |Ω|m0.

Hence
‖∇c‖2L2(Ω) ≤ C‖∇µ‖L2(Ω)‖∇c‖L2(Ω) + C ′,

where C,C ′ are independent of (v, c). Thus

E(c(t), v(t)) ≤ C(‖∇µ(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)) + C ′

for some constants C,C ′ > 0 independent of c, which implies that

M(t) := max{E(c(t), v(t)− C ′, 0} ≤ C(‖∇µ(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)) ∈ L
1(0,∞).

Moreover, M(t) ≤M(s) for almost every 0 ≤ s <∞ and all t ∈ [s,∞) since the same is
true for E(c(t), v(t)). Therefore

tM(t) ≤
∫ t

0

M(s) ds ≤ CE(c0, v0) ≤ C ′′(R′)

holds for all t > 0, which yields

‖∇c(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω) ≤ CE(c0, v0)t−1 + C ′

uniformly in t > 0.
Now let R = 2C ′. Then there is some t0 depending only on E(c0, v0) such that

‖∇c(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω) ≤ R for all t ≥ t0.

This finishes the proof.

Because of the latter lemma, we can restrict ourselves to X = {(v, c) ∈ X0 : ‖v‖L2 +
‖c‖H1 ≤ R} for the study of the asymptotic behavior of the system. (Here R > 0 is the
same as in the previous lemma.) We equip X0 with either the strong or the weak topology
metrized by ds, dw, respectively. (Note that the weak topology on X is metrizable since
X ′0 is separable.) We define an evolutionary system E as in [8]. To this end let

I = {I : I = [T,∞) for some T ∈ R or I = (−∞,∞)}.

Moreover, if I ∈ I, then F(I) denotes the set of all f : I → X. Then an evolutionary
system E as defined in [8] is a mapping such that E(I) ⊆ F(I) satisfying the following
conditions:

1. E([0,∞)) 6= ∅.
2. E(s+ I) = {u : u(· − s) ∈ E(I)} for all s ∈ R.
3. {u|I2 : u ∈ E(I1)} ⊆ E(I2) for all I1, I2 ∈ I such that I2 ⊆ I1.
4. E((−∞,∞)) = {u : u|[T,∞) ∈ E([T,∞)) for all T ∈ R}.

For every t ≥ 0 we define the mapping R(t) : P(X)→ P(X) by

R(t)A := {u(t) : u(0) ∈ A, u ∈ E([0,∞))}.

We recall that a set A ⊂ X is called a d•-attracting set (• = s, w) if it attracts X
uniformly in the d•-metric, i.e., for any ε > 0 there is some t0 > 0 such that

R(t)X ⊆ B•(A, ε) for all t ≥ t0,
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where B•(A, ε) = {x ∈ X : d•(x,A) < ε}. A• ⊆ X is a d•-global attractor (• = s, w) if
A• is a minimal d•-closed d•-attracting set, cf. [8, Definition 2.3].

Now we define E by

E([T,∞)) =

{(v, c) ∈ F([T,∞)) : (v, c) is a weak solution of (1.1)–(1.7) on [T,∞)}.

for T ∈ R and

E((−∞,∞)) = {u ∈ F((−∞,∞)) : u|[T,∞) ∈ E([T,∞)) for all T ∈ R}.

It is easy to check that E is an evolutionary system in the sense above.

Theorem 3.2. Let d = 2, 3. Then there exists a weak global attractor Aw that is a
maximal invariant set and satisfies

Aw = {u0 ∈ Xw : u0 = u(0) for some u ∈ E((−∞,∞))}.

Moreover, if d = 2, then Aw is a ds-compact and strong global attractor.

Proof. Since E([0,∞)) ⊆ C([0,∞);Hw), the first part follows from Theorem 2.11, Corol-
lary 2.12, and Theorem 2.14 in [8].

The second part follows from [8, Theorem 2.16] if we show that R(t) is asymptotically
ds-compact (if d = 2) in the sense that for any sequence (tn)n∈N in R such that tn →n→∞
∞ and any xn ∈ R(tn)X the sequence (xn)n∈N is relatively compact with respect to ds.
To this end, we show that there is some M > 0 such that

(3.1) ‖v‖BUC([1,∞);H1(Ω)) ≤M

for any (v, c) ∈ E([0,∞)). Combining this with Lemma 2.2, it easily follows that R(t) is
asymptotically ds-compact.

In order to show (3.1), let (v, c) ∈ E([0,∞)) be arbitrary. Since

|{t ∈ [0, 1] : ‖∇v(t)‖2L2(Ω) ≥ λ}| ≤
1
λ

∫ 1

0

‖∇v(t)‖2L2(Ω) dt

≤ CE(c(0), v(0))
λ

≤ C(R)
λ

for all λ > 0 because of (1.12), there is some t0 ∈ [ 1
2 , 1] such that

‖v(t0)‖H1 ≤ C(R)

for some C(R) independent of (v, c) ∈ E([0,∞)). Moreover, because of Lemma 2.2, c ∈
BUC([t0,∞);W 1

q (Ω)) and

‖c‖BUC([t0,∞);W 1
q (Ω)) ≤ C(R)

where q > 3. Therefore

‖µ0∇c‖L2(Qt0 ) ≤ ‖µ0‖L2(t0,∞;L6(Ω))‖c‖BUC([t0,∞);W 1
3 (Ω)) ≤ C(R).

Hence, using the regularity results for the linear Stokes system with viscosity ν(c) ∈
BUC([t0,∞);W 1

q (Ω)), cf. [1, Proposition 4.5], one can show in the same way as in the



LONGTIME BEHAVIOR 19

proof of [1, Lemma 6.2] that v ∈ BUC([t0,∞);H1(Ω)d) and

‖v‖BUC([1,∞);H1(Ω)) ≤ ‖v‖BUC([t0,∞);H1(Ω)) ≤ C(R)

for some constant C(R) independent of (v, c) ∈ E([0,∞)), which implies (3.1).

Acknowledgments. The author is grateful to Dr. Hideyuki Miura for many helpful
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