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Abstract. We survey some recent results on the gradient flow of an anisotropic surface en-

ergy, the integrand of which is one-homogeneous in the normal vector. We discuss the reasons

for assuming convexity of the anisotropy, and we review some known results in the smooth,

mixed and crystalline case. In particular, we recall the notion of calibrability and the related

facet-breaking phenomenon. Minimal barriers as weak solutions to the gradient flow in case of

nonsmooth anisotropies are proposed. Furthermore, we discuss some relations between cylin-

drical anisotropies, the prescribed curvature problem and the capillarity problem. We conclude

the paper by examining some higher order geometric functionals. In particular we discuss the

anisotropic Willmore functional and compute its first variation in the smooth case.

1. Introduction. Mean curvature flow, namely the gradient flow of the area functional,
received a lot of attention in the recent literature [Br], [Hu], [Gr], [EH], [ES], [CGG],
[Il1]-[Il4], [Ec], mainly because of its relations with differential geometry, minimal sur-
faces and materials science. From the physical point of view its relevance becomes even
more apparent once we extend the geometric evolution to the anisotropic setting [Sp],
[BBR]. This extension has also a geometric meaning, which corresponds to looking at the
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evolution from the point of view of Finsler geometry [BP1]. In this case the functional to
flow is of the form

(1)
∫
∂E

φo(n) dHn−1,

where the unit covector n(x) at x ∈ ∂E identifies the tangent space to ∂E at x, and
is in turn identified with the outer unit normal vector field to ∂E at x. Moreover, φo

is a suitable function and Hn−1 is the (n − 1)-dimensional Hausdorff measure in Rn.
We begin this paper by reviewing some recent results on the gradient flow of (1). The
need of assuming φo well defined on the whole unit sphere is shown in Example 2.1,
while the reason for assuming convexity is explained in Example 2.2. Neglecting these
two assumptions may lead to vanishing denominators, or to forward-backward geometric
evolution problems, that are out of the scope of the present paper. Even under these two
assumptions, several nontrivial problems arise, for instance in the crystalline case, namely
when the unit ball of φoext is a polyhedron, where φoext denotes the one-homogeneous
extension of φo to all one-covectors. This case is of particular interest in materials science,
as observed in [CHT]. We review some recent results on uniqueness of the crystalline flow
(Section 4), on its existence under convexity assumptions, and on calibrability and its
applications in the mixed case (Section 5). Again concerning crystalline mean curvature
flow, a new observation is given in Section 7: once we have at our disposal a local in
time existence result (for convex initial sets), we are able to define a weak evolution using
the minimal barriers approach of De Giorgi [DeG], with no restrictions on the space
dimension. We note that an approach based on the level set method seems not to be
available, at the moment, in such generality (see however [Gi] for developments in this
direction).

Nonsmooth anisotropic mean curvature flow has unexpected connections with the
prescribed curvature problem, with the capillarity problem and with the total variation
flow. Such connections are briefly described in Section 6.

As already observed in [CHT], also evolutions of higher order functionals may be of
some interest in materials science, see also [BGN]; moreover, such evolutions may appear
in differential geometry [D], [KS]. These flows in general are more difficult to analyze
with respect to anisotropic mean curvature flow, one reason being the lackness of the
comparison principle in the standard form. Among higher order geometric evolutions,
the surface diffusion flow is the one where the normal velocity of the hypersurface equals
minus the laplacian of the mean curvature κ. Under this evolution, the surface area of the
flowing manifold decreases, while the enclosed volume remains constant. The laplacian of
the mean curvature arises, also as the leading term in the first variation of the Willmore
functional

(2)
∫
∂E

κ2 dHn−1.

The functional (2) is a particular case of a second order functional of the form

(3)
∫
∂E

Φ(n, B) dHn−1,

where, if B denotes the second fundamental form of ∂E, Φ(n, B) := (tr(B))2. The ques-
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tion then arises of what can be a reasonable generalization of the surface laplacian of the
mean curvature in the anisotropic (also crystalline) setting [CRCT], [DG], [EG], [TC].
In the effort of answering this question it seems reasonable to consider, for a smooth
uniformly convex function φoext, the first variation of the anisotropic Willmore functional,
which is still a functional the form (3). This computation is performed in Section 8, and
gives rise to a possible definition of the anisotropic surface diffusion flow. We conclude this
introduction by mentioning that the crystalline case is not covered by this computation.

2. The map φo. We indicate by (·, ·) the standard scalar product between two vectors
or between two covectors in Rn, and we set | · |2 = (·, ·). Let Ω be an open subset of Rn,
n ≥ 1. For p ∈ Ω, the tangent space Tp(Ω) to Ω at p, and its cotangent space (Tp(Ω))∗,
are isomorphic to Rn. Let

φo : dom(φo) = {ξ∗ ∈ (Tp(Ω))∗ : φo(ξ∗) < +∞} ⊆ {ξ∗ ∈ (Tp(Ω))∗ : |ξ∗| = 1} → [0,+∞)

be a nonnegative continuous function with the following property: if φoext stands for
the one-homogeneous extension of φo to the cone {λdom(φo) : λ ≥ 0}, then the set
{φoext ≤ 1} ⊂ (Tp(Ω))∗ is star-shaped with respect to the origin.

If (φoext)
2 ∈ C1(dom(φoext)), we set, on dom(φoext),

(4) Tφoext
:=

1
2
∇
(
(φoext)

2
)
,

where ∇
(
(φoext)

2
)

is identified with the gradient of the scalar field (φoext)
2, hence a vector

field. Therefore Tφoext
(ξ∗) is regarded as an element of (Tp(Ω))∗∗ ' Tp(Ω).

In what follows an important role will be played by the image of {φoext = 1} through
the gradient mapping (4), namely by the set Tφoext

({φoext = 1}).

Example 2.1 (Dirichlet integral). Let n ≥ 2, A ⊆ Rn−1 be an open set and u ∈ C1
c (A).

Then

(5)
∫
A

|∇u|2 dx =
∫

graph(u)

φo(n) dHn−1,

where n is the unit normal to graph(u) ⊂ Ω := A ×R pointing for instance toward the
epigraph of u and, setting ξ∗ = (ξ̂∗, ξ∗n), ξ̂∗ =

(
ξ∗1 , . . . , ξ

∗
n−1

)
, we have

dom(φoext) := {ξ∗ ∈ Rn : ξ∗n > 0} , φoext(ξ
∗) = |ξ̂∗|2/ξ∗n.

If n = 2, the set {φoext ≤ 1} is the (closed convex unbounded) epigraph of the function
ξ∗2 = (ξ∗1)2, which contains the origin in its boundary. Note that the natural regularization
|ξ̂∗|2/

√
(ξ∗n)2 + ε2 of φoext(ξ

∗) is not one-homogeneous (see [Ev] for related arguments on
the evolution problem). Note also that if one writes φo as a supremum, then using (5) it
may become possible to look for harmonic functions in A with the calibration method,
see [ABD].

Example 2.2 (Perona-Malik functional). Let n = 2, A ⊆ R be an interval and u ∈
Lip(A). Then ∫

A

log(1 + (ux)2) dx =
∫

graph(u)

φo(n) dH1,
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where φoext(ξ
∗) = log

(
1 + (ξ∗1)2/(ξ∗2)2

)
|ξ∗2 |, and {φoext ≤ 1} is a nonconvex (and noncon-

cave) unbounded set containing the origin in its interior. We refer to [FGP] (and refer-
ences therein) for a discussion on the interesting phenomena related to the Perona-Malik
equation, which is obtained as the gradient flow of the Perona-Malik functional.

2.1. Anisotropies. The degeneracy of φo at ξ∗n = 0 (Example 2.1) leads to difficulties in
the related evolution problems, see for instance [Ev], [BCN1]. For this reason from now
on we assume that

dom(φo) = {ξ∗ ∈ (Tp(Ω))∗ : |ξ∗| = 1},

(in particular dom(φoext) = (Tp(Ω))∗) and that the origin is in the interior of {φoext ≤ 1}.

Remark 2.1. Even if n = 2 and (φoext)
2 ∈ C1((Tp(Ω))∗), the map φoext can be nonconvex,

and therefore the set
Tφo({φoext = 1})

can be a curve with transverse self-intersections and cusps (Example 2.2). In this case, the
related evolution problem is forward-backward, and suffers of instabilities and formation
of microstructures. To avoid such a kind of phenomena we assume from now on that φoext is
convex. Convexity allows to define the gradient mapping Tφoext

in (4) without smoothness
assumptions, provided we interpret ∇((φoext)

2) as the subdifferential of (φoext)
2: note that

Tφoext
is in general multivalued, and is a maximal monotone graph. Finally, we will also

assume for simplicity that φoext is even (i.e., φoext(ξ
∗) = φoext(−ξ∗)), even if this requirement

could be often dropped.

Definition 2.1. A function φo satisfying all the above assumptions will be called an
anisotropy.

From now on, given an anisotropy φo, if no confusion is possible and with an abuse
of notation, we write φo in place of φoext. We set Bφo := {φo ≤ 1}. Sometimes, φo is
referred to as the surface tension and assigns to each flat interface a positive weight. The
interface is the tangent space to ∂E at x ∈ ∂E (identified with n(x)⊥), and is the kernel
of the linear map associated with the covector n(x). Bφo is sometimes called the Frank
diagram.

Definition 2.2 (Wulff shape). We define the map φ : (Tp(Ω))∗∗ ' Tp(Ω)→ [0,+∞) as
the anisotropy such that {φ ≤ 1} = Tφo(Bφo).

Under our convexity assumption, φo and φ are dual to each other. We set Bφ :=
{φ≤ 1}; sometimes Bφ is called the Wulff shape. We let Tφ := 1

2∇(φ2). Under our assump-
tions one can show that TφTφo = TφoTφ = Id, and that φ(ξ) = sup{〈ξ∗, ξ〉 : ξ∗∈Bφo} for
any vector ξ ∈ Rn, where 〈·, ·〉 is the duality between covectors and vectors.

A first example of anisotropy is the Riemannian one, where Bφo (and hence Bφ) is an
ellipsoid. A wide generalization of this is the regular case (smooth spatially homogeneous
even Finsler case), namely when Bφo is a smooth uniformly convex body (and then the
same holds for Bφ [Sc]).

Example 2.3. The crystalline case refers to the situation where Bφo (and hence Bφ) is
a polyhedron. It will be analyzed in Sections 4 and 5.
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Example 2.4. The mixed case, where for instance Bφo can be strictly convex but not
smooth, or smooth but not strictly convex. Also the degree of smoothness plays a role,
as can be seen by the unit balls of the lp-norms, for p ∈ (1,+∞). The mixed case is of
interest, for instance, when Bφ is the cartesian product of a convex body with a segment:
a useful case is when Bφ is the portion of a circular cylinder (hence Bφo is a “double”
cone), which will be discussed in Section 6.

3. Some geometric functionals. Associated with an anisotropy φo, there are several
geometric functionals that could be studied, together with their gradient flow.

Example 3.1 (Anisotropic mean curvature flow, regular case). The first functional is the
anisotropic perimeter of a set of locally finite perimeter in Rn (see Section 1), namely

(6) Pφ(E) :=
∫
∂E

φo(n) dHn−1,

where n is identified with the (set-theoretic) outward unit normal to the (set-theoretic)
boundary ∂E of E. When φo is the euclidean norm Pφ(E) reduces to the usual perimeter
P (E) of E. When φo is regular, the gradient flow of Pφ has been studied by several authors
[GG], [BP1], [GGIS], and gives rise to the anisotropic mean curvature flow, where, roughly
speaking, the velocity field V equals the anisotropic mean curvature κφnφ =: Hφ, and
hence the normal velocity V·n equals φo(n)κφ. We recall for convenience of the reader the
definitions of κφ and of the vector field nφ (sometimes called the Cahn-Hoffman vector
field), when ∂E is smooth enough. We let

n∗φ(x) :=
n(x)

φo(n(x))
, nφ(x) := Tφo(n∗φ(x)), x ∈ ∂E.

Then, for any C ⊆ Rn and x ∈ Rn, we set dφ(x,C) := infy∈C φ(y − x), and

dφ(x) := dφ(x,E)− dφ(x,Rn \ E), x ∈ Rn.

Since it turns out that ∇dφ = n∗φ on ∂E, we have that ∇dφ (identified if necessary
with the differential of dφ) is a covector field extending n∗φ also outside ∂E, in a suitable
neighbourhood U of ∂E. We then define

(7) Nφ := Tφo (∇dφ) in U,

which is an extension in U of the vector field nφ. Finally, we set

κφ := divNφ on ∂E,

where the divergence is taken in the ambient space Rn. We recall [BP1] that the evolution
law V = Hφ is a consequence of the expression of the first variation of Pφ, which takes
the following form. If αλ(x) := x+λX(x) is a smooth diffeomorphism of Rn, with X the
vector field (with compact support) describing the initial deformation, and Eλ := αλ(E),
then

(8)
d

dλ
Pφ(Eλ)|λ=0 =

∫
∂E

〈H∗φ, X〉φo(n) dHn−1,

where H∗φ := κφn∗φ.
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Remark 3.1. It is interesting to note that, if we adopt definition (4), the vector field
Tφo(n∗φ) is well defined also in the nonconvex (smooth) case, for instance in Example 2.2.
without any convexification. In this case, definition (4) could be preferable to the one
given by argmax{〈n∗φ(x), ξ〉 : ξ ∈ Bφ}.

Example 3.2 (Prescribed curvature functionals). An interesting generalization of (6) is
the anisotropic prescribed curvature functional with given contact angle at ∂Ω, namely,
for a regular φo,

(9)
∫

Ω∩∂E
φo(n) dHn−1 −

∫
Ω∩E

g dx+
∫
∂Ω∩∂E

µ dHn−1,

where g : Rn → R is a given bounded sufficiently regular function, and µ : ∂Ω→ [−1, 1]
is given. Sufficiently smooth minimizers of (9) have anisotropic mean curvature κφ equal
to g inside Ω, and contact angle suitably related to µ and φo on ∂Ω. When Ω = Rn (and
µ ≡ 0) the corresponding gradient flow is the forced anisotropic mean curvature flow,
V = (κφ + g)nφ. Variational properties of (9) via a convexification argument based on
the coarea formula were considered in [BPV1], [BPV2], [BP] as well as a numerical study
of the corresponding convex algorithms. See also Section 6. Mean curvature flow with
some kind of boundary conditions on ∂Ω was considered in [Hu1], [MT]. As shown in
[ATW], the variational analysis of (8) is at the basis of the weak definition of anisotropic
mean curvature flow via the minimizing movements method.

The next example generalizes the geometric evolutions obtained from the functional
(6). For m ≥ 1, denote by SBV (Ω; Rm) the space of Rm-valued special functions of
bounded variation in Ω [AFP].

Example 3.3 (Free boundaries). Let X be a subset of SBV (Ω; Rm), and ψ : Rm×Rm×
Rn → [0,+∞] be a suitable function (see [AFP]). Consider the functional

(10)
∫
Ju

ψ(u−, u+,nu) dHn−1,

where u ∈ X, u± are the two traces of u on its jump set Ju, oriented by a unit normal
covector field nu, and ψ = +∞ if u /∈ X. Suitable choices of X and ψ lead to interesting
generalizations of Pφ. For instance, when m = 1, and X consists of locally constant
functions u, i.e., ∇au = 0 almost everywhere in Ω, where ∇au denotes the absolutely
continuous part of the measure derivative of u, (10) gives the functional of anisotropic
partitions of Ω [AFP], [AT]. If n = 2 therefore, triple junctions are allowed, when more
than two phases intersect. A study on the flow of crystalline partitions in the plane was
considered in [BCN]. Another choice was considered in [Ch], in the effort of modelling a
multhiphase planar problem associated with polycrystalline materials with a Wulff shape
that, in each phase, is the rotation of a fixed Wulff shape [GN]. Let φo : R2 → [0,+∞)
be an anisotropy. Take X := {u ∈ SBV(R2; S1) : ∇au = 0, H1(Ju) < +∞}, where
S1 := {y ∈ R2 : |y| = 1}. Then, roughly speaking, the integrand function in (10), written

in complex notation, takes the form φo( ei[
u++u−

2 +arg(nu)]). That is, we evaluate φo on
the rotation of nu of (u+ + u−)/2, which is an angle depending on the values of u off the
interface.
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4. Anisotropic mean curvature flow for crystalline or mixed ansotropies. As-
sume that the anisotropy is crystalline or mixed, so that the maps Tφo and Tφ may be
multivalued (necessarily in the crystalline case). In the effort of proving existence of the
geometric variational flow associated with (6), we introduce various classes of “smooth”
manifolds where the flow is expected to take place. A first possibility is to introduce the
class of Lipschitz φ-regular sets. We denote by E a closed set with nonempty interior
int(E) and with Lipschitz compact boundary (and the same if E(t) varies with time).

Definition 4.1 (The class LφR). We say that E is Lipschitz φ-regular, and we write
E ∈ LφR, if there exist a neighbourhood U of ∂E and a Lipschitz vector field Nφ defined
in U , satisfying Nφ ∈ Tφo(∇dφ) almost everywhere in U .

In the crystalline case, several polyhedral sets E are in LφR (while the euclidean unit
sphere {|x| ≤ 1} is not in LφR). In addition, there are LφR-sets which are not polyhedral,
and actually these are of importance, since it may happen that the crystalline mean
curvature evolved set starting from a LφR-polyhedral set is not a LφR-polyhedral set
at later times. To our best knowledge, a local in time existence result for the geometric
flow in the class LφR is known only if n = 2, while is not known for n ≥ 3, even under
convexity assumptions. Weaker notions of “smooth” sets will now be given, one of them
allowing a local in time existence result in the convex case. Fortunately, a uniqueness
result holds in the larger class (Theorem 4.1).

Definition 4.2 (The class φR). If we require the vector field Nφ in Definition 4.1 to
satisfy Nφ ∈ Tφo(∇dφ) almost everywhere in U , and to have divNφ ∈ L∞(U), then we
say that E is a φ-regular set, and we write E ∈ φR.

It is clear that LφR ⊂ φR.
The following definition is essentially the one given in [BN].

Definition 4.3 (φ-regular flows). Let a < b. A φ-regular flow in [a, b] is a map t ∈
[a, b] → E(t) which admits an open set A ⊆ Rn × [a, b] containing

⋃
t∈[a,b] ∂E(t) × {t}

with the following properties: the function d(x, t) := dφ(x,E(t)) − dφ(x,Rn \ E(t)) is
Lipschitz in A, there exists a vector field N ∈ L∞(A; Rn) such that divN ∈ L∞(A) and
N ∈ Tφo(∇d) almost everywhere in A, and there exists c > 0 such that |∂td−divN | ≤ c|d|
almost everywhere in A.

The last requirement in Definition 4.3 is a way to impose the manifolds ∂E(t) to flow
with velocity equal to a sort of anisotropic mean curvature: Theorem 4.1 below shows
that the evolution does not depend on the choice of the vector field N having the required
constraints. Note that adopting the evolution law in Definition 4.3 allows to avoid the use
of tangential derivatives and, in general, tangential operators on (nonsmooth) manifolds.

The following result, proved in [BN] via a reaction-diffusion approximation, provides
uniqueness of a φ-regular flow. A different proof based on the properties of the heat
semigroup can be found in [CN].

Theorem 4.1 (Comparison and uniqueness of the flow in the class φR). Let E1(t), E2(t)
be two φ-regular flows in [a, b]. Then E1(a) ⊆ E2(a) ⇒ E1(t) ⊆ E2(t) for all t ∈ [a, b].
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In particular if E1(a) = E2(a) then E1(t) = E2(t) for any t ∈ [a, b], hence the φ-regular
flow is unique in [a, b].

We now turn to the problem of the existence of a flow.

Definition 4.4 (The class IrBφC). Let r > 0. We say that E satisfies the interior
rBφ-condition, and we write E ∈ IrBφC if, for any x ∈ ∂E, there exists y ∈ Rn such
that

rBφ + y ⊆ E and x ∈ ∂(rBφ + y).

It is possible to prove [BNP1], [BCCN] that E ∈ LφR⇒ ∃r > 0 such that E ∈ IrBφC
and Rn \ int(E) ∈ IrBφC; moreover IrBφC ⊂ φR.

Definition 4.5 (rBφ-regular flows). Let a < b and r > 0. If in Definition 4.3 we assume
also that E(t) and Rn \ int(E(t)) satisfy the interior rBφ-condition for any t ∈ [a, b], then
we say that t ∈ [a, b]→ E(t) is an rBφ-regular flow in [a, b].

It is interesting to observe that the proof of the local existence result (Theorem 4.2
below) in the class of rBφ-regular flows is based on a notion of weak solution introduced
by Almgren-Taylor-Wang [ATW] (the flat φ-curvature flow, see also [LS] for a similar
notion), and on a modification of it introduced in [C].

We now state the local existence result proved in [BCCN], and we refer to that pa-
per for all details. Let E ∈ IrBφC be convex. Let G : (0, 1) ×

(
L2(Ω) ∩BV (Ω)

)
×(

L2(Ω) ∩BV (Ω)
)
→ [0,+∞] be the functional

(11) G(h, u, w) :=
∫

Ω

φo(Du) +
1

2h

∫
Ω

(u− w)2 dx.

Define in a recursive way the functions dih and the sets Eih as follows: for any h ∈ (0, 1)
and any i ∈ N ∪ {0}, E0

h := E, d0
h(·) := dφ(·, E)− dφ(·,Rn \ E),

(12) G(h, u, dih) = min{G(h, v, dih) : v ∈ L2(Ω) ∩BV (Ω)}

and

(13) Ei+1
h := {u ≤ 0}, di+1

h (·) := dφ(·, Ei+1
h )− dφ(·,Rn \ Ei+1

h ).

Theorem 4.2 (Local existence of the flow in the class IrBφC for convex initial data). Let
E ⊂ Rn be a compact convex set satisfying the rBφ-condition for some r > 0. Then there
is T > 0 such that

lim
h→0

E
[t/h]
h =: E(t) exists for any t ∈ [0, T ] in the Hausdorff distance,

and E(0) = E, where [·] denotes the integer part. Each set E(t) is compact, convex and
rBφ-regular, and the map t ∈ [0, T ] → E(t) is the unique local in time φ-regular flow
starting from E.

Remark 4.1. The main obstacle in the proof of Theorem 4.2 is perhaps represented by
the fact that, in general, polyhedral convex initial data may develop, under anisotropic
curvature flow, the facet breaking/bending phenomena, see [BNP], [BNP3], [GR1], [GR2].
The time-step minimization procedure is sufficiently general to handle these phenomena.
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5. Calibrability, facet breaking phenomenon. Under the assumption of crystalline
or mixed anisotropy, in Section 4 we have described uniqueness and existence results for
anisotropic mean curvature flows in various classes, adopting a definition of flow based,
roughly, on the idea of evolving a tubular neighbourood of the front instead of the front
itself. It is however useful to have at our disposal also a definition of anisotropic mean
curvature of a single hypersurface (possibly still using differential operators on functions
and vector fields extended out of the manifold). This is not immediate; it turns out that
the definition of anisotropic mean curvature may become nonlocal. In the crystalline case,
for instance, the velocity vector of a facet (a flat portion of ∂E corresponding to a facet
of Bφ) is, roughly speaking, determined by the global shape of the facet itself.

The mean curvature of a hypersurface for a crystalline or mixed anisotropy can be
defined via a minimization procedure [GGM], [BNP1], [BNP2]: assume for simplicity that
E ∈ LφR has a facet F ⊂ ∂E corresponding (in particular parallel) to a facet of Bφ, and
that E is convex at F (i.e., E lies, locally around F , on one side of the hyperplane ΠF

containing F ). We assume that the facet of Bφ corresponding to F is itself the unit ball
of an anisotropy in Rn−1, denoted by φ̃.

In general, we will use the˜ to indicate objects in reduced dimension; for instance,
we denote by ñF the unit normal to ∂F (in Rn−1) pointing out of F . Finally, we let
nF ∈ Sn−1 ⊂ Rn be the outward unit normal to E at F .

Definition 5.1. The divergence of a vector field minimizing the functional

(14) η →
∫
F

(divη)2 dHn−1

among all η : F → ΠF satisfying the constraint η(x) ∈ Tφo(nF (x)) for Hn−1-almost every
x ∈ F and having on ∂F maximal normal trace compatible with the constraint, i.e.,

(15) 〈ñF (x), η(x)〉 = max{〈ñF (x), ξ̃〉 : ξ̃ ∈ Beφ} for Hn−2-a.e. x ∈ ∂F,

is called the anisotropic mean curvature of F .

Remark 5.1. The fact that the normal trace on ∂F must be maximal in the sense of
equation (15) is a consequence of the convexity of E at F . It is possible to define the
anisotropic mean curvature of the facet also without this convexity assumption; we refer
to [BNP1], [BNP2] for the details.

Remark 5.2. Under sufficient “smoothness” assumptions, it is possible to show that the
velocity of the flow considered in Section 4 coincides with the anisotropic mean curvature
described above, see [BCCN], [BCCN1].

The computation of the anisotropic mean curvature of a facet F of ∂E may be in-
teresting independently of the evolution problem. Moreover, the evolution F (t) of F at
(small) later times t > 0 could be guessed by looking at the qualitative properties of the
anisotropic mean curvature of F at the initial time t = 0. For instance, if such a curvature
is constant, the facet is expected to translate parallely to itself in normal direction for
short times.

Definition 5.2. We say that F is φ-calibrable if F has constant anisotropic mean cur-
vature, namely if there exists a vector field η : F → ΠF satisfying the following elliptic
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problem with constraints: η(x) ∈ Tφo(nF (x)) for almost every x ∈ F ,

(16) divη = const on F,

and η satisfies (15).

The divergence operator in (16) is the divergence on F ; note that we could add to η a
last component orthogonal to ΠF without changing either (15) (since the new component
is orthogonal to ñF ) or (16) (since the new component is constant on F ).

It is possible to show that if such a vector field exists, then it minimizes the functional
(14).

Remark 5.3. Assume that E is convex at F and that F is convex and φ-calibrable.
Then the Gauss-Green Theorem yields that the anisotropic mean curvature in (16) is
given by

(17)
Peφ(F )

|F |
,

where Peφ(F ) =
∫
∂F
φ̃o(ñF ) dHn−2 and |F | is the Lebesgue measure of F .

The following result, proved in [BNP1] in more generality, is a characterization of
calibrability.

Theorem 5.1 (Minimality of the quotient perimeter/area). F is φ-calibrable if and only if

Peφ(A)

|A|
≥
Peφ(F )

|F |
∀A ⊆ F.

The quotient Peφ(F )/|F | should heuristically be viewed as the mean velocity of the
facet F in normal direction. The assertion of Theorem 5.1 can be related to the com-
parison principle for the associated corresponding flow (Theorem 4.1). Essentially, F is
φ-calibrable if and only if F does not split for short positive times during the flow. For
instance, let us see that if F does not split then it is φ-calibrable. Assume that there ex-
ists A ⊂ F such that Peφ(A)/|A| < Peφ(F )/|F |, and suppose by contradiction that F does
not split. Then, identifying this quotient with the normal velocity, we would contradict
the comparison principle. On the other hand, the comparison principle holds thanks to
Theorem 4.1.

We conclude this section with the following result [BNP3] which gives a verifiable
criterion for calibrability.

Theorem 5.2 (Characterization of calibrability in the convex case). Let n = 3. Assume
that F is convex and that E is convex at F . Then F is φ-calibrable if and only if

(18) ess sup
x∈∂F

κeφ(x) ≤
Peφ(F )

|F |
.

6. Applications. We want to show now that the results described in the previous sec-
tions, in particular the ones concerning the mixed case, have relations with classical
problems in Calculus of Variations.
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Example 6.1 (Calibrability for cylindrical anisotropies and the prescribed curvature
problem). Assume that n = 3 and that Bφ is the portion of a cylinder with circular
section (mixed anisotropy), i.e.,

(19) Bφ := B̃ × [−1, 1], B̃ := {(ξ1, ξ2) ∈ R2 : (ξ1)2 + (ξ2)2 ≤ 1}.

Let E ∈ LφR, and F ⊂ ∂E be a facet of E. Define

λ :=
P (F )
|F |

, Fλ(A) := P (A)− λ|A| ∀A ⊆ F.

Clearly Fλ(∅) = Fλ(F ) = 0. The functional Fλ is a particular case of the one in (9), with
the choices n = 2, Ω = F , φo(·) = | · |, g ≡ λ and µ ≡ 0. Note that F is φ-calibrable if and
only if minA⊆F Fλ(A) = 0, and non φ-calibrability of F means that minA⊆F Fλ < 0. It is
possible to see that minimizing Fλ among all finite perimeter subsets of F is equivalent
to

(20) min
v∈BV (F ;{±1})

Fλ(v), Fλ(v) :=
∫
F

|Dv| −
∫
F

λv +
∫
∂F

v, v ∈ BV (F ; {±1}).

In [BPV1] it is proved that the minimum problem (20) can be convexified, namely Fλ
can be equivalently minimized on the convex set BV (F ; [−1, 1]). This remark allows to
use convex algorithms, for instance based on the approximation

∫
F

√
|Dv|2 + ε2 [BP] of∫

F
|Dv|, in order to find numerically the minimizers of Fλ.

Example 6.2 (Calibrability for cylindrical anisotropies and the capillarity problem). Let
be given a (bounded with nonempty interior) convex set F ⊂ R2, and set Ω := F ×
[0,+∞). The semi-infinite capillary tube Ω is the vessel. Let also V > 0 and γ ∈ R be
given. The capillarity problem consists in finding solutions to

inf
Q⊆Ω
{P (Q,Ω) + cos γHn−2(∂Q ∩ ∂Ω) : |Q| = V },

where P (Q,Ω) is the perimeter of Q in Ω. Take for simplicity cos γ = 1. Then a smooth
solution of the above minimum problem of the form Q = subgraph(u) := {(x1, x2, x3) ∈
Ω : 0 ≤ z ≤ u(x1, x2)}, with |subgraph(u)| = V , is such that graph(u) has mean curvature
constantly equal to P (F )/|F | in Ω and tangential contact with ∂Ω. The graph of the
function u represents a capillary surface defined in F , bounding F with a prescribed
finite volume of fluid, and meeting the boundary of the vessel with a prescribed contact
angle cos γ = 1.

If nu = (η, n3) is the unit normal to graph(u) pointing toward the epigraph of u, η =
−∇u/

√
1 + |∇u|2, then η(x) ∈ B̃ for all x ∈ F (namely |η(x)| ≤ 1), divη = P (F )/|F |,

and η = ñF on ∂F . Therefore, the existence of η is equivalent to saying that F is
φ-calibrable, when φ as in (19).

Example 6.3 (Cylindrical anisotropies and the total variation flow). Let n = 3. The
total variation flow is the formal gradient flow of the total variation functional

∫
Rn |Du|,

in which the vertical velocity of the graph of the solution is given by the local curvature
of the (horizontal) level curves. Let Bφ be as in (19). In view of the previous discussions,
we expect that F evolves with vertical velocity equal to P (F )/|F |, as long as it remains
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φ-calibrable. If F is convex, the facet is expected to bend close to regions where the
curvature of ∂F is large, see Theorem 5.2.

7. Weak solutions: minimal barriers. It is well known that mean curvature flow
develops singularities at finite time, starting from a smooth compact initial datum (the
simplest singularity being the extinction of the flowing manifold). It is therefore mean-
ingful to look for weak solutions, which are well defined for all times; there has been a
lot of recent research in this direction, see for instance [Br], [CGG], [ES], [Am], [Il1]-[Il4],
[ESS].

Concerning anisotropic mean curvature flow for mixed or crystalline anisotropies, one
possible way to obtain a weak solution is to use the minimizing movement method [ATW]
already recalled in Section 4. In this section we want to propose a notion of weak solution
to crystalline motion by mean curvature for convex sets, based on Theorem 4.2 and on
the notion of minimal barrier of De Giorgi [DeG], [BP2], [BNb]. Such a method seems
to be applicable to a rather large class of problems: we mention in this direction the two
barriers approach to mean curvature flow in higher codimension [BNc] and the barrier
approach to systems of ordinary differential equations [BG].

Assume that φ is a crystalline anisotropy. Let us denote by P(Rn) the family of all
subsets of Rn.

Definition 7.1 (The class of tests). Let a, b ∈ R, a < b. A function f : [a, b] → P(Rn)
belongs to T if and only if the map t → f(t) is an rBφ-regular flow of compact convex
sets in the sense of Definition 4.5.

Definition 7.2 (Barriers with respect to T ). We say that a function φ is a barrier with
respect to T , and we write φ ∈ Bar(T ), if and only if φ : [0,+∞) → P(Rn) and the
following condition holds: if f : [a, b] ⊂ [0,+∞)→ P(Rn) belongs to T and f(a) ⊆ φ(a)
then f(b) ⊆ φ(b).

Definition 7.3 (Minimal barrier starting from E). Let E ⊂ Rn be a compact convex
set. For any t ∈ [0,+∞[ the minimal barrier M(T , E)(t) starting from E at time 0 is
defined as follows:

M(T , E)(t) =
⋂
{φ(t) : φ : [0,+∞[→ P(Rn), φ ∈ Bar(T ), φ(0) ⊇ E} .

Definition 7.4 (Upper and lower regularizations). Let E ⊂ Rn be a compact convex set.
For any ρ > 0 define E+

ρ := {x ∈ Rn : dist(x,E) < ρ}, E−ρ := {x ∈ Rn : dist(x,Rn\E) >
ρ}. For any t ∈ [0,+∞[ the upper and lower regularizations starting from E at time 0
are defined as follows:

M∗(T , E)(t) =
⋂
ρ>0

M(T , E+
ρ )(t), M∗(T , E)(t) =

⋃
ρ>0

M(T , E−ρ )(t).

In view of Theorem 4.2, the class T is not empty, and any convex Ir′BφC-set can
be flowed (for short times) remaining inside the class T of rBφ-regular flows (r′ > r).
Therefore Definitions 7.3, 7.4 are meaningful, and provide weak notions of crystalline
mean curvature flow of convex sets defined for all times. The properties of M(T , E),
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M∗(T , E), and M∗(T , E) deserve further investigation. One property that we may ex-
pect is that convexity of E is enough to ensure that fattening does not develop, i.e.,
|M∗(T , E)(t) \M∗(T , E)(t)| = 0 for any t ∈ [0,+∞).

8. Higher order flows. Anisotropic surface diffusion. We have already mentioned
in the introduction that higher order flows may be of interest in differential geometry and
materials science. They may also furnish a way to regularize lower order flows, such as
for instance mean curvature flow. We begin with the instructive example of the Willmore
functional in the case n = 2 (called elastica functional, possibly with the addition of the
length of the curve). Note that, in general, in presence of geometric evolution equations
of order (at least) four, self-intersections of the flowing manifold are often unavoidable.
We therefore sometimes switch our viewpoint to a parametric one. The Willmore flow
corresponds to the choice Φ(n, B) = (tr(B))2 in formula (3).

Example 8.1 (Elastica flow). Let γ : S1 → R2 be a smooth immersed plane curve, and
consider the elastica functional

(21)
∫
γ

(
1 + εκ2

)
ds

where κ is the curvature of γ, s is the arclength parameter, and ε > 0. Then the gradient
flow [GH] of this functional reads as

(22)
∂γ

∂t
=
(
κ− 2ε∂2

sκ− εκ3
)
n.

Note the presence of the higher order term ∂2
sκ (“Laplace-Beltrami” operator on γ of the

curvature). The problem of taking the limit as ε→ 0+ in (21) and its relations with the
curvature flow of γ has been deepened in [BMN], as well as similar questions in the case
of flowing manifolds of arbitrary codimension in Rn.

We now want to investigate a possible way of defining the φ-tangential laplacian of
κφ on ∂E, when φo is a regular anisotropy, ∂E is smooth, and κφ is defined in Section 3.

We begin with some observations. When φo is Riemannian, namely φo(ξ∗) =
√
gijξ∗i ξ

∗
j ,

the Laplace-Beltrami operator on ∂E of a smooth function f : ∂E → R is defined as
∆∂Ef = divτ (gradτf), where divτ and gradτ denote the tangential divergence and the
tangential gradient respectively. We recall that, if for instance gij = δij , and if f ext

denotes a smooth extension of f on a suitable neighbourhood of ∂E, then gradτf =
(Id− n⊗ n)grad(f ext). The Laplace-Beltrami operator on ∂E can be derived by looking
at the operator associated with the Euler-Lagrange equation of the gij-Dirichlet energy
of f on ∂E, or by inspecting the second variation of the perimeter Pφ, and finally also by
looking at the leading order term in the Euler-Lagrange equation of geometric functionals
depending on the mean curvature. In the Finsler case these various approaches could lead,
in principle, to different operators (see [BCS], [Sh] for general results on Finsler geometry).
Here we derive a notion of φ-tangential laplacian of κφ using the latter possibility, and we
show that the leading term of the Euler-Lagrange equation for the anisotropic Willmore
functional coincides with the leading term of the second variation of Pφ [BF]. Let us
introduce some notation. Let U be a sufficiently small tubular neighborhood of ∂E and
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u ∈ C∞(U) be such that {u ≤ 0} = E, {u > 0} = U\E, {u = 0} = ∂E and u2+|gradu|2 >
0 in U (we call such a u a representing function of ∂E). The symbol ∇u denotes the
differential of u, and is a one-covector; if necessary, it will be considered as a row. The
symbol gradu denotes the gradient of u, and is a one-vector; if necessary, it will be
considered as a column. If X = (X1, . . . , Xn) is a smooth vector field, the symbol JX
denotes the Jacobian of X, that is the matrix representing the differential of X. We recall
that (JX)ij = ∂Xi

∂xj .
Given a representing function u of ∂E, we define

(23) N∗,uφ :=
∇u

φo(∇u)
, Nu

φ := Tφo(∇u) in U.

It can be checked that on {u = 0} these definitions do not depend on the choice of u.
Therefore if we choose u = dφ then, recalling the notation of Section 3.1, where now
N∗,uφ = N∗φ and Nu

φ = Nφ, on ∂E we have

(24) N∗φ = n∗φ = ∇dφ = (n∗φ1
, . . . ,n∗φn), Nφ = nφ = T o(∇dφ) = (n1

φ, . . . ,n
n
φ).

We recall also that

(25) (φo(N∗φ))2 = (φ(Nφ))2 = 〈N∗φ,Nφ〉 = 1 in U.

Remark 8.1. The φ-divergence in Ω of a vector field X = (X1, . . . , Xn) defined in Ω
turns out to be equal to divX = ∂xiX

i, and the φ-Laplace-Beltrami operator in Ω of
u : Ω → R turns out to be defined as ∆φu = div(gradφ(u)), gradφ(u) := Tφo(∇u), see
[BP1]. We want to extend these definitions to tangential operators on ∂E.

The symbol N∗φ ⊗Nφ denotes the (1, 1) tensor formed as the tensor product of the
covector N∗φ with the vector Nφ, and can be identified with a rank-one matrix, (N∗φ ⊗
Nφ)ij = N∗φiN

j
φ. The symbol Nφ ⊗N∗φ stands for the transposed matrix.

Remark 8.2. On ∂E we have

ker(Id− n∗φ ⊗ nφ) = span{n∗φ}, Im(Id− n∗φ ⊗ nφ) = (nφ)⊥;

(Id− n∗φ ⊗ nφ)2 = Id− n∗φ ⊗ nφ,

ker(Id− nφ ⊗ n∗φ) = span{nφ}, Im(Id− nφ ⊗ n∗φ) = (n∗φ)⊥;

(Id− nφ ⊗ n∗φ)2 = Id− nφ ⊗ n∗φ.

Definition 8.1. Let X = (X1, . . . , Xn) be a smooth vector field defined on ∂E. We
define the φ-tangential divergence of X on ∂E as

(26) divτ,φX := tr
[(

Id− nφ ⊗ n∗φ
)
JXext

]
= div(Xext)− njφn

∗
φi

∂

∂xj
Xexti,

where Xext is any smooth extension of X in U .

Recall that tr(Nφ⊗N∗φJX) = 〈N∗φJX,Nφ〉 = Nj
φ(N∗φJX

ext)j = Nj
φN
∗
φi

(JXext)ij =

Nj
φN
∗
φi

∂
∂xjX

exti.
Since if Y is a vector field defined in U which vanishes on ∂E then∇Y i = 〈∇Y i,nφ〉n∗φ

on ∂E for every i ∈ {1, . . . , n}, it can be checked that divτ,φ does not depend on the
extension of X on U .
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Observe that
divτ,φnφ = divNφ = divτnφ on ∂E.

Indeed the first equality follows by differentiating φ(Nφ) = 1 in U , and the second equality
follows from the first one also recalling that n∗φ and n are parallel.

We are interested in computing the first variation of the anisotropic Willmore func-
tional, defined as

Wφ(E) :=
∫
∂E

(divτ,φnφ)2φo(n) dHn−1 =:
∫
∂E

(divτ,φnφ)2 dPφ.

We give the definiton of φ-tangential gradient on ∂E.
In order to extend on the whole of U a smooth scalar field f defined on ∂E we consider

pφ : U → ∂E to be the projection along geodesics of U on ∂E, i.e.,

pφ(y) = y − dφ(y)Nφ(y) y ∈ U.

Then we define f in the whole of U , and we denote this (canonical) extension by f , as

f(y) = f(pφ(y)), y ∈ U.

Definition 8.2. Let f be a smooth scalar field defined on ∂E. We define

(27) grad∂E,φf := gradf on ∂E.

Note that grad∂E,φf can be identified with ∇f(Id − nφ ⊗ n∗φ) = ∇f − 〈∇f,nφ〉n∗φ =
∇τf(Id− nφ ⊗ n∗φ).

Observe also that we are not considering ∂E endowed with the Finsler metric on the
tangent bundle T∂E obtained as the restriction r(x, ξ) of φ to T∂E, and therefore we
expect our operators (in Definitions 8.1, 8.2) not to coincide with the ones corresponding
to looking at the Finsler manifold (∂E, r).

Let ψ be a smooth scalar function defined on ∂E and X a smooth vector field defined
on ∂E. Then from (26) we obtain

divτ,φ(ψX) = ψ divτ,φX + (gradψ, (Id− nφ ⊗ n∗φ)X) = ψ divτ,φX + (grad∂E,φψ,X).

We are now in a position to introduce an operator defined on the space C2(∂E) with
values in C0(∂E), which will turn out to be the leading term in the expression of the first
variation of W.

Definition 8.3. Let f ∈ C2(∂E). We set

∆∂E,φf := divτ,φ
(
φoξ∗ξ∗(n∗φ)grad∂E,φf

)
.

In the euclidean case, that is, when φo(ξ∗) = |ξ∗|, ∆∂E,φ coincides with the usual
tangential laplacian operator on ∂E. Finally, we recall the following result [BF].

Lemma 8.2. Let f, g ∈ C2(∂E). Then

(28) −
∫
∂E

g∆∂E,φf dPφ =
∫
∂E

(grad∂E,φf, φ
o
ξ∗ξ∗(n∗φ)grad∂E,φf) dPφ.

Let ψ ∈ C2(∂E). Define

α : R× U → U, (λ, y) 7→ α(λ, y) = αλ(y) := y + λψ(y)Nφ(y) + o(λ),
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and set

Eλ := αλ(E).

Theorem 8.3. We have

(29)
d

dλ
Wφ(Eλ)|λ=0 =

∫
∂E

[2 ∆∂E,φκφ + 2κφtr[(JNφ)2]− (κφ)3]ψ dPφ.

In the euclidean case (29) agrees with the first variation of the Willmore functional.
Let us also notice that a result similar to Theorem 8.3 has been proved in [Cl].

Proof. If |λ| is small enough, say |λ| < ε, we define the smooth function vλ in U through
the formula

vλ(y) := dφ(α−1
λ (y)).

Then vλ is a defining function for ∂Eλ for every ε > 0 small enough. Furthermore

(30) n∂Eλ(y) =
∇vλ(y)
|∇vλ(y)|

=: nλ(y), n∂Eλφ (y) = φoξ(∇vλ(y)) =: nλφ(y).

Let g(y) := ψ(y)Nφ(y). Then

∇vλ(y) = ∇dφ(α−1
λ (y)) [Id− λJg(y) + o(λ)] ,

and

Jg(y) = ψ(y)JNφ(y) + nφ(y)⊗∇ψ(y).

Therefore

(31) ṅ0 :=
d

dλ
nλ|λ=0 = −nJg + 〈n,nJg〉n.

Let us rewrite the expression of Wφ in a more convenient way. We have

(32) Wφ(E) =
∫
∂E

(tr[(Id− nφ ⊗ n∗φ)JNφ])2 dPφ.

Hence

d

dλ
Wφ(Eλ)|λ=0 =

d

dλ

∫
∂E

((divτ,φnλφ)(αλ))2 dPφ(αλ)|λ=0(33)

=
∫
∂E

(tr[(Id− nφ ⊗ n∗φ)JNφ])2 d

dλ
dPφ(αλ)|λ=0

+
∫
∂E

d

dλ
[(Id− nλφ(αλ)⊗ nλ∗φ (αλ))(Jnλφ)(αλ)]2|λ=0 dPφ =: I + II.

We start by computing I. Recall that

(34)
d

dλ
dHn−1(αλ(x))|λ=0 = divτg(x)dHn−1(x).
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Using (31), (25), [BF, Lemma 3.2] and the relation φoξ(n) = nφ we have

d

dλ
φo(nλ)|λ=0 = (φoξ(n), ṅ0) = φo(n)(φoξ(n),

[
−n∗φJg + (n,nJg)n∗φ

]
)(35)

= φo(n)(nφ, [−∇ψ〈n∗φ,nφ〉 − ψ n∗φJNφ

+ (n,n nφ ⊗∇ψ + φo(n)ψ n∗φJNφ)n∗φ])

= φo(n)[−(∇ψ,nφ ) + (n,n nφ ⊗∇ψ)]

= φo(n)[−〈∇ψ,nφ〉+ 〈(n,∇ψ )n,nφ〉].

Therefore we obtain

d

dλ
dPφ(αλ)|λ=0 = φo(n)(−〈∇ψ,nφ〉+ 〈 (n,∇ψ )n,nφ〉) + φo(n)divτg dHn−1

= [−〈∇τψ,nφ〉 − 〈 〈∇ψ,n 〉n,nφ〉+ 〈 〈n,∇ψ 〉n,nφ〉+ 〈∇τψ,nφ〉

+ ψ divτnφ]φo(n) dHn−1 = ψ divτnφ dPφ.

Hence, using the relations divτ,φnφ = divNφ = divτnφ on ∂E, we have

(36) I =
∫
∂E

ψ(divτ,φnφ)2divτnφ dPφ =
∫
∂E

ψ(divτ,φnφ)3 dPφ.

We now prove that

(37) II =
∫
∂E

2 divτ,φnφ[divτ,φ(φoξ∗ξ∗(n∗φ)∇τ,φψ) + tr[(JNφ)2]] dPφ.

We start by noticing that for every y ∈ U we have

(38) nλφ(y) = Nφ(y) + λ
d

dλ
nλφ(y)|λ=0 + o(λ).

Now we have

d

dλ
nλφ(y)|λ=0 =

d

dλ
φoξ(∇vλ(y))|λ=0 =

d

dλ
φoξ(∇dφ(α−1

λ (y))|λ=0

= φoξ∗ξ∗(∇dφ(y))
d

dλ
(∇dφ(α−1

λ (y))[Id− λJg(y) + o(λ)])|λ=0

= φoξ∗ξ∗(∇dφ(y))[−∇2dφ(y)g(y)−∇dφ(y)Jg(y)]

= − ψ(y)φoξ∗ξ∗(∇dφ(y))[∇2dφ(y)Nφ(y)]

− φo(∇dφ(y))φoξ∗ξ∗(∇dφ(y))
[
ψ(y)

∇dφ(y)
φo(∇dφ(y))

JNφ(y)

+∇ψ(y)
〈
∇dφ(y)

φo(∇dφ(y))
,Nφ(y)

〉]
= − φoξ∗ξ∗(N∗φ(y))[ψ(y)N∗φ(y)JNφ(y) +∇ψ(y)〈N∗φ(y),Nφ(y)〉]

= − φoξ∗ξ∗(N∗φ(y))∇ψ(y),

where in the last two equalities we used [BF, Lemma 3.2], (25), and the following relations,
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which involve also [BF, Remark 3.3]:

Nφ(y) = φoξ(∇dφ)⇒ JNφ = φoξ∗ξ∗(∇dφ)∇2dφ

⇒ 0 = JNφNφ = φoξ∗ξ∗(∇dφ)[∇2dφ Nφ]

(JNφNφ = 0 on ∂E is obtained by differentiating Nφ along Nφ itself).
Therefore, from (38) and the expression we obtained above for d

dλnλφ(y)|λ=0, it follows

d

dλ
(divτ,φnλφ(αλ))2|λ=0 = 2 divτ,φnφ

d

dλ
tr[(Id− nλφ(αλ)⊗ nλ∗φ (αλ))Jnλφ(αλ)]|λ=0

= 2 divτ,φnφ

{
d

dλ
[tr
(
Id− nλφ(αλ)⊗ nλ∗φ (αλ)

)
JNφ(αλ)|λ=0

− d

dλ
tr(Id− nλφ(αλ)⊗ nλ∗φ (αλ))∇(φoξ∗ξ∗(N∗φ)∇ψ)

}
= 2 divτ,φnφ{tr

[(
Id− nφ ⊗ n∗φ

) d

dλ
JNφ(αλ)|λ=0

]
− tr

[
d

dλ

(
nλφ(αλ)⊗ nλ∗φ (αλ)

)
|λ=0JNφ

]
− tr[(Id− nφ ⊗ n∗φ)∇(φoξ∗ξ∗(N∗φ)∇ψ)]}

=: 2 divτ,φnφ{(i)− (ii)− divτ,φ(φoξ∗ξ∗(n∗φ)∇∂E,φψ)}.

We claim that (i) = ψ tr[(JNφ)2] and (ii) = 0.
Firstly, abbreviating ∂

∂xh
to ∂h and similarly for derivatives of higher order, we notice

that
d

dλ
(JNφ)(αλ(x))|λ=0 =

(∑
j

∂ijNk
φ(x)α̇j0(x)

)
1≤i,k≤n

=
(
ψ(x)

∑
j

∂ijNk
φ(x)njφ(x)

)
1≤i,k≤n

.

Since JNφNφ = 0 on ∂E we have

∂i

(∑
j

∂jNk
φ(x)njφ(x)

)
= 0 ∀i, k ∈ {1, . . . , n}, ∀x ∈ ∂E,

hence ∑
j

∂ijNk
φ(x)njφ(x) = −

∑
j

∂jNk
φ(x)∂iN

j
φ(x) ∀i, k ∈ {1, . . . , n}, ∀x ∈ ∂E.

Therefore for every x ∈ ∂E we have
d

dλ
JNφ(αλ(x))|λ=0 =

(
ψ(x)

(∑
j

∂ijNk
φ(x)njφ(x)

))
1≤i,k≤n

= ψ(x)(JNφ(x))2,

and finally using [BF, Lemma 3.2] we obtain

(39) (i) = −ψ tr[(JNφ)2] + ψtr(nφ ⊗ n∗φ)(JNφ)2 = −ψ tr[(JNφ)2].

Let us prove that (ii) = 0. We observe that, using (31) and (35), we obtain
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d

dλ
Nλ∗
φ (y)|λ=0 =

ṅ0(y)
φo(n)

− n(y)
φo(n(y))2

d

dλ
φo(nλ(y))|λ=0

= −N∗φ(y)Jg(y) + (n(y),n(y)Jg(y))N∗φ(y)

− 1
φo(n(y))

(ṅ0(y),Nφ(y))N∗φ(y)

= − n∗φ(y)Jg(y) + (n(y),n(y)Jg(y))N∗φ(y)

+ (N∗φ(y)Jg(y),Nφ(y)〉N∗φ(y)− 〈n(y),n(y)Jg(y))N∗φ(y)

= −∇ψ(y) + 〈∇ψ(y),Nφ(y)〉N∗φ(y) = −∇ψ(y)(Id−N∗φ(y)⊗Nφ(y))

(notice that the last quantity in the above equality is exactly ∇∂E,φψ(x) when x ∈ ∂E).
Hence using the last calculation, [BF, Lemma 3.2] and [BF, Remark 3.3] we have

(ii) = tr
[
d

dλ
(nλφ(αλ)⊗ nλ∗φ (αλ)|λ=0JNφ

]
(40)

= tr
[
d

dλ
nλφ(αλ)|λ=0 ⊗ (n∗φJNφ) + nφ ⊗

d

dλ
n∗φ

λ|λ=0JNφ

]
= 0 + tr[nφ ⊗ (∇ψ(Id− nφ ⊗ n∗φ)JNφ)]

= tr[nφ ⊗ (∇ψ JNφ)] =
∑
j

njφ
(∑

i

∂iψ ∂jNi
φ

)
= (∇ψ, JNφnφ) = 0.

We conclude that

II =
∫
∂E

d

dλ
(divτ,φnλφ(αλ))2|λ=0 dPφ(41)

=
∫
∂E

−2divτ,φnφdivτ,φ(φoξ∗ξ∗(n∗φ)∇∂E,φψ)− 2divτ,φnφtr((JNφ)2) dPφ

=
∫
∂E

{
−2divτ,φ[φoξ∗ξ∗(n∗φ)∇∂E,φ(divτ,φnφ)]− 2divτ,φnφtr[(JNφ)2]

}
ψ dPφ.

Summing up I and II we obtain (29).
The expression of the first variation of Wφ obtained in Theorem 8.3 is a suggestion

for considering as the anisotropic surface diffusion flow the one where the normal velocity
is given by minus the operator given in Definition 8.3 applied to κφ.
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