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Abstract. The linearized stability of stationary solutions for the surface diffusion flow with
a triple junction is studied. We derive the second variation of the energy functional under the
constraint that the enclosed areas are preserved and show a linearized stability criterion with the
help of the H'-gradient flow structure of the evolution problem and the analysis of eigenvalues
of a corresponding differential operator.

1. Introduction. The surface diffusion flow
V=-AgH (1)

is a geometrical evolution law which describes the surface dynamics for phase interfaces,
when mass diffusion only occurs within the interface. Here, V is the normal velocity
of the evolving surface, Ag is the surface Laplacian, and H is the mean curvature of
the surface. The basic property of this flow is that the perimeter of an enclosed volume
decreases whereas the volume is conserved.
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In this paper we study the motion by surface diffusion for three curves I't, I'?, and '}
which are contained in a bounded domain  C R? with the conditions that each one of
the end points of I'} (i = 1,2,3) is connected at a triple junction p(t) € Q and the other
end points intersect with 9. Then we require for i = 1,2,3

Vi=—m'y'kl, on T (2)
with the boundary conditions at a triple junction p(t)
Ay, Tf) = 0%, a7, 1)) =0, «(If, 1) =62,
Ak 4 4262 4 A3R3 =0, (3)

11,1 _ 22,2 3433
m =y Ry = M"Y "RKg = M"Y K,

and at I N 9N
109, . =0. (4)

Here, V* is the normal velocity of '}, x° is the curvature of T, and s is an arc-length
parameter of I'i. Further, m® and ~* are the positive constants concerning the mobility
and the surface energy, respectively. In addition, §° is the positive constant satisfying
sin@'  sinf?  sinf?

1 2 A3 (5)
Y Y Y
which is called Young’s law. We remark that Young’s law is also represented as

YT+ T2 +9°T° = 0 at p(t),
where T" is the unit tangent to T'i. In (3) the second and the third condition follow
from the continuity of the chemical potentials and the flux balance at the triple junction,
respectively. Also, in (4) the second condition is the no-flux condition. The boundary
conditions (3) and (4) are the natural boundary conditions when viewing the flow as the
H~'-gradient flow of the energy functional

E[ly] = Z 'YiL[FiL

where Ty = |JJ_, T? and L[I'] is the length functional of T%. Tt is not difficult to show
that under the surface diffusion flow (2) with the boundary conditions (3) and (4) the
areas enclosed by T'%, F{, and 99 for (i,5) = (1,2), (2,3), (3,1) are preserved and the
energy F[I'y] decreases in time. We also find that an arc of a circle or a line segment are
stationary under (2)-(4).

The geometric problem (2)-(4) was derived by Garcke and Novick-Cohen [5] as the
asymptotic limit of a Cahn-Hilliard system with a degenerate mobility matrix. They also
proved the short time existence of a solution for this problem. The stability problem of
stationary solutions for (2)-(4) has been addressed by Ito and Kohsaka [7] and by Escher,
Garcke and Ito [2] in the case of a geometry with a mirror symmetry and by Ito and
Kohsaka [8] in a triangular domain.

Our goal in this paper is to derive the second variation of the energy functional under
the constraint that the areas enclosed by I'i, I, and 9Q for (i,7) = (1,2), (2,3), (3,1)
are preserved and also to obtain a linearized stability criterion based on the work of [9]
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Q C R?

Fig. 1. The phase boundaries with triple junction

and [3]. We remark that [9] is the analysis of three curves with a triple junction for the
curvature flow V¥ = k% and [3] is that of one curve for the surface diffusion flow.

This paper proceeds as follows. In Section 2 we give a representation of curves around
the stationary solutions by using a modified distance function. It is not possible to use
usual distance functions since the triple junction moves with respect to time. Thus we have
to introduce a certain tangential adjustment. Then we formulate the evolution problem
with the help of this parameterization and give a nonlinear problem. In Section 3 we
derive the second variation of the energy functional under the area constraint. In Section
4 we first introduce the linearized system and prove a gradient flow structure with respect
to a certain H ! scalar product on networks for the linearized system. Further, we show
several properties of the spectrum concerning our system. Finally, we give the stability
criterion and analyze the stability for one specific configuration.

2. Parameterization. Let Q be a bounded domain in R? with smooth boundary con-
taining (0,0). We assume that Q and 0 are given as

Q={zcR?|¢(zx) <0}, 0= {recR?|y(x)=0}

with a smooth function ¢ : R? — R with V¢(z) # 0 if x € 09, i.e. ¥(x) = 0. Let I'?
(i =1,2,3) be straight lines or circular arcs with the constant curvature x* satisfying

Ve + 7R+ R = 0.
Further, T (i = 1,2, 3) meet the outer boundary with the angle 7/2 and have P, = (0,0)
(without loss of generality) as a common point (triple junction) with the angle conditions
<(TE, 1) = 6F for i,j,k € {1,2,3} mutually different. Then we define an arc-length
parameterization of I'? as

I, ={2(0) o €[0,I}

with ®2(0) = (0,0), ®L(I*) € Q. We obtain in particular that I* is the length of I'.
Then we will extend ®% as an arc-length parameterization of the full line or the full circle
which contain T'.. We will now introduce a certain stretched coordinate system in order
to allow for parameterizations of curves close to I'Y (i = 1,2,3) over fixed intervals [0, %].

Let T¢ be the unit tangent to I'. pointing from the triple junction P, to the outer
boundary and let N = RT!, where R is the anti-clockwise rotation by 7/2, be a unit
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Fig. 2. The positions of u‘ (i = 1,2, 3)

normal. Then we set
hala) = max{ o | @:(0) + gN'(0) € U}

We now define the parameterization of curves I' = U?zl I close to 'y, = U?=1 I’ having
their triple junction at the point P with the help of

P[0, =R, peR (i=1,2,3)
together with the conditions
O (u') + p ()N (') = ®2(p?) + p*(0O)NZ(1®) = @3 () + p*(O)NZ (1®).  (6)

Here p® are the smooth functions and u are the parameters which allow for a tangential
movement of the triple junction along the extended I' (see Fig. 2). Set

V(0,q,u") = ®LE (0,9, 1")) + gNI(E (0,0, 1"))
where
§(o,q, 1) = p' + %{ufm(q) —u'}.
Note that £¥(0,0,0) = o and £(0, ¢, u*) = p’. Then, if we set
(o) = ¥'(o,p'(0), "), o €[0,17], (7)

the functions ®* parameterize the curves I'* in the neighborhood of T, as T'" = {®%(0) | o €
[0,11]}. Further, the unit tangent and normal to ' are represented as
. 1 ) ) 1 .
Tie—— &, Ni=_- RO,
Ji(u?) 7 JH(ut) O

where u’ = (p, ') and

T (wl) = @4 ()] = /|52 + 25, W )wa pf, + W25 2.

Let us derive the nonlinear problem for p¢ from the geometric problem (2)-(4). By
this parameterization, the surface diffusion flow equation (2) is represented as

pi = —mivia (u)A ) (uh) + b (ul ) (8)
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for i = 1,2, 3, where
(i (W RU s o (W, RO Yo g
ity = W) iy - e B U R sy
W, R0, ) VR
1 1
02+ {a, 1 }a(,,
{J(u)}? Ji(u') 7 JH(w)
and the curvature x*(u?) is given by

L (@
Ui Lo

1 , , , |
{Jl( )}3 [(\Ilij RLI/Z)]}WPZ,J + {2 \I/U‘P R\Ijl )R2 + (\Ilaa'u R\I/ RZ}p;Lr

Au?) =

k(u') = RO )pe

+{( \I/qq,R\I/ Jr2 + 2(,, R )ge + (V) R )r2pl }(0h)?
+ (U, RV )g2].
Further, the boundary conditions (3) are represented as

(B, B2 g2 = |DL||D2|cos 02, (DL, D3 )p2 = |DL||D3 | cos b?,

Wel( D+ R (u )+7/~”~( %) =0, (9)
mw mv _m’y K 3
Tty ) = gy ) = Fagy O ()

with the notation
(85,3 )5 = (U, W2 s+ (U, U)saph + (W, W)+ (01, Wl i,
and the boundary conditions (4) are represented as
(RY}, + RU,p,, Vp(U'))gz =0, pr'(u’) =0 (10)
fori=1,2,3.

3. The variation of the energy functional. The functions ¥ have the following
properties which we need to derive the variation of the energy.

LEMMA 1. The parameterizations ¥* fulfill the following:

(i) ¥'(0,0,0) = ‘1’"( ).

(ii) Vi (0,0,0) =T (o), ¥ (0,0,0) Ni(o), \IJL(O',O,O) =(1-0o/IYTi(o)
(ii) V. (0,0,0) = —KiTi (o ), 0, (0,0,0) = (=1/1")Ti(0) 4+ (1 — o /I')K.Ni(0),

(U,0,0) = qq(U,0,0)T (o), ¥ (U 0 O) —(1—o/l)KLTY (o),
‘I” (0,0,0) = (1 — g /I')*kLN}(0 )

Hp

(iv) W (0,0,0) = £,.,(0,0,0)T (o) + &, (0,0, 0)5L Ni (o),
Wi, (0,0,0) = (i /I)Ti () — (1 — o/I)(s)2Ni(o),
Wi (0,0,0) = —(1— 0 /I02(51)°Ti(0) — (2/1)(1 — o /1) Ni(o).

Proof. By the definition of U¢ and &¢) (i) is obvious. Let us prove (ii). Differentiating
Ui(0,0,0) = ®(0) with respect to o, we readily derive ¥’ (0,0,0) = T:(o). By the
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definition of U? we have
(o, q,1') = &0, q, p*) (1 — grl)TiH(E(o, g, 1)) + Ni(E(o, q, 1)),
\I’Z(U, q, N’Z) = g,u(a-a q, :LL’L)(]' - q/ﬁ?i)Ti(g(U, q, /u‘l))

According to the definition of ¢%, we obtain

&(0,q,n) = (0/U){Hba(@)Y, &.(o,q,n) =1—0a/l". (12)
Using ¢(0,0,0) = o and {uho(q)} |4=0 = 0 (see [3, p. 1036]), the second and third of (ii)
are derived. Finally, by using ¢%(c,0,0) = o, (11), (12), and Frenet-Serret formulas, we
are led to (iii) and (iv). =

(11)

Also, we derive the following lemma.
LEMMA 2. Let h% be the curvature of O at T': N OQ. Then
{15 (a)} lg=0 = hi.
Proof. Recalling the definition of ¥% and &, we have
V' (0,0, 1) o=t = ®LHha(a)) + 4N (Hha(a)).
Set Wi (q) = B (1, (0)) + aN: (). Then,
{Tha(@)} = (1 = arL)Ti(pa (@) {1ba ()} + Ni(uha(a))- (13)

It follows from ph,(0) = 1" and {ubq(q)} [4=0 = 0 that

{Tha(9)} =0 = Ny (1").
Further, differentiating (13) and putting ¢ = 0, we have

{Tha(@)}"le=0 = {1ba(@)}"l¢=o0 Ti(1).

Note that ¢(U%,(¢)) = 0 by the definition of b, (¢). Computing the second derivative
of (¥, (¢)) = 0 with respect to g, we are led to

(D9 (Who(0)){¥ha(@)}  {¥ha(0)} ez + (V(¥ha(9), {¥ha(g)} )r2 = 0.
Thus, putting ¢ = 0, we obtain

([D*(@LANINLI), NI1))ze + (VH(@L(1)), TL(T))re {1h (@)} |g=0 = 0-
By means of T¢(I%) = V(@ (1%)) /| V(L (1)) and NE(IP) = —Tpa(®L(1")), where Thq is
the unit tangent vector of 0f), we see
i " _ ([D2¢(q)i(li))]Ni(li)7Ni(li))Rz
{roa(@)} lg=0 = (Vb (L (1)), Ti(l))ge
([D2(PLUTo0 (2L (1)), Toa(24(1')) ke
V(L)) '

Since the curvature of 02 is represented as

 ([D¥]Teq, Tra)re
Ro = — )

V|

we are led to the desired result. m
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For u = (u!, u?,u?) with u’ = (p?, u?) (i = 1,2,3), we define
M = {u]| u satisfies the conditions (6)}.
Set ui(e) = (p'(-;¢),u(e)) (i = 1,2,3) with
P’ [0,1] x (—=eg,60) = R, p': (—€0,60) — R
which fulfill p?(-;0) = 0 and p*(0) = 0. Then we choose a variation u(e) = (u!(e), u?(¢),
u3(g)) € M with variation vector field
0:p'(+:0) =v'(-), Oep’(0) =7
for given n = (n',n?% n?) with n’ = (v(-),7) (i = 1,2, 3) satisfying
Yol + 4202 +9%0% =0 at 0 =0, AP+ 44370 =0, (14)
REMARK 3. (14) means that n = (n',7%,13) is in the tangential space to M.
Then we have the following lemma.

LEMMA 4. Let u(e) € M be a variation with the variation vector field n satisfying (14).
Then

v = (I (0) - Mt 0))
fori,j,k € {1,2,3} mutually different, where ¢* := cos 6 and s* := sin 6°.
Proof. For u' = (p*, u*) and u? = (p’, /), set
BY(u',w?) = ®L(u") + p' ()N (') — ®L(u) — p? (0) NI (7).
Then it follows from u(e) € M that BY(u'(e),u’(g)) = 0, so that we have
0=03B(0,0)[n",n’] = 7T}(0) + v*(0)N.(0) — 7T (0) — v’ (0)N{(0),
where §B%(0,0)[n’,n’] is the first variation of a functional B¥ around a stationary
solution in the direction (n?,n7). This implies that
T'TH0) + 0" (0)NL(0) = 72 TY(0) + v/ (0) N7 (0).
Thus we have
7TH0) + v (0)NL(0) = 72T2(0) 4+ v*(0)N2(0) = 73T2(0) + v*(0)N3(0), (15)
By means of (15), we see
7 = 73 (TH(0), T2 (0) s + 7 (0) (T2(0), NZ(0) e
Then it follows from the angle conditions for the stationary solutions I'’ at P, that
(TH(0), T (0)s = cos6*,  (TF(0), N3 (0))ss = — sin 6*
for 4,4,k € {1,2,3} mutually different, so that we derive
7' = 79 cos O% — v7(0) sin .
Setting ¢’ := cos#® and s’ := sin 6, we have
(1-cdcF)rt = —{ckcisjvi(O) + s"7(0) + cksivk(())}.
Further, (5) and (14) imply

(1—c'dc)rt = _é [{(s"s" — cFei(s7)? ol (0) + {cF(s")? — cFels?s¥ }uR(0)]
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Since we observe
shst —cfel(s7)2 = —d(1 = cF),  F(sh)? = cFelsls® = P (1 - cidd b,
we are led to the desired result. m

For u = (u',u? u?) with u’ = (p*, %) (i = 1,2,3), the energy of I' = U?zl I is
defined as

3 ) ) 3 ) 1t ' 4
Frlu) = 3" () = Z’y/o Ji(ul) do, (16)

where +* is the constant concerning the surface energy and Ly (u) is the length of T'%.
Then we have the following lemmas. Here and hereafter, §E(0)[n] and 62E(0)[n,,n,)
denote the first and second variation of a functional E around a stationary solution,
respectively.

LEMMA 5 (The first variation of Er). Let u(e) € M be a variation with the variation
vector field n satisfying (14). Then

I
0

5 :
SO == > 0" [ wivtdo
i=1
Proof. Using Lemma 1, we observe
. . 1
3J(0)[n'] = —Kiv* — l—iTl. (17)
By means of (14), we have the desired result. =

LEMMA 6 (The second variation of Er). Let u;(e) = (uj(e;), ui(e;), ul(e;)) € M (j =
1,2) with u}(e;) = (05(-3€5), wh(e5)) be a variation which has the variation vector field
n; = (nj,n5,m3) (7 = 1,2) with m;, = (vj(-),7}) satisfying (14). Then
&% Br (0)[m1, 2]
I

3 1t
-y vi{ /O vi b, do + hiviel| .+ /0 " (v + o) da},
i=1
where hi is the curvature of O at T'L N ON.

Proof. Using Lemma 1, we obtain

02T (0) M M) = €oqqV1ve + €qV10h .0 + EGgLoVs + V10000 + 77 (V1T +TIV3). (18)

This implies that
FLrv(0)im} ) = [ (€01 + €hgoivh o + Epgtl p0h + vl p0d o} do
0
+ /0 l—:(viTﬁ + 1iv3) do

) I " g
e g i10=l i Ry (i 4 i
- [gqulvﬂa:o —l—/ V] 55 o d0+/ l—i(vlTQ—FTva) do.
0 0
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Then, by means of & (0,0,0) = (0/1"){5q(q)}"|q=0 and Lemma 2, we have
. . r . . L 3 ,‘Qi . .
6% Lr (0)[ny,m5] = /0 V] 4V 5 do + hiv{v%‘gzli + /0 l—l*(viT% + levg) do.
This leads to the desired result. m

Let D% be a domain enclosed by 'Y, TV and 9. Also, let Q(s) be an arc-length
parameterization of 02 which satisfies

Q(S'(p") = Toa(p")lo=ri, (19)

where Wi, (q) :== % (ub,(q)) + gNi(1ho(q)). Then the area of D;; is represented as
I 12
Areapi; (u) = — / (U, N geJ' do + / (U, N7 Yo J7 do
0 0
+ (Q(s), Noa(s))s2 ds.
00:87 (p7)— S5 (p?)

where u"jH: (u®,u?). Further, let D% be a domain enclosed by I'%, I'J and 9. Then the
area of Dy is represented as

v v
Area i = — / (B, N g2 do + / (®7, N )go do
0 0
+/ (Q(S),N@Q(S))Rz ds.

9€:57(0)—S%(0)

Thus the area constraint is given by
A (') == Areap:; (u'?) — Areapi; = 0.

Then we obtain the following lemmas.
LEMMA 7 (The first variation of AY). Let u'(e) = (u'(e),u’(¢)) with u'(),u’(c) € M

be a variation with the variation vector field n* = (n*,n’) where n* and n’ satisfy (14).
Then

dAZ(0)[n"] = —2/ v’ da+2/ v do.
0 0

Proof. Set

F*(u") ::/ (U*, N g2 J" do,

0
Gl o) = | (Q(s), Non(s))ze ds.
09:57 (p7) =S (p)

Then we obtain that Areap:;(u/) = —F!(u®) + FJ(uw/) + G (p, p’), so that

SAY(0)[n7] = —6F(0)[n'] + 6F (0)[n’] + 6G™ (0,0)[v, v7]. (20)



92 H. GARCKE ET AL.

Let us first derive §F(0)[n‘]. Using Lemma 1, we obtain

It 1
e A R s e e N
0 0
- [ @ Ve (s 1) o
0

By means of the integration by parts and ®(0) = (0,0), we are led to

5 (0)[n] =2 / ot do — (B (1), T (1) g’ (1), (21)

Let us derive 6G%(0,0)[v?,v7]. Since Q(S*(p'(-;¢))) = Whq(p'(-;€))|omii, Q(SH(0)) =
—Ni(1%), and {V5(q)}Y |4=0 = NL(I"), we easily see (S*)'(0)v" = —v'(I"). Also, note that
Q(S%(0)) = ®L(I*) and Ny (S*(0)) = Ti(I*). Then these imply that

5GY(0,0)[v’,v7]
= (Q(S'(0)), Noa(5°(0)))r=(S")'(0)v" — (Q(S7(0)), Noa(57(0)))r=(S7)"(0)2”
—(@L(1), TL()pev' (1) + (RL(H), TL (1))pav” (). (22)

Thus, by (20), (21), and (22), we have the desired result. m

Then it follows from Lemma 7 that if the variation preserves areas, they satisfy
" I

l2
/ vldaz/ v2d0:/ v3do.
0 0 0

LEMMA 8 (The second variation of A, Let u (¢) = (uk(sk) ui(sk)) (k = 1,2) with
uk,uk € M be a variation with the variation vector field n;’ (773;’77@ where n}; and
;. satisfy (14). Then

3> A (0)[ny, my]
v o o It 1. o
= 2/ KLvivs do + vir§|azo + va§|U:0 + 2/ l—z(viTQz + 11v5) do
0 0
v o o vy
,2/ m]vl ' do — viTd |U:0 - Tfué}azo - 2/ T (vlT2 + T1U2) do.
0 0
Proof. Let us first derive §2F*(0)[n?,n3]. Using Lemma 1, (17), and
N O] = ~{vh + (1= F )it bri (6 =1.2), (23)
we obtain

§*F"(0)[n3, m]
2

g g g
:—2/ KLvivh da—/ ﬁ(viTg—FT{v%)dJ—/ (1—;) kLT Ty do
0 0 0
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& I
—/ <1 — Z.)Tliv;,g do — / <1 — Z.)v{}(ﬂ'g do
0 0

l* *

4 / (%, 5N (0) [ ])ge 6.7 (0)[og] dor + / (', 5N (0) [z 6.7°(0) ] do
v _ o I _ _ _ o

+ / (62N (0)[igt mi e o + / (B, NP )ge 62.7°(0) [}, ) dor

Then, by integration by parts, ®.(0) = (0,0), &,(1*,0,0) = h, (17), (18), (23), and
SN (0) )
2
—~{otobo+ (1-F) dPrird+ (1= 7 )sbtolrd+ivg,)

_{ 2gFaV1Vs + (/@ivi + lin)vé,o + (/@ivé + li7'2>’()1 U}TZ

we are led to

§°F*(0)[n}, mb)]
v S . o
- —2/0 K0 05 do—Q/O ﬁ(UiTg—i—va%) do—v}rﬁ’gzo—ﬁzv;‘azo
+RL(PL(IY), NL(I"))r2vi ()05 (1), (24)

Let us derive 62G%(0,0,0,0)[v}, v], v}, v}]. Recalling Q(S*(p'(-;€))) = Whe,(p'(-;€))|omi
and computing the second variation of it, we have
QS (O){(S™) (0)01 H(S™) (0)v5} + Q(S*(0)){(S")" (0)vivs}
= {0 (@)} |g=0 vi (w3 (1").
Since (S%)(0)vi = —vi (%), Q(S*(0)) = —Ni(I%), and
Q(5(0)) = roa(S(0)) Naa(5'(0) = hTI(I") = {¥ha(a)} lo=o,
we obtain (S%)”(0)vivi = 0. Then it follows that
§2G"(0,0,0,0)[v], v], vy, v])]
= —roa(5°(0))(Q(S*(0)), Ton(S°(0)))r={(S*)'(0)v1 }{(S")'(0)v3}
+(Q(S8(0)), Naa(5°(0)))r=(S")" (0)vivy
+ra0 (57 (0))(Q(S7(0)), Toa(57(0)r={(S7) (0)o] H(S7)' (0)v5 }
—(Q(87(0)), Noa(57(0))rz (57)" (0)v] v}
= RL(@L(1), NI(I))mavy ()os (1) — RL(®L(F), N (1)) gav] ()i (). (25)
Thus, by means of (24), (25), and Areapi; (u¥) = —F'(u’) + F’(uw/) + G (p', p?), we are
led to the desired result. m

Ifr, = U?:l I'! is a extremal value of the energy functional under the area constraint,
we have

SEr(0)[n] + A0Ar*(0)[n'"?] + A26 477 (0)[n**] = 0, (26)
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where A1, Ao € R. Then, by means of Lemma 5 and Lemma 7, we obtain

3 ‘ l’L ‘ ‘ ll l2
—Zvl/ nivzda+)\1{—2/ v1d0+2/ v2do}
= 0 0 0
2 I
+A2{—2/ v2da—|—2/ v3da} =0.
0 0

That is, it follows that
I 2
/ (—y'sL =20t do + / (=262 4 201 — 2X0)v% do
0 0
l3

+/ (—v3K3 + 2X9)v® do = 0.
0
Since v (i = 1,2,3) are arbitrary functions, we obtain
el oM =0, —%RZ2420 — 20 =0, k342X =0.
Recalling v'xL + 7262 + 362 = 0, we see Ay = =y k1/2 and Ay = 3K3/2.

Let us consider the second variation under (26). Set

S (u) = Br(u) — oytnl AR(ul?) + S0Pk A2 ().

2! 2
Then 6=r(0)[n] = 0. By means of Lemma 6, Lemma 8, and v'x! + 7?k2 +v3k3 = 0, we
have

3 1t I
§2Er(0)[ny, n,] Z l{/ v} L4 5 do — (51)2/ vivd do + hivt ] }
i=1 0
1 1
- 571,% (1)17'1| —l— 7'1111%‘0:0) — 572/@'5 (vf7’22|010 + 7'12115’6:0)

1
—573/1 (vlTQLT 0—|—TIUQ|U 0)

Using Lemma 4, we obtain

{01 (0)7y +7iva(0)} = 1{ —29201 (0)v3(0) + 29°¢*v7(0)v3(0)

+ (7% = %¢*) (01 (0)v3(0) + v7(0)v3(0)) },

where s° = sin ' and ¢’ = cos §'. Here we see

vt (0)v3(0) + v7(0)v3(0)
2173 (v')?01(0)v2(0) = (v*)*01(0)v3(0) — (7°)*v7(0)v3(0) }.
This implies that

{01 (0)7; + 7 v3(0)}

1 ¢ 1.1 1 ’fi 2 2 2 "@1 3.3 3
=rl 32 )7 vy (0)v3(0) + pest v1(0)v3(0) — oA (0)v3(0)




PHASE BOUNDARY MOTION BY SURFACE DIFFUSION 95

Applying a similar argument, we have

PR30 + 1300}
’@2« 1.1 1 2 c' ¢ 2.2 2 "fz 3.3 3
R (0)v3(0) + k% PSR A (0)v3(0) + PR (0)v5(0),

P EH{vi (0075 + w3 (0)}

/€3 3 2 1

* Ry C C
= S 0)0) ~ 0030+ 62 - 5 )00

Then, using v'xL +~v2k2 +v3k2 = 0 and (5), we are led to

k j J k

[ c c K K 2 .

i * J.J k .k

bl == )|~ + = = 5 (Rl — "k))
S sJ S s7 S

for (4,7,k) = (1,2,3), (2,3,1), (3,1,2). This leads to

3 I I
PE O 7] =3 v{ [ vothodo — (07 [ vivhdo+ hiaieh 0_“}
i=1 0

2 3,.3\,,1,.1

— (K% = ARl v] 3 _ lrl)v2e?

- 7(C3I{* —-c K*)vlv2|0=0

- %(cl,‘ii — 02@)7}:{’1}3’0:0.

REMARK 9. We remark that this kind of bilinear form also appears in the analysis of the
double bubble, see [6] and [10].

4. Gradient flow structure and stability analysis. This section is a survey of [4].
The details will appear in [4].

4.1. Gradient flow structure. Let us first introduce the linearized system for the nonlinear
problem (8)-(10), which is the first variation of (8)-(10) around a stationary solution.
Using Lemma 1 and the fact that

V5, (0,0,0) = KINL(0),  Wi,e(0,0,0) = —(k)*Ni(0),
268 . ) )
i) - (1- 7)) wrTico)
the linearization of (8) is represented as
vp = —m'y v, + (K1) 0"} oo (27)
for o € (0,1°) and i = 1,2,3. To get (27), we apply a similar argument to [3, Lemma 3.2].
Further, we have

Ui (0,0,0) =

oo

vt %07 % =0, (28)
and the linearizations of (9) are given by
1 1
;(02/@2 — ARt Fol = 8—2(63/@2 — e 02 = 8—3(61/@{ — AR 02, (29)
Yoo + (8)%01} + 72 {05, + (k2)%0%} + 7% {v5, + (83)*0°} =0, (30)

My vge + (K2)%0' }e = m*y* {vg, + (k2)%0%}e = mPy* {vg, + (k0)%0%}e (31)
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at 0 = 0, and those of (10) are given by
vl + hivt =0, (32)
m'y{vg, + (k1)*0'}o = 0 (33)
at o =1 for i = 1,2,3. (29) are derived from the angle conditions in (9) by applying the
same argument as for (17) and also using Lemma 4 and (5). As to (30), (31), and (33),
see [3, Lemma 3.2 and 3.3]. To get (32), we apply a similar argument to [3, Lemma 3.3].
Set Iv1,vs] := 6°Zr(0)[n,,n,] where v; = (v],v2,0?) (j = 1,2). Also, for k € N, set
HE = H*(0,1%) x H*(0,1%) x H*(0,1%),
(M) s= (HM(0,1)) x (HE(0,1%))" x (H*(0,1%))',
&= {(w",v*v*) e H' |y"v" +74%0® +7°0® =0 at 0 =0,

l3

IR 2
/ UldO'Z/ v2daz/ ’USdO'},
0 0 0

X = {(wl,w2,w3) c (HY | (w, 1) = (w? 1) = (w?, 1)}7
where H¥(0,1?) is Sobolev space and (-,-) is the duality pairing between (H'(0,1))" and
H(0,1%). Note that we need (w!, 1) = (w?,1) = (w3, 1) in X to analyze the linearized sys-
tem (27)-(33) since the original geometric problem (2)-(4) has area-preserving property.
In addition, we define the inner product as

3 3 i
(O102)1 = Yo (h )1 = S [ By dpuy o (39
i=1 i=1 0
where (u,1,u,2,u,3) for a given v; = (vj,v},v}) € X is a weak solution of
J J J

i92, . i i
—m 8(,1%} =vj for o € (0,0"),
Uyt + U2z + Uz =0 at 0 =0,
J J J
miOyu,n = m20,u,> = m30,u,s at o =0,
J J J
8(,%;; =0 at o=10"

Then we obtain the following proposition which ensures that the linearized system has
the gradient flow structure.

PROPOSITION 10. Let w = (w!,w? w3) € X be given. Then v = (v}, v?,v3) € H> with
2 I

ll
/ UldJ:/ v2dcr:/ v3do
0 0 0

w' = —m'y vl + (k1) %0 } oo

with the boundary conditions (28)-(33) if and only if

is a weak solution of

(’LU, (P)_l = —I['U, SO]
holds for all p = (o*, %, %) € €.
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Proof. Let v be a weak solution of the linearized system. Setting

¢' =g, + (51) "'},

we derive
3
Z w', @) 1—Zm/8uw18u da—z Zm/@(@u do
i=1 i=1
=Z/CW®—ZV/@W Pyt do
i=170
= Zv/ vt do + 271(51)2/ v’ do
i=1 70 i=1 0
=> 9 [Uéd] — Zv/ vk + Zvl(ﬁif/ v do.
i=1 o=0 =1 O i=1 0
Using vl +~202 +793p3 = 0 at 0 = 0, (29), and (32), we are led to the desired result. m

4.2. Stability analysis. Let us study the spectrum for the linearized system (27)-(33). Set
D(A) ={(v",v*,v*) e H? ’ (vt 02, v3) satisfy (28)-(30), (32), and

I 12 3
/ vldaz/ vzdaz/ v3d0}.
0 0 0

Then the linearized operator A : D(A) — X is given by

(Av.8) = Zm/vh&ﬂ@wmﬁw

for all & € {(£%,€2,¢€%) € HY | & + €2 + €3 = 0}. Then, using Proposition 10, we obtain
for all p € £

(Av, @)1 = ~I[v, ).

For this operator A, we have the following proposition.

ProrosITION 11. The operator A satisfies the following:

(i) The operator A is self-adjoint with respect to the inner product (-,-)—_1

(ii) The spectrum of A contains a countable system of eigenvalues.

(i1i) The initial value problem (27)-(33) is solvable for a initial data in X.

(iv) The zero solution is an asymptotically stable solution of (27)-(33) if and only if the
largest eigenvalue of A is negative.

REMARK 12. The proof of Proposition 11 will appear in [4].
To establish the linearized stability, the following lemma is helpful.

LEMMA 13. Let Ay > Ay > A3 > -+ be the eigenvalues of A (taking the multiplicity into
account).
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(i) For allm e N

Ap =— inf sup M ,
WeS, 1 vewi\{o} (V,V)-1

I
Ap =— sup inf M .
WeS, 1 vewt\{o} (V,v) 1

Here ¥, is the collection of n-dimensional subspaces of £ and W+ is the orthogonal
complement of W with respect to the H™-inner product.

(ii) The eigenvalues depend continuously on hi, I*, and k. Further, the eigenvalues are
monotone decreasing in each of the parameters hi (i =1,2,3).

Proof. The lemma follows with the help of Courant’s maximum-minimum principle to-
gether with the fact that I depends continuously on A%, I*, and x%, and is monotone with
respect to ht. The proof follows the lines of Courant and Hilbert [1, Chapter VI]. m

By means of Proposition 11 and Lemma 13, we have the following theorem.

THEOREM 14. Let ', = U§:1 I'C be the stationary solution of (2)-(4). Then, if there
exists a constant ¢ > 0 such that

I[v,v] > c|jv||%, for all v € &\ {0},
the stationary solution Ty is linearly stable.

4.3. FExample. Let us consider the stability of the stationary solution for one specific
configuration. Assume that

Yl=x42=~3=1, '=P=0P=1, kl=k2=kr2=0. (35)
Then it follows from the first assumption of (35) and (5) that
0' = 6% = 6° = 120°.

Also, the third assumption of (35) implies that all of ' (i = 1,2, 3) are the line segments.
Further, the assumptions (35) give the linearized system

vi = —m'v! ___ for o€ (0,1),

VP40 =0 at 0 =0, (36)
vl =02 =03 at 0 =0, (37)
vl + v 4l =0 at 0 =0, (38)
mhol, =m2?  =m33,  at o =0, (39)
vl +hiv' =0 at o =1, (40)
vi =0 at o =1, (41)

and the bilinear form
3
Iv,v] = Z{/l(v;)Q do + hi(vi)2|0=1}.
i=1 /0

The following lemma is needed in order to analyze the stability of ', = U3 I

=1 " %"



PHASE BOUNDARY MOTION BY SURFACE DIFFUSION 99

LEMMA 15. Assume (85).
(i) The operator A has zero eigenvalues if and only if A(hl, h?,h3) =0, where

A(hL b2, h3) = 3hIh2h3 + T(hIh2 + h2h3 + h3hL) + 15(ht + h2 + h2) + 27,
(ii) Set S = {(ht, 2, h3) | A(RL, h2, h3) = 0}. The multiplicity of possible zero eigenval-
ues is equal to two if (hl, h?,h3) = (=3,-3,-3) € S. Further, it is equal to one if
(hald hia hi) € S \ {(_37 _35 _3)}

Proof. Let us first prove (i). Assume that —mv? = 0. Then the functions v’ (i =

1,2, 3) can be denoted by vi(0) = a0 + abo? + alo + o), where o} are constants. The
simple computation gives

vl (o) = 3ab0% + 2ab0 + i, vl (0) =6ato +2ab, vl (0) =60k,
By means of (41), we have a} = 0. This implies that
vi(o) = abo® +alo +af, vi(o)=2dbo+ai, vl (0)=2ab.

Using (36), (37), and (38), we are led to
ap+ai+ay=0, al=a 3 as+ai+as=0. (42)
Also, (40) gives
(20 + ab) + hi(ah + ol + af) = 0. (43)

1 1 1
/ vldcr:/ vzdaz/ v3 do,
0 0 0

Further, by means of

we obtain
304%4—%0&4—04(1) = %ag—&—%a%—i—ag = %a%—i—%a?—&—a%. (44)
Then the eigenvalue A = 0 if and only if the equations (42)-(44) have a nontrivial solution
(ad,ad, a3, 01,02, 03, a},03,a3) # 0, which is equivalent to det [M(hl, h2, h3)] = 0,
where M (hl,h2,h2) is the 9 x 9-matrix
11 1 0 0 0 0 0 0
0O 0 O 1 -1 0 0 0 0
0O 0 O 1 0 -1 0 0 0
0 0 © 0 0 0 1 1 1
R 0 0 1+h! 0 0 2+ ht 0 0
0 h?2 0 0 1+h2 0 0 2+ h? 0
0 0 &3 0 0 1+R3 0 0 2+h3
1 1 1 1
110 -5 0 3 -3 0
T L I R S
L 2 2 3 3

Setting A(hL, h2, h3) := (=3/4) - det [M(hL, h2, h3)], we are led to (i).
Let us prove (ii). By using MAPLE, we can derive

rank [M(-3,-3,-3)] = T.
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This implies that the multiplicity of zero eigenvalues is equal to two, provided that

(hi,h2,h3) = (=3,-3,-3) € S. Also, we see that for (hl, h2 h3) e S\ {(-3,-3,-3)}
rank [M (hl, % h3)] = 8,

%9 * 9

which means that the multiplicity of zero eigenvalues is equal to one, provided that
<h>1k’ hi7 hi) €S \ {(_37 =3, _3)} u

Fig. 3. & = {(h},h2, k%) | A(h}, B2, h3) =0} = S' US2 U S3

Let us analyze the stability of I'.. Assume that (hl, h2 h2) = (0,0,0). Then

* 9 * 9
3

Iv,v] = Z/o (vi)2do > 0.

i=1
Since the maximal eigenvalue A; allows the characterization
)\1 = — in 71[,07’0] 5
vee\{0} (v,v)_1
we have A; < 0. On the other hand, it follows from Lemma 15(i) and A(0,0,0) =27 >0
that all of eigenvalues are not zero for (hl, h2 h3) = (0,0,0). Thus, in this case, we see
A1 < 0. Hence, we have I[v,v] > (=\1)|v||2; with \; < 0 for (hl,h2,h3) = (0,0,0). That
is, T, is linearly stable. Further, by means of (hl,h2,h3) = (0,0,0) € D; (see Fig. 3),
Lemma 13, and Lemma 15, we are led to A\; < 0 as long as (hl,h2,h3) € D;. Thus
T, is linearly stable, provided that (hl,h2,h3) € D;. In addition, using Lemma 13 and
Lemma 15, we obtain
Ny=0, Ny =0 if
Ny =0, Ny =1 if 3
Ny=1, Ny =0 if *GDQ,
Ny =1, Ny=1 if (hl,h2,h3) € S\ {(-3,-3,-3)},

(hl h2 h3)
( )
( )
( )
Ny =1, Ny =2 if (hi,hz,hi) = (—3, -3, —3) € S NSs,
( )
( )
( )

*9 0%y Tk

hl, h2 h3

%9 * 9

hl, h2 h3

Ny =2, Ny=0 if (hl,h2 h3) e D,
Ny =2, Ny=1 if (hl,h2,h3) € S5\ {(-3,-3,-3)},
Ny =3, Ny=0 if hi,hi,hi € Dy,
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where Ny is the number of the positive eigenvalues and Ny is the number of the zero

eigenvalues. Consequently, we see that S is a criterion of the stability under the assump-
tion (35).

Fig. 4. [left] Stable. (hL,h2,h3) = (0,—1,—1) € D;. [middle] Neutral. (hi,h2 h%) =

(71,

—1,—1) € S1. [right] Unstable. hi < —1, h2 = b3 = —1.
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