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Abstract. The linearized stability of stationary solutions for the surface diffusion flow with

a triple junction is studied. We derive the second variation of the energy functional under the

constraint that the enclosed areas are preserved and show a linearized stability criterion with the

help of the H−1-gradient flow structure of the evolution problem and the analysis of eigenvalues

of a corresponding differential operator.

1. Introduction. The surface diffusion flow

V = −∆SH (1)

is a geometrical evolution law which describes the surface dynamics for phase interfaces,
when mass diffusion only occurs within the interface. Here, V is the normal velocity
of the evolving surface, ∆S is the surface Laplacian, and H is the mean curvature of
the surface. The basic property of this flow is that the perimeter of an enclosed volume
decreases whereas the volume is conserved.
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In this paper we study the motion by surface diffusion for three curves Γ1
t , Γ2

t , and Γ3
t

which are contained in a bounded domain Ω ⊂ R2 with the conditions that each one of
the end points of Γit (i = 1, 2, 3) is connected at a triple junction p(t) ∈ Ω and the other
end points intersect with ∂Ω. Then we require for i = 1, 2, 3

V i = −miγiκiss on Γit (2)

with the boundary conditions at a triple junction p(t)
^(Γ1

t ,Γ
2
t ) = θ3, ^(Γ2

t ,Γ
3
t ) = θ1, ^(Γ3

t ,Γ
1
t ) = θ2,

γ1κ1 + γ2κ2 + γ3κ3 = 0,

m1γ1κ1
s = m2γ2κ2

s = m3γ3κ3
s,

(3)

and at Γit ∩ ∂Ω
Γi⊥∂Ω, κis = 0. (4)

Here, V i is the normal velocity of Γit, κ
i is the curvature of Γit, and s is an arc-length

parameter of Γit. Further, mi and γi are the positive constants concerning the mobility
and the surface energy, respectively. In addition, θi is the positive constant satisfying

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3
, (5)

which is called Young’s law. We remark that Young’s law is also represented as

γ1T 1 + γ2T 2 + γ3T 3 = 0 at p(t),

where T i is the unit tangent to Γit. In (3) the second and the third condition follow
from the continuity of the chemical potentials and the flux balance at the triple junction,
respectively. Also, in (4) the second condition is the no-flux condition. The boundary
conditions (3) and (4) are the natural boundary conditions when viewing the flow as the
H−1-gradient flow of the energy functional

E[Γt] :=
3∑
i=1

γiL[Γit],

where Γt =
⋃3
i=1 Γi and L[Γit] is the length functional of Γit. It is not difficult to show

that under the surface diffusion flow (2) with the boundary conditions (3) and (4) the
areas enclosed by Γit, Γjt , and ∂Ω for (i, j) = (1, 2), (2, 3), (3, 1) are preserved and the
energy E[Γt] decreases in time. We also find that an arc of a circle or a line segment are
stationary under (2)-(4).

The geometric problem (2)-(4) was derived by Garcke and Novick-Cohen [5] as the
asymptotic limit of a Cahn-Hilliard system with a degenerate mobility matrix. They also
proved the short time existence of a solution for this problem. The stability problem of
stationary solutions for (2)-(4) has been addressed by Ito and Kohsaka [7] and by Escher,
Garcke and Ito [2] in the case of a geometry with a mirror symmetry and by Ito and
Kohsaka [8] in a triangular domain.

Our goal in this paper is to derive the second variation of the energy functional under
the constraint that the areas enclosed by Γit, Γjt , and ∂Ω for (i, j) = (1, 2), (2, 3), (3, 1)
are preserved and also to obtain a linearized stability criterion based on the work of [9]
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Fig. 1. The phase boundaries with triple junction

and [3]. We remark that [9] is the analysis of three curves with a triple junction for the
curvature flow V i = κi and [3] is that of one curve for the surface diffusion flow.

This paper proceeds as follows. In Section 2 we give a representation of curves around
the stationary solutions by using a modified distance function. It is not possible to use
usual distance functions since the triple junction moves with respect to time. Thus we have
to introduce a certain tangential adjustment. Then we formulate the evolution problem
with the help of this parameterization and give a nonlinear problem. In Section 3 we
derive the second variation of the energy functional under the area constraint. In Section
4 we first introduce the linearized system and prove a gradient flow structure with respect
to a certain H−1 scalar product on networks for the linearized system. Further, we show
several properties of the spectrum concerning our system. Finally, we give the stability
criterion and analyze the stability for one specific configuration.

2. Parameterization. Let Ω be a bounded domain in R2 with smooth boundary con-
taining (0, 0). We assume that Ω and ∂Ω are given as

Ω = {x ∈ R2 | ψ(x) < 0}, ∂Ω = {x ∈ R2 | ψ(x) = 0}
with a smooth function ψ : R2 → R with ∇ψ(x) 6= 0 if x ∈ ∂Ω, i.e. ψ(x) = 0. Let Γi∗
(i = 1, 2, 3) be straight lines or circular arcs with the constant curvature κi∗ satisfying

γ1κ1
∗ + γ2κ2

∗ + γ3κ3
∗ = 0.

Further, Γi∗ (i = 1, 2, 3) meet the outer boundary with the angle π/2 and have P∗ = (0, 0)
(without loss of generality) as a common point (triple junction) with the angle conditions
^(Γi∗,Γ

j
∗) = θk for i, j, k ∈ {1, 2, 3} mutually different. Then we define an arc-length

parameterization of Γi∗ as
Γi∗ = {Φi∗(σ) | σ ∈ [0, li]}

with Φi∗(0) = (0, 0), Φi∗(l
i) ∈ ∂Ω. We obtain in particular that li is the length of Γi∗.

Then we will extend Φi∗ as an arc-length parameterization of the full line or the full circle
which contain Γi∗. We will now introduce a certain stretched coordinate system in order
to allow for parameterizations of curves close to Γi∗ (i = 1, 2, 3) over fixed intervals [0, li].

Let T i∗ be the unit tangent to Γi∗ pointing from the triple junction P∗ to the outer
boundary and let N i

∗ = RT i∗, where R is the anti-clockwise rotation by π/2, be a unit
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Fig. 2. The positions of µi (i = 1, 2, 3)

normal. Then we set

µi∂Ω(q) = max{σ | Φi∗(σ) + qN i
∗(σ) ∈ Ω } .

We now define the parameterization of curves Γ =
⋃3
i=1 Γi close to Γ∗ =

⋃3
i=1 Γi∗ having

their triple junction at the point P with the help of

ρi : [0, li]→ R, µi ∈ R (i = 1, 2, 3)

together with the conditions

Φ1
∗(µ

1) + ρ1(0)N1
∗ (µ1) = Φ2

∗(µ
2) + ρ2(0)N2

∗ (µ2) = Φ3
∗(µ

3) + ρ3(0)N3
∗ (µ3). (6)

Here ρi are the smooth functions and µi are the parameters which allow for a tangential
movement of the triple junction along the extended Γi∗ (see Fig. 2). Set

Ψi(σ, q, µi) = Φi∗(ξ
i(σ, q, µi)) + qN i

∗(ξ
i(σ, q, µi)) ,

where

ξi(σ, q, µi) = µi +
σ

li
{
µi∂Ω(q)− µi

}
.

Note that ξi(σ, 0, 0) = σ and ξi(0, q, µi) = µi. Then, if we set

Φi(σ) = Ψi(σ, ρi(σ), µi) , σ ∈ [0, li] , (7)

the functions Φi parameterize the curves Γi in the neighborhood of Γ∗ as Γi = {Φi(σ) |σ ∈
[0, li]}. Further, the unit tangent and normal to Γi are represented as

T i =
1

J i(ui)
Φiσ, N i =

1
J i(ui)

RΦiσ,

where ui = (ρi, µi) and

J i(ui) := |Φiσ(σ)| =
√
|Ψi
σ|2 + 2(Ψi

σ,Ψi
q)R2ρiσ + |Ψi

q|2|ρiσ|2.

Let us derive the nonlinear problem for ρi from the geometric problem (2)-(4). By
this parameterization, the surface diffusion flow equation (2) is represented as

ρit = −miγiai(ui)∆(ui)κi(ui) + bi(ui)µit (8)
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for i = 1, 2, 3, where

ai(ui) =
J i(ui)

(Ψi
q, RΨi

σ)R2
, bi(ui) = − (Ψi

µ, RΨi
σ)R2 + (Ψi

µ, RΨi
q)R2ρiσ

(Ψi
q, RΨi

σ)R2
,

∆(ui) =
1

{J i(ui)}2 ∂
2
σ +

1
J i(ui)

{
∂σ

1
J i(ui)

}
∂σ,

and the curvature κi(ui) is given by

κi(ui) =
1

{J i(ui)}3 (Φiσσ, RΦiσ)R2

=
1

{J i(ui)}3 [(Ψi
q, RΨi

σ)R2ρiσσ +
{

2(Ψi
σq, RΨi

σ)R2 + (Ψi
σσ, RΨi

q)R2

}
ρiσ

+
{

(Ψi
qq, RΨi

σ)R2 + 2(Ψi
σq, RΨi

q)R2 + (Ψi
qq, RΨi

q)R2ρiσ
}

(ρiσ)2

+ (Ψi
σσ, RΨi

σ)R2 ].

Further, the boundary conditions (3) are represented as
(Φ1

σ,Φ
2
σ)R2 = |Φ1

σ||Φ2
σ| cos θ3, (Φ1

σ,Φ
3
σ)R2 = |Φ1

σ||Φ3
σ| cos θ2,

γ1κ1(u1) + γ2κ2(u2) + γ3κ3(u3) = 0,
m1γ1

J1(u1)
∂σκ

1(u1) =
m2γ2

J2(u2)
∂σκ

2(u2) =
m3γ3

J3(u3)
∂σκ

3(u3)

(9)

with the notation

(Φiσ,Φ
j
σ)R2 = (Ψi

σ,Ψ
j
σ)R2 + (Ψi

σ,Ψ
j
q)R2ρjσ + (Ψi

q,Ψ
j
σ)R2ρiσ + (Ψi

q,Ψ
j
q)R2ρiσρ

j
σ,

and the boundary conditions (4) are represented as

(RΨi
σ +RΨi

qρ
i
σ,∇ψ(Ψi))R2 = 0, ∂σκ

i(ui) = 0 (10)

for i = 1, 2, 3.

3. The variation of the energy functional. The functions Ψi have the following
properties which we need to derive the variation of the energy.

Lemma 1. The parameterizations Ψi fulfill the following:
(i) Ψi(σ, 0, 0) = Φi∗(σ).
(ii) Ψi

σ(σ, 0, 0) = T i∗(σ), Ψi
q(σ, 0, 0) = N i

∗(σ), Ψi
µ(σ, 0, 0) = (1− σ/li)T i∗(σ).

(iii) Ψi
σq(σ, 0, 0) = −κi∗T i∗(σ), Ψi

σµ(σ, 0, 0) = (−1/li)T i∗(σ) + (1− σ/li)κi∗N i
∗(σ),

Ψi
qq(σ, 0, 0) = ξiqq(σ, 0, 0)T i∗(σ), Ψi

qµ(σ, 0, 0) = −(1− σ/li)κi∗T i∗(σ),

Ψi
µµ(σ, 0, 0) = (1− σ/li)2κi∗N

i
∗(σ).

(iv) Ψi
σqq(σ, 0, 0) = ξiσqq(σ, 0, 0)T i∗(σ) + ξiqq(σ, 0, 0)κi∗N

i
∗(σ),

Ψi
σqµ(σ, 0, 0) = (κi∗/l

i)T i∗(σ)− (1− σ/li)(κi∗)2N i
∗(σ),

Ψi
σµµ(σ, 0, 0) = −(1− σ/li)2(κi∗)

2T i∗(σ)− (2/li)(1− σ/li)κi∗N i
∗(σ).

Proof. By the definition of Ψi and ξi, (i) is obvious. Let us prove (ii). Differentiating
Ψi(σ, 0, 0) = Φi∗(σ) with respect to σ, we readily derive Ψi

σ(σ, 0, 0) = T i∗(σ). By the



88 H. GARCKE ET AL.

definition of Ψi, we have{
Ψi
q(σ, q, µ

i) = ξq(σ, q, µi)(1− qκi∗)T i∗(ξ(σ, q, µi)) +N i
∗(ξ(σ, q, µ

i)),

Ψi
µ(σ, q, µi) = ξµ(σ, q, µi)(1− qκi∗)T i∗(ξ(σ, q, µi)).

(11)

According to the definition of ξi, we obtain

ξiq(σ, q, µ) = (σ/li){µi∂Ω(q)}′, ξiµ(σ, q, µ) = 1− σ/li. (12)

Using ξi(σ, 0, 0) = σ and {µi∂Ω(q)}′|q=0 = 0 (see [3, p. 1036]), the second and third of (ii)
are derived. Finally, by using ξi(σ, 0, 0) = σ, (11), (12), and Frenet-Serret formulas, we
are led to (iii) and (iv).

Also, we derive the following lemma.

Lemma 2. Let hi∗ be the curvature of ∂Ω at Γi∗ ∩ ∂Ω. Then

{µi∂Ω(q)}′′|q=0 = hi∗.

Proof. Recalling the definition of Ψi and ξ, we have

Ψi(σ, q, µi)|σ=li = Φi∗(µ
i
∂Ω(q)) + qN i

∗(µ
i
∂Ω(q)).

Set Ψi
∂Ω(q) := Φi∗(µ

i
∂Ω(q)) + qN i

∗(µ
i
∂Ω(q)). Then,

{Ψi
∂Ω(q)}′ = (1− qκi∗)T i∗(µi∂Ω(q)){µi∂Ω(q)}′ +N i

∗(µ
i
∂Ω(q)). (13)

It follows from µi∂Ω(0) = li and {µi∂Ω(q)}′|q=0 = 0 that

{Ψi
∂Ω(q)}′|q=0 = N i

∗(l
i).

Further, differentiating (13) and putting q = 0, we have

{Ψi
∂Ω(q)}′′|q=0 = {µi∂Ω(q)}′′|q=0 T

i
∗(l

i).

Note that ψ(Ψi
∂Ω(q)) = 0 by the definition of µi∂Ω(q). Computing the second derivative

of ψ(Ψi
∂Ω(q)) = 0 with respect to q, we are led to

([D2ψ(Ψi
∂Ω(q))]{Ψi

∂Ω(q)}′, {Ψi
∂Ω(q)}′)R2 + (∇ψ(Ψi

∂Ω(q)), {Ψi
∂Ω(q)}′′)R2 = 0.

Thus, putting q = 0, we obtain

([D2ψ(Φi∗(l
i))]N i

∗(l
i), N i

∗(l
i))R2 + (∇ψ(Φi∗(l

i)), T i∗(l
i))R2{µi∂Ω(q)}′′|q=0 = 0.

By means of T i∗(l
i) = ∇ψ(Φi∗(l

i))/|∇ψ(Φi∗(l
i))| and N i

∗(l
i) = −T∂Ω(Φi∗(l

i)), where T∂Ω is
the unit tangent vector of ∂Ω, we see

{µi∂Ω(q)}′′|q=0 = − ([D2ψ(Φi∗(l
i))]N i

∗(l
i), N i

∗(l
i))R2

(∇ψ(Φi∗(li)), T i∗(li))R2

= − ([D2ψ(Φi∗(l
i))]T∂Ω(Φi∗(l

i)), T∂Ω(Φi∗(l
i)))R2

|∇ψ(Φi∗(li))|
.

Since the curvature of ∂Ω is represented as

κ∂Ω = − ([D2ψ]T∂Ω, T∂Ω)R2

|∇ψ| ,

we are led to the desired result.
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For u = (u1,u2,u3) with ui = (ρi, µi) (i = 1, 2, 3), we define

M = {u |u satisfies the conditions (6)}.
Set ui(ε) = (ρi( · ; ε), µi(ε)) (i = 1, 2, 3) with

ρi : [0, li]× (−ε0, ε0)→ R, µi : (−ε0, ε0)→ R

which fulfill ρi( · ; 0) ≡ 0 and µi(0) = 0. Then we choose a variation u(ε) = (u1(ε),u2(ε),
u3(ε)) ∈M with variation vector field

∂ερ
i( · ; 0) = vi(·), ∂εµ

i(0) = τ i

for given η = (η1,η2,η3) with ηi = (vi(·), τ i) (i = 1, 2, 3) satisfying

γ1v1 + γ2v2 + γ3v3 = 0 at σ = 0, γ1τ1 + γ2τ2 + γ3τ3 = 0. (14)

Remark 3. (14) means that η = (η1,η2,η3) is in the tangential space to M.

Then we have the following lemma.

Lemma 4. Let u(ε) ∈M be a variation with the variation vector field η satisfying (14).
Then

τ i =
1
si
{cjvj(0)− ckvk(0)}

for i, j, k ∈ {1, 2, 3} mutually different, where ci := cos θi and si := sin θi.

Proof. For ui = (ρi, µi) and uj = (ρj , µj), set

Bij(ui,uj) := Φi∗(µ
i) + ρi(0)N i

∗(µ
i)− Φj∗(µ

j)− ρj(0)N j
∗ (µ

j).

Then it follows from u(ε) ∈M that Bij(ui(ε),uj(ε)) = 0, so that we have

0 = δBij(0,0)[ηi,ηj ] = τ iT i∗(0) + vi(0)N i
∗(0)− τ jT j∗ (0)− vj(0)N j

∗ (0),

where δBij(0,0)[ηi,ηj ] is the first variation of a functional Bij around a stationary
solution in the direction (ηi,ηj). This implies that

τ iT i∗(0) + vi(0)N i
∗(0) = τ jT j∗ (0) + vj(0)N j

∗ (0).

Thus we have

τ1T i∗(0) + v1(0)N1
∗ (0) = τ2T 2

∗ (0) + v2(0)N2
∗ (0) = τ3T 3

∗ (0) + v3(0)N3
∗ (0), (15)

By means of (15), we see

τ i = τ j(T i∗(0), T j∗ (0))R2 + vj(0)(T i∗(0), N j
∗ (0))R2 .

Then it follows from the angle conditions for the stationary solutions Γi∗ at P∗ that

(T i∗(0), T j∗ (0))R2 = cos θk, (T i∗(0), N j
∗ (0))R2 = − sin θk

for i, j, k ∈ {1, 2, 3} mutually different, so that we derive

τ i = τ j cos θk − vj(0) sin θk.

Setting ci := cos θi and si := sin θi, we have

(1− cicjck)τ i = −
{
ckcisjvi(0) + skvj(0) + cksivk(0)

}
.

Further, (5) and (14) imply

(1− cicjck)τ i = − 1
si
[{

(sksi − ckci(sj)2
}
vj(0) +

{
ck(si)2 − ckcisjsk

}
vk(0)

]
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Since we observe

sksi − ckci(sj)2 = −cj(1− cicjck), ck(si)2 − ckcisjsk = ck(1− cicjck),

we are led to the desired result.

For u = (u1,u2,u3) with ui = (ρi, µi) (i = 1, 2, 3), the energy of Γ =
⋃3
i=1 Γi is

defined as

EΓ(u) :=
3∑
i=1

γiLΓi(ui) =
3∑
i=1

γi
∫ li

0

J i(ui) dσ, (16)

where γi is the constant concerning the surface energy and LΓi(ui) is the length of Γi.
Then we have the following lemmas. Here and hereafter, δE(0)[η] and δ2E(0)[η1,η2]
denote the first and second variation of a functional E around a stationary solution,
respectively.

Lemma 5 (The first variation of EΓ). Let u(ε) ∈ M be a variation with the variation
vector field η satisfying (14). Then

δEΓ(0)[η] = −
3∑
i=1

γi
∫ li

0

κi∗v
i dσ.

Proof. Using Lemma 1, we observe

δJ i(0)[ηi] = −κi∗vi −
1
li
τ i. (17)

By means of (14), we have the desired result.

Lemma 6 (The second variation of EΓ). Let uj(ε) = (u1
j (εj),u

2
j (εj),u

3
j (εj)) ∈M (j =

1, 2) with uij(εj) = (ρij(· ; εj), µij(εj)) be a variation which has the variation vector field
ηj = (η1

j ,η
2
j ,η

3
j ) (j = 1, 2) with ηij = (vij(·), τ ij) satisfying (14). Then

δ2EΓ(0)[η1,η2]

=
3∑
i=1

γi
{∫ li

0

vi1,σv
i
2,σ dσ + hi∗v

i
1v
i
2

∣∣
σ=li

+
∫ li

0

κi∗
li
(
vi1τ

i
2 + τ i1v

i
2

)
dσ

}
,

where hi∗ is the curvature of ∂Ω at Γi∗ ∩ ∂Ω.

Proof. Using Lemma 1, we obtain

δ2J i(0)[ηi1,η
i
2] = ξiσqqv

i
1v
i
2 + ξiqqv

i
1v
i
2,σ + ξiqqv

i
1,σv

i
2 + vi1,σv

i
2,σ +

κi∗
li
(
vi1τ

i
2 + τ i1v

i
2

)
. (18)

This implies that

δ2LΓi(0)[ηi1,η
i
2] =

∫ li

0

{
ξiσqqv

i
1v
i
2 + ξiqqv

i
1v
i
2,σ + ξiqqv

i
1,σv

i
2 + vi1,σv

i
2,σ

}
dσ

+
∫ li

0

κi∗
li
(
vi1τ

i
2 + τ i1v

i
2

)
dσ

=
[
ξiqqv

i
1v
i
2

]σ=li

σ=0
+
∫ li

0

vi1,σv
i
2,σ dσ +

∫ li

0

κi∗
li
(
vi1τ

i
2 + τ i1v

i
2

)
dσ.



PHASE BOUNDARY MOTION BY SURFACE DIFFUSION 91

Then, by means of ξiqq(σ, 0, 0) = (σ/li){µi∂Ω(q)}′′|q=0 and Lemma 2, we have

δ2LΓi(0)[ηi1,η
i
2] =

∫ li

0

vi1,σv
i
2,σ dσ + hi∗v

i
1v
i
2

∣∣
σ=li

+
∫ li

0

κi∗
li
(
vi1τ

i
2 + τ i1v

i
2

)
dσ.

This leads to the desired result.

Let Dij be a domain enclosed by Γi, Γj and ∂Ω. Also, let Q(s) be an arc-length
parameterization of ∂Ω which satisfies

Q(Si(ρi)) = Ψi
∂Ω(ρi)|σ=li , (19)

where Ψi
∂Ω(q) := Φi∗(µ

i
∂Ω(q)) + qN i

∗(µ
i
∂Ω(q)). Then the area of Dij is represented as

AreaDij (uij) =−
∫ li

0

(Ψi, N i)R2J i dσ +
∫ lj

0

(Ψj , N j)R2Jj dσ

+
∫
∂Ω:Sj(ρj)→Si(ρi)

(Q(s), N∂Ω(s))R2 ds,

where uij = (ui,uj). Further, let Dij
∗ be a domain enclosed by Γi∗, Γj∗ and ∂Ω. Then the

area of Dij
∗ is represented as

AreaDij
∗

=−
∫ li

0

(Φi∗, N
i
∗)R2 dσ +

∫ lj

0

(Φj∗, N
j
∗ )R2 dσ

+
∫
∂Ω:Sj(0)→Si(0)

(Q(s), N∂Ω(s))R2 ds.

Thus the area constraint is given by

AijΓ (uij) := AreaDij (uij)−AreaDij
∗

= 0.

Then we obtain the following lemmas.

Lemma 7 (The first variation of AijΓ ). Let uij(ε) = (ui(ε),uj(ε)) with ui(ε),uj(ε) ∈M
be a variation with the variation vector field ηij = (ηi,ηj) where ηi and ηj satisfy (14).
Then

δAijΓ (0)[ηij ] = −2
∫ li

0

vi dσ + 2
∫ lj

0

vj dσ.

Proof. Set

F i(ui) :=
∫ li

0

(Ψi, N i)R2J i dσ,

Gij(ρi, ρj) :=
∫
∂Ω:Sj(ρj)→Si(ρi)

(Q(s), N∂Ω(s))R2 ds.

Then we obtain that AreaDij (uij) = −F i(ui) + F j(uj) +Gij(ρi, ρj), so that

δAijΓ (0)[ηij ] = −δF i(0)[ηi] + δF j(0)[ηj ] + δGij(0, 0)[vi, vj ]. (20)
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Let us first derive δF i(0)[ηi]. Using Lemma 1, we obtain

δF i(0)[ηi] =
∫ li

0

vi dσ −
∫ li

0

(Φi∗, T
i
∗)R2

{
viσ +

(
1− σ

li

)
κi∗τ

i

}
dσ

−
∫ li

0

(Φi∗, N
i
∗)R2

(
κi∗v

i +
1
li
τ i
)
dσ.

By means of the integration by parts and Φi∗(0) = (0, 0), we are led to

δF i(0)[ηi] = 2
∫ li

0

vi dσ − (Φi∗(l
i), T i∗(l

i))R2vi(li). (21)

Let us derive δGij(0, 0)[vi, vj ]. Since Q(Si(ρi( · ; ε))) = Ψi
∂Ω(ρi( · ; ε))|σ=li , Q̇(Si(0)) =

−N i
∗(l

i), and {Ψi
∂Ω(q)}′|q=0 = N i

∗(l
i), we easily see (Si)′(0)vi = −vi(li). Also, note that

Q(Si(0)) = Φi∗(l
i) and N∂Ω(Si(0)) = T i∗(l

i). Then these imply that

δGij(0, 0)[vi, vj ]

= (Q(Si(0)), N∂Ω(Si(0)))R2(Si)′(0)vi − (Q(Sj(0)), N∂Ω(Sj(0)))R2(Sj)′(0)vj

= −(Φi∗(l
i), T i∗(l

i))R2vi(li) + (Φj∗(l
j), T j∗ (lj))R2vj(lj). (22)

Thus, by (20), (21), and (22), we have the desired result.

Then it follows from Lemma 7 that if the variation preserves areas, they satisfy∫ l1

0

v1 dσ =
∫ l2

0

v2 dσ =
∫ l3

0

v3 dσ.

Lemma 8 (The second variation of AijΓ ). Let uijk (ε) = (uik(εk),ujk(εk)) (k = 1, 2) with
uik,u

j
k ∈ M be a variation with the variation vector field ηijk = (ηik,η

j
k) where ηik and

ηjk satisfy (14). Then

δ2AijΓ (0)[ηij1 ,η
ij
2 ]

= 2
∫ li

0

κi∗v
i
1v
i
2 dσ + vi1τ

i
2

∣∣
σ=0

+ τ i1v
i
2

∣∣
σ=0

+ 2
∫ li

0

1
li

(vi1τ
i
2 + τ i1v

i
2) dσ

−2
∫ lj

0

κj∗v
j
1v
j
2 dσ − vj1τ j2

∣∣
σ=0
− τ j1vj2

∣∣
σ=0
− 2

∫ lj

0

1
lj

(vj1τ
j
2 + τ j1v

j
2) dσ.

Proof. Let us first derive δ2F i(0)[ηi1,η
i
2]. Using Lemma 1, (17), and

δN i(0)[ηik] = −
{
vik,σ +

(
1− σ

li

)
κi∗τ

i
k

}
T i∗ (k = 1, 2), (23)

we obtain

δ2F i(0)[ηi1,η
i
2]

= −2
∫ li

0

κi∗v
i
1v
i
2 dσ −

∫ li

0

1
li

(vi1τ
i
2 + τ i1v

i
2) dσ −

∫ li

0

(
1− σ

li

)2

κi∗τ
i
1τ
i
2 dσ
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−
∫ li

0

(
1− σ

li

)
τ i1v

i
2,σ dσ −

∫ li

0

(
1− σ

li

)
vi1,στ

i
2 dσ

+
∫ li

0

(Φi∗, δN
i(0)[ηi1])R2 δJ i(0)[ηi2] dσ +

∫ li

0

(Φi∗, δN
i(0)[ηi2])R2 δJ i(0)[ηi1] dσ

+
∫ li

0

(Φi∗, δ
2N i(0)[ηi1,η

i
2])R2 dσ +

∫ li

0

(Φi∗, N
i
∗)R2 δ2J i(0)[ηi1,η

i
2] dσ.

Then, by integration by parts, Φi∗(0) = (0, 0), ξiqq(l
i, 0, 0) = hi∗, (17), (18), (23), and

δ2N i(0)[ηi1,η
i
2]

= −
{
vi1,σv

i
2,σ +

(
1− σ

li

)2

(κi∗)
2τ i1τ

i
2 +

(
1− σ

li

)
κi∗(v

i
1,στ

i
2 + τ i1v

i
2,σ)
}
N i
∗

−
{
ξiqqκ

i
∗v
i
1v
i
2 +

(
κi∗v

i
1 +

1
li
τ i1

)
vi2,σ +

(
κi∗v

i
2 +

1
li
τ i2

)
vi1,σ

}
T i∗,

we are led to

δ2F i(0)[ηi1,η
i
2]

= −2
∫ li

0

κi∗v
i
1v
i
2 dσ − 2

∫ li

0

1
li

(vi1τ
i
2 + τ i1v

i
2) dσ − vi1τ i2

∣∣
σ=0
− τ i1vi2

∣∣
σ=0

+hi∗(Φ
i
∗(l

i), N i
∗(l

i))R2vi1(li)vi2(li). (24)

Let us derive δ2Gi(0, 0, 0, 0)[vi1, v
j
1, v

i
2, v

j
2]. Recalling Q(Si(ρi( · ; ε))) = Ψi

∂Ω(ρi( · ; ε))|σ=li

and computing the second variation of it, we have

Q̈(Si(0)){(Si)′(0)vi1}{(Si)′(0)vi2}+ Q̇(Si(0)){(Si)′′(0)vi1v
i
2}

= {Ψi
∂Ω(q)}′′|q=0 v

i
1(li)vi2(li).

Since (Si)′(0)vik = −vik(li), Q̇(Si(0)) = −N i
∗(l

i), and

Q̈(Si(0)) = κ∂Ω(Si(0))N∂Ω(Si(0)) = hi∗T
i
∗(l

i) = {Ψi
∂Ω(q)}′′|q=0,

we obtain (Si)′′(0)vi1v
i
2 = 0. Then it follows that

δ2Gij(0, 0, 0, 0)[vi1, v
j
1, v

i
2, v

j
2]

= −κ∂Ω(Si(0))(Q(Si(0)), T∂Ω(Si(0)))R2{(Si)′(0)vi1}{(Si)′(0)vi2}
+(Q(Si(0)), N∂Ω(Si(0)))R2(Si)′′(0)vi1v

i
2

+κ∂Ω(Sj(0))(Q(Sj(0)), T∂Ω(Sj(0)))R2{(Sj)′(0)vj1}{(Sj)′(0)vj2}
−(Q(Sj(0)), N∂Ω(Sj(0)))R2(Sj)′′(0)vj1v

j
2

= hi∗(Φ
i
∗(l

i), N i
∗(l

i))R2vi1(li)vi2(lj)− hj∗(Φj∗(lj), N j
∗ (l

j))R2vj1(lj)vj2(lj). (25)

Thus, by means of (24), (25), and AreaDij (uij) = −F i(ui) +F j(uj) +Gij(ρi, ρj), we are
led to the desired result.

If Γ∗ =
⋃3
i=1 Γi∗ is a extremal value of the energy functional under the area constraint,

we have
δEΓ(0)[η] + λ1δA

12
Γ (0)[η12] + λ2δA

23
Γ (0)[η23] = 0, (26)
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where λ1, λ2 ∈ R. Then, by means of Lemma 5 and Lemma 7, we obtain

−
3∑
i=1

γi
∫ li

0

κi∗v
i dσ + λ1

{
−2
∫ l1

0

v1 dσ + 2
∫ l2

0

v2 dσ

}

+λ2

{
−2
∫ l2

0

v2 dσ + 2
∫ l3

0

v3 dσ

}
= 0.

That is, it follows that∫ l1

0

(−γ1κ1
∗ − 2λ1)v1 dσ +

∫ l2

0

(−γ2κ2
∗ + 2λ1 − 2λ2)v2 dσ

+
∫ l3

0

(−γ3κ3
∗ + 2λ2)v3 dσ = 0.

Since vi (i = 1, 2, 3) are arbitrary functions, we obtain

−γ1κ1
∗ − 2λ1 = 0, −γ2κ2

∗ + 2λ1 − 2λ2 = 0, −γ3κ3
∗ + 2λ2 = 0.

Recalling γ1κ1
∗ + γ2κ2

∗ + γ3κ3
∗ = 0, we see λ1 = −γ1κ1

∗/2 and λ2 = γ3κ3
∗/2.

Let us consider the second variation under (26). Set

ΞΓ(u) := EΓ(u)− 1
2
γ1κ1

∗A
12
Γ (u12) +

1
2
γ3κ3

∗A
23
Γ (u23).

Then δΞΓ(0)[η] = 0. By means of Lemma 6, Lemma 8, and γ1κ1
∗ + γ2κ2

∗ + γ3κ3
∗ = 0, we

have

δ2ΞΓ(0)[η1,η2] =
3∑
i=1

γi
{∫ li

0

vi1,σv
i
2,σ dσ − (κi∗)

2

∫ li

0

vi1v
i
2 dσ + hi∗v

i
1v
i
2

∣∣
σ=li

}
− 1

2
γ1κ1

∗
(
v1

1τ
1
2

∣∣
σ=0

+ τ1
1 v

1
2

∣∣
σ=0

)
− 1

2
γ2κ2

∗
(
v2

1τ
2
2

∣∣
σ=0

+ τ2
1 v

2
2

∣∣
σ=0

)
− 1

2
γ3κ3

∗
(
v3

1τ
3
2

∣∣
σ=0

+ τ3
1 v

3
2

∣∣
σ=0

)
.

Using Lemma 4, we obtain

γ1κ1
∗
{
v1

1(0)τ1
2 + τ1

1 v
1
2(0)

}
=
κ1
∗
s1

{
−2γ2c2v2

1(0)v2
2(0) + 2γ3c3v3

1(0)v3
2(0)

+ (γ2c3 − γ3c2)(v2
1(0)v3

2(0) + v3
1(0)v2

2(0))
}
,

where si = sin θi and ci = cos θi. Here we see

v2
1(0)v3

2(0) + v3
1(0)v2

2(0)

=
1

γ2γ3

{
(γ1)2v1

1(0)v1
2(0)− (γ2)2v2

1(0)v2
2(0)− (γ3)2v3

1(0)v3
2(0)

}
.

This implies that

γ1κ1
∗
{
v1

1(0)τ1
2 + τ1

1 v
1
2(0)

}
= κ1

∗

(
c3

s3
− c2

s2

)
γ1v1

1(0)v1
2(0) +

κ1
∗
s3
γ2v2

1(0)v2
2(0)− κ1

∗
s2
γ3v3

1(0)v3
2(0)
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Applying a similar argument, we have

γ2κ2
∗
{
v2

1(0)τ2
2 + τ2

1 v
2
2(0)

}
= −κ

2
∗
s3
γ1v1

1(0)v1
2(0) + κ2

∗

(
c1

s1
− c3

s3

)
γ2v2

2(0)v2
2(0) +

κ2
∗
s1
γ3v3

1(0)v3
2(0),

γ3κ3
∗
{
v3

1(0)τ3
2 + τ3

1 v
3
2(0)

}
=
κ3
∗
s2
γ1v1

1(0)v1
2(0)− κ3

∗
s1
γ2v2

1(0)v2
2(0) + κ3

∗

(
c2

s2
− c1

s1

)
γ3v3

2(0)v3
2(0).

Then, using γ1κ1
∗ + γ2κ2

∗ + γ3κ3
∗ = 0 and (5), we are led to

κi∗

(
ck

sk
− cj

sj

)
− κj∗
sk

+
κk∗
sj

=
2
si

(cjκj∗ − ckκk∗)

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). This leads to

δ2ΞΓ(0)[η1,η2] =
3∑
i=1

γi
{∫ li

0

vi1,σv
i
2,σ dσ − (κi∗)

2

∫ li

0

vi1v
i
2 dσ + hi∗v

i
1v
i
2

∣∣
σ=li

}
− γ1

s1
(c2κ2

∗ − c3κ3
∗)v

1
1v

1
2

∣∣
σ=0
− γ2

s2
(c3κ3

∗ − c1κ1
∗)v

2
1v

2
2

∣∣
σ=0

− γ3

s3
(c1κ1

∗ − c2κ2
∗)v

3
1v

3
2

∣∣
σ=0

.

Remark 9. We remark that this kind of bilinear form also appears in the analysis of the
double bubble, see [6] and [10].

4. Gradient flow structure and stability analysis. This section is a survey of [4].
The details will appear in [4].

4.1. Gradient flow structure. Let us first introduce the linearized system for the nonlinear
problem (8)-(10), which is the first variation of (8)-(10) around a stationary solution.
Using Lemma 1 and the fact that

Ψi
σσ(σ, 0, 0) = κi∗N

i
∗(σ), Ψi

σσq(σ, 0, 0) = −(κi∗)
2N i
∗(σ),

Ψi
σσµ(σ, 0, 0) = −2κi∗

li
N i
∗(σ)−

(
1− σ

li

)
(κi∗)

2T i∗(σ),

the linearization of (8) is represented as

vit = −miγi{viσσ + (κi∗)
2vi}σσ (27)

for σ ∈ (0, li) and i = 1, 2, 3. To get (27), we apply a similar argument to [3, Lemma 3.2].
Further, we have

γ1v1 + γ2v2 + γ3v3 = 0, (28)

and the linearizations of (9) are given by
1
s1

(c2κ2
∗ − c3κ3

∗)v
1 + v1

σ =
1
s2

(c3κ3
∗ − c1κ1

∗)v
2 + v2

σ =
1
s3

(c1κ1
∗ − c2κ2

∗)v
3 + v3

σ, (29)

γ1{v1
σσ + (κ1

∗)
2v1}+ γ2{v2

σσ + (κ2
∗)

2v2}+ γ3{v3
σσ + (κ3

∗)
2v3} = 0, (30)

m1γ1{v1
σσ + (κ1

∗)
2v1}σ = m2γ2{v2

σσ + (κ2
∗)

2v2}σ = m3γ3{v3
σσ + (κ3

∗)
2v3}σ (31)
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at σ = 0, and those of (10) are given by

viσ + hi∗v
i = 0, (32)

miγi{viσσ + (κi∗)
2vi}σ = 0 (33)

at σ = li for i = 1, 2, 3. (29) are derived from the angle conditions in (9) by applying the
same argument as for (17) and also using Lemma 4 and (5). As to (30), (31), and (33),
see [3, Lemma 3.2 and 3.3]. To get (32), we apply a similar argument to [3, Lemma 3.3].

Set I[v1,v2] := δ2ΞΓ(0)[η1,η2] where vj = (v1
j , v

2
j , v

3
j ) (j = 1, 2). Also, for k ∈ N, set

Hk := Hk(0, l1)×Hk(0, l2)×Hk(0, l3),

(Hk)′ := (Hk(0, l1))′ × (Hk(0, l2))′ × (Hk(0, l3))′,

E :=
{

(v1, v2, v3) ∈ H1
∣∣ γ1v1 + γ2v2 + γ3v3 = 0 at σ = 0,∫ l1

0

v1 dσ =
∫ l2

0

v2 dσ =
∫ l3

0

v3 dσ
}
,

X :=
{

(w1, w2, w3) ∈ (H1)′ | 〈w1, 1〉 = 〈w2, 1〉 = 〈w3, 1〉
}
,

where Hk(0, li) is Sobolev space and 〈·, ·〉 is the duality pairing between (H1(0, li))′ and
H1(0, li). Note that we need 〈w1, 1〉 = 〈w2, 1〉 = 〈w3, 1〉 in X to analyze the linearized sys-
tem (27)-(33) since the original geometric problem (2)-(4) has area-preserving property.
In addition, we define the inner product as

(v1,v2)−1 :=
3∑
i=1

(vi1, v
i
2)−1 =

3∑
i=1

mi

∫ li

0

∂σuvi
1
∂σuvi

2
dσ, (34)

where (uv1j , uv2j , uv3j ) for a given vj = (v1
j , v

2
j , v

3
j ) ∈ X is a weak solution of

−mi∂2
σuvi

j
= vij for σ ∈ (0, li),

uv1j + uv2j + uv3j = 0 at σ = 0,

m1∂σuv1j = m2∂σuv2j = m3∂σuv3j at σ = 0,

∂σuvi
j

= 0 at σ = li.

Then we obtain the following proposition which ensures that the linearized system has
the gradient flow structure.

Proposition 10. Let w = (w1, w2, w3) ∈ X be given. Then v = (v1, v2, v3) ∈ H3 with∫ l1

0

v1 dσ =
∫ l2

0

v2 dσ =
∫ l3

0

v3 dσ

is a weak solution of
wi = −miγi{viσσ + (κi∗)

2vi}σσ
with the boundary conditions (28)-(33) if and only if

(w,ϕ)−1 = −I[v,ϕ]

holds for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ E.
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Proof. Let v be a weak solution of the linearized system. Setting

ζi = γi{viσσ + (κi∗)
2vi},

we derive
3∑
i=1

(wi, ϕi)−1 =
3∑
i=1

mi

∫ li

0

∂σuwi∂σuϕi dσ =
3∑
i=1

〈wi, uϕi〉 =
3∑
i=1

mi

∫ li

0

∂σζ
i∂σuϕi dσ

=
3∑
i=1

∫ li

0

ζiϕi dσ =
3∑
i=1

γi
∫ li

0

{viσσ + (κi∗)
2vi}ϕi dσ

=
3∑
i=1

γi
∫ li

0

viσσϕ
i dσ +

3∑
i=1

γi(κi∗)
2

∫ li

0

viϕi dσ

=
3∑
i=1

γi
[
viσϕ

i

]σ=li

σ=0

−
3∑
i=1

γi
∫ li

0

viσϕ
i
σ +

3∑
i=1

γi(κi∗)
2

∫ li

0

viϕi dσ.

Using γ1ϕ1 +γ2ϕ2 +γ3ϕ3 = 0 at σ = 0, (29), and (32), we are led to the desired result.

4.2. Stability analysis. Let us study the spectrum for the linearized system (27)-(33). Set

D(A) =
{

(v1, v2, v3) ∈ H3
∣∣ (v1, v2, v3) satisfy (28)-(30), (32), and∫ l1

0

v1 dσ =
∫ l2

0

v2 dσ =
∫ l3

0

v3 dσ
}
.

Then the linearized operator A : D(A)→ X is given by

〈Av, ξ〉 =
3∑
i=1

mi

∫ li

0

[
γi
{
viσσ + (κi∗)

2vi
}]
σ
ξiσ dσ

for all ξ ∈ {(ξ1, ξ2, ξ3) ∈ H1 | ξ1 + ξ2 + ξ3 = 0}. Then, using Proposition 10, we obtain
for all ϕ ∈ E

(Av,ϕ)−1 = −I[v,ϕ].

For this operator A, we have the following proposition.

Proposition 11. The operator A satisfies the following:

(i) The operator A is self-adjoint with respect to the inner product (·, ·)−1.
(ii) The spectrum of A contains a countable system of eigenvalues.
(iii) The initial value problem (27)-(33) is solvable for a initial data in X .
(iv) The zero solution is an asymptotically stable solution of (27)-(33) if and only if the

largest eigenvalue of A is negative.

Remark 12. The proof of Proposition 11 will appear in [4].

To establish the linearized stability, the following lemma is helpful.

Lemma 13. Let λ1 ≥ λ2 ≥ λ3 ≥ · · · be the eigenvalues of A (taking the multiplicity into
account).
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(i) For all n ∈ N

λn =− inf
W∈Σn−1

sup
v ∈W⊥\{0}

I[v,v]
(v,v)−1

,

λn =− sup
W∈Σn−1

inf
v ∈W⊥\{0}

I[v,v]
(v,v)−1

.

Here Σn is the collection of n-dimensional subspaces of E and W⊥ is the orthogonal
complement of W with respect to the H−1-inner product.

(ii) The eigenvalues depend continuously on hi∗, l
i, and κi∗. Further, the eigenvalues are

monotone decreasing in each of the parameters hi∗ (i = 1, 2, 3).

Proof. The lemma follows with the help of Courant’s maximum-minimum principle to-
gether with the fact that I depends continuously on hi∗, l

i, and κi∗, and is monotone with
respect to hi∗. The proof follows the lines of Courant and Hilbert [1, Chapter VI].

By means of Proposition 11 and Lemma 13, we have the following theorem.

Theorem 14. Let Γ∗ =
⋃3
i=1 Γi∗ be the stationary solution of (2)-(4). Then, if there

exists a constant c > 0 such that

I[v,v] ≥ c‖v‖2−1 for all v ∈ E \ {0},
the stationary solution Γ∗ is linearly stable.

4.3. Example. Let us consider the stability of the stationary solution for one specific
configuration. Assume that

γ1 = γ2 = γ3 = 1, l1 = l2 = l3 = 1, κ1
∗ = κ2

∗ = κ3
∗ = 0. (35)

Then it follows from the first assumption of (35) and (5) that

θ1 = θ2 = θ3 = 120◦.

Also, the third assumption of (35) implies that all of Γi∗ (i = 1, 2, 3) are the line segments.
Further, the assumptions (35) give the linearized system

vit = −miviσσσσ for σ ∈ (0, 1),

v1 + v2 + v3 = 0 at σ = 0, (36)

v1
σ = v2

σ = v3
σ at σ = 0, (37)

v1
σσ + v2

σσ + v3
σσ = 0 at σ = 0, (38)

m1v1
σσσ = m2v2

σσσ = m3v3
σσσ at σ = 0, (39)

viσ + hi∗v
i = 0 at σ = 1, (40)

viσσσ = 0 at σ = 1, (41)

and the bilinear form

I[v,v] =
3∑
i=1

{∫ 1

0

(viσ)2 dσ + hi∗(v
i)2
∣∣
σ=1

}
.

The following lemma is needed in order to analyze the stability of Γ∗ =
⋃3
i=1 Γi∗.
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Lemma 15. Assume (35).

(i) The operator A has zero eigenvalues if and only if Λ(h1
∗, h

2
∗, h

3
∗) = 0, where

Λ(h1
∗, h

2
∗, h

3
∗) = 3h1

∗h
2
∗h

3
∗ + 7(h1

∗h
2
∗ + h2

∗h
3
∗ + h3

∗h
1
∗) + 15(h1

∗ + h2
∗ + h3

∗) + 27.

(ii) Set S = {(h1
∗, h

2
∗, h

3
∗) |Λ(h1

∗, h
2
∗, h

3
∗) = 0}. The multiplicity of possible zero eigenval-

ues is equal to two if (h1
∗, h

2
∗, h

3
∗) = (−3,−3,−3) ∈ S. Further, it is equal to one if

(h1
∗, h

2
∗, h

3
∗) ∈ S \ {(−3,−3,−3)}

Proof. Let us first prove (i). Assume that −miviσσσσ = 0. Then the functions vi (i =
1, 2, 3) can be denoted by vi(σ) = αi3σ

3 + αi2σ
2 + αi1σ+ αi0, where αik are constants. The

simple computation gives

viσ(σ) = 3αi3σ
2 + 2αi2σ + αi1, viσσ(σ) = 6αi3σ + 2αi2, viσσσ(σ) = 6αi3.

By means of (41), we have αi3 = 0. This implies that

vi(σ) = αi2σ
2 + αi1σ + αi0, viσ(σ) = 2αi2σ + αi1, viσσ(σ) = 2αi2.

Using (36), (37), and (38), we are led to

α1
0 + α2

0 + α3
0 = 0, α1

1 = α2
1 = α3

1, α1
2 + α2

2 + α3
2 = 0. (42)

Also, (40) gives
(2αi2 + αi1) + hi∗(α

i
2 + αi1 + αi0) = 0. (43)

Further, by means of ∫ 1

0

v1 dσ =
∫ 1

0

v2 dσ =
∫ 1

0

v3 dσ,

we obtain
1
3
α1

2 +
1
2
α1

1 + α1
0 =

1
3
α2

2 +
1
2
α2

1 + α2
0 =

1
3
α3

2 +
1
2
α3

1 + α3
0. (44)

Then the eigenvalue λ = 0 if and only if the equations (42)-(44) have a nontrivial solution
(α1

0, α
2
0, α

3
0, α

1
1, α

2
1, α

3
1, α

1
2, α

2
2, α

3
2) 6= 0, which is equivalent to det [M(h1

∗, h
2
∗, h

3
∗)] = 0,

where M(h1
∗, h

2
∗, h

3
∗) is the 9× 9-matrix

1 1 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 1 1 1
h1
∗ 0 0 1 + h1

∗ 0 0 2 + h1
∗ 0 0

0 h2
∗ 0 0 1 + h2

∗ 0 0 2 + h2
∗ 0

0 0 h3
∗ 0 0 1 + h3

∗ 0 0 2 + h3
∗

1 −1 0
1
2

−1
2

0
1
3

−1
3

0

1 0 −1
1
2

0 −1
2

1
3

0 −1
3


.

Setting Λ(h1
∗, h

2
∗, h

3
∗) := (−3/4) · det [M(h1

∗, h
2
∗, h

3
∗)], we are led to (i).

Let us prove (ii). By using MAPLE, we can derive

rank [M(−3,−3,−3)] = 7.
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This implies that the multiplicity of zero eigenvalues is equal to two, provided that
(h1
∗, h

2
∗, h

3
∗) = (−3,−3,−3) ∈ S. Also, we see that for (h1

∗, h
2
∗, h

3
∗) ∈ S \ {(−3,−3,−3)}

rank [M(h1
∗, h

2
∗, h

3
∗)] = 8,

which means that the multiplicity of zero eigenvalues is equal to one, provided that
(h1
∗, h

2
∗, h

3
∗) ∈ S \ {(−3,−3,−3)}.

D1

D2

D3

D4

S1

S2

S3 ·

-5 -4 -3 -2 -1 0 1h1

-4

-2

0

h2-5

-4

-3

-2

-1

0

1

h3

Fig. 3. S = {(h1
∗, h

2
∗, h

3
∗) |Λ(h1

∗, h
2
∗, h

3
∗) = 0} = S1 ∪ S2 ∪ S3

Let us analyze the stability of Γ∗. Assume that (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0). Then

I[v,v] =
3∑
i=1

∫ 1

0

(viσ)2 dσ ≥ 0.

Since the maximal eigenvalue λ1 allows the characterization

λ1 = − inf
v ∈E\{0}

I[v,v]
(v,v)−1

,

we have λ1 ≤ 0. On the other hand, it follows from Lemma 15(i) and Λ(0, 0, 0) = 27 > 0
that all of eigenvalues are not zero for (h1

∗, h
2
∗, h

3
∗) = (0, 0, 0). Thus, in this case, we see

λ1 < 0. Hence, we have I[v,v] ≥ (−λ1)‖v‖2−1 with λ1 < 0 for (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0). That

is, Γ∗ is linearly stable. Further, by means of (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) ∈ D1 (see Fig. 3),

Lemma 13, and Lemma 15, we are led to λ1 < 0 as long as (h1
∗, h

2
∗, h

3
∗) ∈ D1. Thus

Γ∗ is linearly stable, provided that (h1
∗, h

2
∗, h

3
∗) ∈ D1. In addition, using Lemma 13 and

Lemma 15, we obtain

NU = 0, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ D1,

NU = 0, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S1,

NU = 1, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ D2,

NU = 1, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S2 \ {(−3,−3,−3)},

NU = 1, NN = 2 if (h1
∗, h

2
∗, h

3
∗) = (−3,−3,−3) ∈ S2 ∩ S3,

NU = 2, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ D3,

NU = 2, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S3 \ {(−3,−3,−3)},

NU = 3, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ D4,
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where NU is the number of the positive eigenvalues and NN is the number of the zero
eigenvalues. Consequently, we see that S1 is a criterion of the stability under the assump-
tion (35).

120◦120◦

120◦

120◦120◦

120◦

120◦120◦

120◦

Fig. 4. [left] Stable. (h1
∗, h

2
∗, h

3
∗) = (0,−1,−1) ∈ D1. [middle] Neutral. (h1

∗, h
2
∗, h

3
∗) =

(−1,−1,−1) ∈ S1. [right] Unstable. h1
∗ < −1, h2

∗ = h3
∗ = −1.
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