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Abstract. In this paper we study a class of abstract quasi-variational inequalities with non-

local constraints depending on the unknown and establish an existence result. Further we give

its applications to parabolic systems of partial differential inequalities with nonlocal obstacles

depending on the unknowns.

1. Introduction. For a real Hilbert space H, we are given a family {ϕt(v; ·)} of proper,
lower semicontinuous, convex functions ϕt(v; ·) on H, with parameters t ∈ [0, T ] for a
fixed finite time T and v in an appropriate function space, and consider a nonlinear
evolution equation of the form:

u′(t) + ∂ϕt(u;u(t)) 3 f(t), 0 < t < T, in H,

subject to the initial condition

u(t) = u0(t), −δ0 ≤ t ≤ 0, in H,

where 0 < δ0 < ∞, ∂ϕt(u; ·) is the subdifferential of convex function ϕt(u; ·) on H,
u′ = du

dt and u0 : [−δ0, 0] → H and f : (0, T ) → H are prescribed as initial and forcing
functions, respectively. In this paper, we shall prove that the above Cauchy problem has
at least one solution u which is local or global in time.

There are a lot of results for elliptic quasi-variational inequalities (cf. [1,5]), but the
corresponding parabolic problems are extremely difficult to handle. In this paper we
propose a mathematical approach to the parabolic case in an abstract framework.
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As an example of the above abstract problem, we have the following system:

u ∈W 1,2(−δ0, T ;L2(0, 1)) ∩ L∞(−δ0, T ;H1(0, 1)),
|ux| ≤ kc(Λu) a.e. on (0, 1)× (0, T ), u(0, t) = 0 for 0 < t < T,∫ T

0

∫ 1

0

(ut − f) (u− w)dxdt+
∫ T

0

∫ 1

0

ux(ux − wx)dxdt ≤ 0,

∀w ∈ L2(0, T ;H1(0, 1)) with |wx| ≤ kc(Λu) a.e. on (0, 1)× (0, T )
and w(0, t) = 0 for 0 < t < T,

u = u0 on (0, 1)× [−δ0, 0],

(1.1)

where kc(·) is a Lipschitz continuous function on R, f is a given function on (0, 1)×(0, T )
and Λ is a nonlocal mapping defined by

[Λv](x, t) :=
∫ t

−δ0

∫ 1

0

ρ(x, y, s, t)v(y, s)dyds, ∀(x, t) ∈ (0, 1)× [0, T ],

where ρ be a bounded smooth function on [0, 1]× [0, 1]× [−δ0, T ]× [0, T ]. In this system
(1.1) the constraint kc(Λu) depends upon the unknown function u, so that this system is
called a quasi-variational inequality.

2. Notation and known results. Let X be a real reflexive Banach space, X∗ be its
dual and H be a real Hilbert space such that X is dense in H and the natural injection
from X into H is compact:

X ⊂ H ⊂ X∗

We denote by | · |H , | · |X and | · |X∗ the norms in H, X and X∗, respectively, and denote
by (·, ·)H the inner product in H.

Given a proper, lower semi-continuous (l.s.c.) and convex function ψ on H, the effec-
tive domain of ψ is the set

D(ψ) = {z ∈ H : ψ(z) <∞},

and the subdifferential ∂ψ of ψ is a (multivalued) operator in H defined by

z∗ ∈ ∂ψ(z)⇔ z ∈ D(ψ), (z∗, y − z)H ≤ ψ(y)− ψ(z), ∀y ∈ H.

Let us recall a notion of convergence of convex functions. Given a sequence {ψn} of
proper l.s.c. and convex functions on H, it is said that ψn converges to a proper, l.s.c.
and convex function ψ on H in the sense of Mosco [7], if the following two conditions
(M1) and (M2) are fulfilled:

(M1) If zn → z weakly in H, then lim infn→∞ ψn(z) ≥ ψ(z).
(M2) For each z ∈ D(ψ) there is a sequence {zn} in H such that zn → z in H and

ψn(zn)→ ψ(z) as n→∞.

Given non-negative functions a ∈ L2(0, T ) and b ∈ L1(0, T ), we define the class
G(a, b) of all families {ψt(·)}0≤t≤T consisting of proper, l.s.c. and convex functions on H
as follows: {ψt(·)}0≤t≤T ∈ G(a, b) if and only if the following condition (∗) is fulfilled:
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(∗) For any s, t ∈ [0, T ], and any z ∈ D(ψs), there exists z̃ ∈ D(ψt) such that

|z̃ − z|H ≤
∫ t

s

a(τ)dτ(1 + ψs(z)
1
2 )

and

ψt(z̃)− ψs(z) ≤
∫ t

s

b(τ)dτ(1 + ψs(z))

Let us consider an evolution problem, labelled (CP) or more precisely (CP;{ψt}, u0, f),
generated by the subdifferential ∂ψt:

(CP)

{
u′(t) + ∂ψt(u(t)) 3 f(t) a.e. t ∈ [0, T ],

u(0) = u0,

where f and u0 are respectively prescribed in L2(0, T ;H) and H. We say that u is
a solution of (CP) on [0, T ], if u ∈ C([0, T ];H) ∩ W 1,2

loc ((0, T ];H), ψ(·)(u) ∈ L1(0, T ),
u(0) = u0 and f(t)− u′(t) ∈ ∂ψt(u(t)) for a.e. t ∈ (0, T ).

On account of [3,4,10], if {ψt}0≤t≤T ∈ G(a, b), u0 ∈ D(ψ0) and f ∈ L2(0, T ;H), then
(CP) has a unique solution u such that u ∈ W 1,2(0, T ;H) and sup0≤t≤T ψ

t(u(t)) < ∞.
Furthermore, we have

1
2
|u(t)|2H +

∫ t

0

ψτ (u(τ))dτ − (u(t), h(t))H +
∫ t

0

(u(τ), h′(τ))Hdτ −
∫ t

0

(f(τ), u(τ))Hdτ

≤ 1
2
|u0|2H +

∫ t

0

ψτ (h(τ))dτ − (u0, h(0))H −
∫ 0

t

(f(τ), h(τ))Hdτ, ∀t ∈ [0, T ], (2.1)

for any function h ∈W 1,2(0, T ;H) with ψ(·)(h(·)) ∈ L1(0, T ), and

ψt(u(t)) +
1
2

∫ t

0

|u′(τ)|Hdτ ≤ ψ0(u0) +
∫ t

0

k(τ) · (ψτ (u(τ)) + 1)dτ, ∀t ∈ [0, T ], (2.2)

where k(·) = 6{a(·)2 + b(·) + |f(·)|2H}.
Next, we recall a convergence theorem (cf. [4]) for the above problem (CP). Let

{ψtn} be a sequence in G(a, b), and {u0n} and {fn} be sequences in H and L2(0, T ;H),
respectively, such that

(a) ψtn converges to ψt on H in the sense of Mosco as n→∞ for every t ∈ [0, T ], where
{ψt} is a family in G(a, b).

(b) u0n ∈ D(ψ0
n), supn∈N ψ

0
n(un) < ∞, u0 ∈ D(ψ0), u0n → u0 in H and fn → f in

L2(0, T ;H) as n→∞.

Then the solution un of CP({ψtn}, u0n, fn) converges to the solution u of CP({ψt}, u0, f)
in the sense that

un → u in C([0, T ];H), u′n → u′ weakly in L2(0, T ;H),

sup
n∈N, t∈[0,T ]

ψtn(un(t)) <∞, ψtn(un(t))→ ψt(u(t)) for a.e. t ∈ [0, T ],

and ∫ T

0

ψtn(un(t))dt→
∫ T

0

ψt(u(t))dt.
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3. Existence results. Let δ0 and T be fixed positive numbers as well as 2 ≤ p < +∞,
and put

V (−δ0, t) := L∞(−δ0, t;H) ∩ Lp(−δ0, t;X), 0 ≤ t ≤ T,
|v|V (−δ0,t) := |v|L∞(−δ0,t;H) + |v|Lp(−δ0,t;X).

Now, to each t ∈ [0, T ] and each v ∈ V (−δ0, t), a family {ϕs(v; ·); 0 ≤ s ≤ t} of
functions ϕs(v; ·) from H into [0,∞] is assigned such that

(Φ1) ϕs(v; z) is proper, l.s.c., non-negative and convex in z ∈ H and ϕs(v; z) is deter-
mined by the values of v on (−δ0, s), namely

ϕs(v1; ·)=ϕs(v2; ·) on H, wherever v1, v2 ∈ V (−δ0, t) and v1 = v2 a.e. on (−δ0, s).

(Φ2) (Coerciveness) There is a positive constant C0 such that

ϕs(v; z) ≥ C0|z|pX , ∀0 ≤ s ≤ t ≤ T, ∀v ∈ V (−δ0, t), ∀z ∈ H.

(Φ3) (Continuity) If 0 ≤ sn ≤ t ≤ T, vn ∈ V (−δ0, t), sn → s and vn → v weakly in
Lp(−δ0, t;X) and weakly∗ in L∞(−δ0, t;H), then ϕsn(vn; ·)→ ϕs(v; ·) on H in the
sense of Mosco.

Now we consider the following abstract evolution equation

CP(u0, f)

{
u′(t) + ∂ϕt(u;u(t)) 3 f(t) in H, t ∈ (0, T ),

u(t) = u0(t) in H, ∀t ∈ [−δ0, 0],

where f is a function given in L2(0, T ;H), u0 ∈ C([−δ0, 0];H), and ∂ϕt(u; ·) is the
subdifferential of ϕt(u; ·). We say that a function u : [−δ0, T ] → H is a solution of
CP(u0, f) on [0, T ], if u ∈ C([−δ0, T ];H)∩W 1,2

loc ((0, T ];H), ϕ(·)(u;u(·)) ∈ L1(0, T ), f(t)−
u′(t) ∈ ∂ϕt(u;u(t)) for a.e. t ∈ [0, T ] and u(t) = u0(t) in H, for all t ∈ [−δ0, 0].

In order to specify the dependence of ϕs(v; ·) upon v, we use the class G(a, b) of
proper, l.s.c., convex functions. Now we give our main results of this paper.

Theorem 1. Assume that for each number M > 0 there are non-negative functions
aM ∈ L2(0, T ) and bM ∈ L1(0, T ) such that

(H1) {ϕt(v; ·)}0≤t≤T ∈ G(aM , bM ), whenever |v|V (−δ0,T ) ≤M.

Let f ∈ L2(0, T ;H) and u0 ∈W 1,2(−δ0, 0;H)∩Lp(−δ0, 0;X) be such that ϕ0(u0;u0(0)) <
+∞. Then there exist 0 < T ′ ≤ T and a solution u of CP(u0, f) on [0, T ′] such that

u ∈W 1,2(−δ0, T ′;H), sup
t∈[0,T ′]

ϕt(u;u(t)) <∞.

Theorem 2. Assume that for each number M > 0 there are non-negative functions
aM ∈ L2(0, T ) and bM ∈ L1(0, T ) such that (H1) holds. Further assume that there is a
constant A0 > 0 such that

(H2) ∀v ∈ V (−δ0, T ), ∃hv ∈W 1,2(0, T ;H) ∩ Lp(0, T ;X) such that

|hv|W 1,2(0,T ;H) ≤ A0,

∫ T

0

ϕt(v;hv(t))dt ≤ A0,
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Let f ∈ L2(0, T ;H) and u0 ∈W 1,2(−δ0, 0;H)∩Lp(−δ0, 0;X) be such that ϕ0(u0;u0(0)) <
+∞. Then there exists a solution u of CP(u0, f) on [0, T ] such that

u ∈W 1,2(−δ0, T ;H), sup
t∈[0,T ]

ϕt(u;u(t)) <∞.

We shall prove Theorems 1 and 2 in the following sections 4 and 5. Our third theorem
gives an existence result for CP(u0, f), when the initial datum u0 is not good. The details
of proof are presented in the paper [2].

Theorem 3. Assume that for each number M > 0 there are non-negative functions aM ∈
L2(0, T ) and bM ∈ L1(0, T ) such that (H1) holds, and assume that there is a constant
A0 > 0 such that (H2) holds. Let f ∈ L2(0, T ;H) and u0 ∈ C([−δ0, 0];H)∩Lp(−δ0, 0;X).
Suppose that there exists {u0n

} ⊂ V (−δ0, 0) with ϕ0(u0n
;u0n

(0)) < +∞, such that

u0n
→ u0 in C([−δ0, 0];H), weakly in Lp(−δ0, 0;X).

Then there exists a solution u of CP(u0, f) on [0, T ] such that

u ∈ C([0, T ];H), t
1
2u′ ∈ L2(0, T ;H), tϕt(u;u(·)) ∈ L∞(0, T ).

As far as the existence of a solution of the quasi-variational evolution problem is
concerned, we can work in a much larger class of {ϕt(v; ·)} than that of this paper; see
[2] and also [6,9]. Actually our class of {ϕt(v; ·)} treated in this paper is a special case
of that in [2]. However, from the view-point of applications we can say that our class
is important because the existence proof is much simpler than that of [2] and many
interesting examples arising in physics and mechanics are included in this class. This is
the reason why the proof of existence result is given in this paper, although it is a special
case of the general theory.

4. Proof of Theorem 1. Let M0 = ϕ0(u0;u0(0)) and

M = M0 + 1 + |u0|H +
T

2
+

1
q

(
T

pC0

) q
p

,
1
p

+
1
q

= 1.

We put

VM0 :=
{
v; v = u0 on [−δ0, 0], sup

0≤t≤T

{
1
2

∫ t

0

|v′(s)|2Hds+ C0|v(t)|pX
}
≤M0 + 1

}
,

which is a closed convex subset of W 1,2(−δ0, T ;H) ∩ L∞(−δ0, T ;H) and compact in
C([−δ0, T ];H), and

YM := {v ∈ V (−δ0, T ); |v|V (−δ0,T )≤M}.
By assumption (H1), there are non-negative functions aM ∈ L2(0, T ) and bM ∈ L1(0, T )
such that {ϕt(v; ·)}0≤t≤T ∈ G(aM , bM ) for each v ∈ YM . It is easy to check by the choice
of M that VM0 ⊂ YM .

Now, for each v ∈ VM0 , we consider the evolution problem{
u′(t) + ∂ϕt(v;u(t)) 3 f(t) a.e. t ∈ [0, T ],

u(0) = u0(0),
(4.1)

By virtue of the result mentioned in the previous section, this problem has a unique
solution u ∈W 1,2(0, T ;H) for each v ∈ VM0 .
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Lemma 4.1. There exists a positive number T1 such that

1
2

∫ t

0

|u′(τ)|2Hdτ + C0|u(t)|pX ≤M0 + 1, ∀t ∈ [0, T1],

for every v ∈ VM0 and the solution u of (4.1).

Proof. Using Gronwall’s lemma to the energy inequality (cf. (2.2))

ϕt(v;u(t)) +
1
2

∫ t

0

|u′(τ)|2Hdτ ≤ ϕ0(v;u0) +
∫ t

0

kM (τ) · (ϕτ (v;u(τ)) + 1)dτ, ∀t ∈ [0, T ],

where kM (τ) := 6{aM (τ)2 + bM (τ) + |f(τ)|2H}, we have for all t ∈ [0, T ]

ϕt(v;u(t)) +
1
2

∫ t

0

|u′(τ)|2Hdτ

≤ exp
(∫ t

0

kM (τ)dτ
)
ϕ0(u0;u0(0)) + exp

(∫ T

0

kM (τ)dτ

)∫ t

0

kM (τ)dτ

= ϕ0(u0;u0(0)) +
(

exp
(∫ t

0

kM (τ)dτ
)
− 1
)
ϕ0(u0;u0(0))

+ exp

(∫ T

0

kM (τ)dτ

)∫ t

0

kM (τ)dτ.

Hence

ϕt(v;u(t)) +
1
2

∫ t

0

|u′|Hdτ ≤M0 + 1, ∀t ∈ [0, T1],

choosing a small T1 ∈ (0, T ] with(
exp

(∫ T1

0

kM (τ)dτ

)
− 1

)
ϕ0(u0;u0(0)) + exp

(∫ T

0

kM (τ)dτ

)∫ T1

0

kM (τ)dτ ≤ 1.

Proof of Theorem 1. We define an operator S : VM0 → VM0 by

[Sv](t) =


u0(t), −δ0 ≤ t ≤ 0,

u(t), 0 < t ≤ T1,

u(T1), T1 < t ≤ T.

where T1 is the same number as in Lemma 4.1 and u is the solution of (4.1).
Now we show that S is continuous in C([−δ0, T ];H). Take {vn} ⊂ VM0 so that vn → v

in C([−δ0, T ];H). By assumption (Φ3),

ϕt(vn; ·)→ ϕt(v; ·) on H in the sense of Mosco for every t ∈ [0, T ].

By the general convergence result mentioned in section 2, we observe that

un := Svn → u in C([0, T1];H),

u′n → u′ weakly in L2(0, T1;H)
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and u is the solution of (4.1) on [0, T1]. Therefore,

[Sv](t) =


u0(t), −δ0 ≤ t ≤ 0,

u(t), 0 < t ≤ T1,

u(T1), T1 < t ≤ T,
which shows that Svn → Sv in C([−δ0, T ];H).

Hence, Sv = u and S is continuous in C([−δ0, T ];H). By the fixed point theorem
for compact operators, S has at least one fixed point u in VM0 . We easily check u is a
solution of CP(u0, f) on the time interval [0, T1].

5. Proof of Theorem 2. By virtue of Theorem 1, CP(u0, f) has at least one solution
u on a certain time interval [0, T ′], 0 < T ′ ≤ T , such that

u ∈W 1,2(−δ0, T ′;H), sup
0≤t≤T ′

ϕt(u;u(t)) <∞.

Put
T ∗ := sup{T ′; there exists a solution u of CP(u0, f) on [0, T ′]}.

First we show that CP(u0, f) has a solution on the interval [0, T ∗]. By the definition
of T ∗, there are a sequence {Tn} with Tn ↗ T ∗ and a sequence {un} of solutions un of
CP(u0, f) on [0, Tn] for every n ∈ N. From the energy inequality (2.1) and assumption
(H2) it follows that

sup
t∈[0,Tn]

|un(t)|2H +
∫ Tn

0

ϕt(un;un(t))dt ≤ A1, ∀n = 1, 2, · · · ,

where A1 is a positive constant depending only on A0 appearing in (H2), |u0|H and
|f |L2(0,T ;H); note that A1 is independent of n. Now, define a function ũn : [−δ0, T ]→ H

by

ũn =


u0 on [−δ0, 0),

un on [0, Tn],

0 on (Tn, T ],

which clearly belongs to L∞(−δ0, T ;H) ∩ Lp(−δ0, T ;X) and satisfies that

|ũn|L∞(−δ0,T ;H) + |ũn|Lp(−δ0,T ;X) ≤ A2 := A
1
2
1 +

(
A1

C0

) 1
p

, ∀n = 1, 2, · · · .

Therefore there exists a subsequence {ũnk
} of {ũn} and a function ũ so that

ũnk
→ ũ weakly in Lp(−δ0, T ;X), weakly ∗ in L∞(−δ0, T ;H).

Assumption (Φ3) implies that

ϕt(ũnk
; ·)→ ϕt(ũ; ·) on H in the sense of Mosco, ∀t ∈ [0, T ].

Here, apply the convergence result mentioned in section 2 to see that the solution w̃k of

w̃′k(t) + ∂ϕt(ũnk
; w̃k(t)) 3 f(t), 0 < t < T, w̃k(0) = u0(0),

converges to the solution w̃ of

w̃′(t) + ∂ϕt(ũ; w̃(t)) 3 f(t), 0 < t < T, w̃(0) = u0(0),
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in the sense that

w̃k → w̃ in C([0, T ];H), w̃′k → w̃′ weakly in L2(0, T ;H), (5.1)

sup
k∈N, t∈[0,T ]

ϕt(ũnk
; w̃k(t)) <∞. (5.2)

On the other hand, since ũnk
= unk

= w̃k on [0, Tn], it follows from (5.1) and (5.2) that

unk
(Tnk

)→ w̃(T ∗) in H,

ϕT
∗
(ũ; w̃(T ∗)) ≤ lim inf

n→∞
ϕTnk (ũnk

; w̃k(Tnk
))

(= lim inf
n→∞

ϕTnk (unk
;unk

(Tnk
)))

<∞.

Hence ũ = w̃ a.e. on (0, T ∗), which shows that ũ is a solution of CP(u0, f) on [0, T ∗] such
that ũ ∈W 1,2(−δ0, T ∗;H), sup0≤t≤T∗ ϕ

t(ũ; ũ(t)) <∞.
Next, assume that T ∗ < T . Then, applying Theorem 1 to the problem with initial

time T ∗ and initial datum ũ0 = u|[−δ0,T∗], we obtain an extension of ũ beyond time T ∗

as a solution of CP(u0, f). This contradicts the definition of T ∗. Thus CP(u0, f) must
have a solution on the whole time interval [0, T ].

6. Applications. We give some applications of Theorem 2 to parabolic quasi-variational
inequalities.

Let Ω be a bounded domain in RN , 1 ≤ N < ∞, with smooth boundary Γ :=
∂Ω. Furthermore let kc(·) be a Lipschitz continuous function on R with bounded Lip-
schitz continuous derivative k′c(·) on R. Let δ0 > 0, f ∈ L2

(
0, T ;L2(Ω)

)
, and u0 ∈

L2(−δ0, 0;H1(Ω)) ∩W 1,2(−δ0, 0;L2(Ω)).

Example 6.1. We consider the following evolution problem:

u ∈W 1,2(−δ0, T ;L2(Ω)) ∩ L∞(−δ0, T ;H1(Ω)),
u ≥ kc (Λu) a.e. on Ω× (0, T ),∫ T

0

∫
Ω

(ut − f) (u− w)dxdt+
∫ T

0

∫ 1

0

∇u(∇u−∇w)dxdt ≤ 0,

∀w ∈ L2(0, T ;H1(Ω)) with w ≥ kc (Λu) a.e. on Ω× (0, T ),

u = u0 a.e. on Ω× [−δ0, 0];

where

[Λv](x, t) =
∫ t

−δ0

∫
Ω

ρ(x, y, s, t)v(y, s)dyds, ∀(x, t) ∈ Ω× [0, T ],

for a bounded smooth function ρ on Ω× Ω× [−δ0, T ]× [0, T ].
We apply Theorem 2 to the case when H = L2(Ω), X = H1(Ω) and

ϕs(v;u) :=
1
2

∫
Ω

|∇u|2dx+
∫

Ω

IK(s;v)(u)dx, ∀u ∈ X, ∀0 ≤ s ≤ t,
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where

K(s; v) := {w ∈ X | w ≥ kc([Λv](s)) a.e. on Ω} , ∀0 ≤ s ≤ t,

and IK(s;v)(·) is the indicator function of K(s; v), i.e. IK(s;v) is a proper l.s.c. convex
function on H defined by

IK(s;v)(z) =

{
0, z ∈ K(s; v),

∞, z /∈ K(s; v).

It is easy to see that ϕs(v; ·) satisfies (Φ1), (Φ2) and (Φ3).

Lemma 6.1. For each M > 0, there exists a non-negative function aM (= bM ) in L2(0, T )
such that (H1) and (H2) hold.

Proof. For clearly 0 ≤ s ≤ t1 ≤ t, v ∈ VM and z ∈ D(ϕs(v; ·)) = K(s; v), consider

z̃ := z − kc(Λv(s)) + kc(Λv(t1)).

Then, z̃ ∈ K(t1; v) = D(ϕt1(v; ·)).
Moreover, with Lipschitz constant L(kc) and L(ρ) of kc and ρ, respectively, we have

|z̃ − z|L2(Ω) = |kc(Λv(t1))− kc(Λv(s))|L2(Ω)

≤
∫ t1

s

L(kc)|(Λv)′(τ)|L2(Ω)dτ

≤
∫ t1

s

L(kc)(L(ρ) + max |ρ|)|v|L∞(−δ0,T ;L2(Ω))dτ

≤ C2M |t1 − s|,

where C2 = L(kc)(L(ρ) + max |ρ|). Similarly, for a constant C3 > 0 we have

|∇z̃|2L2(Ω) − |∇z|
2
L2(Ω)

≤ |∇(kc(Λv(t1))− kc(Λv(s)))|2L2(Ω) + 2|∇z|L2(Ω)|∇(kc(Λv(T1))− kc(Λv(s)))|L2(Ω)

≤ C3M |t1 − s| ·
(

1
2
|∇z|2L2Ω + 1

)
.

Therefore, it is enough to choose aM (t) := C4M for 0 ≤ t ≤ T , C4 = C2 + C3.

Example 6.2. We consider the following evolution problem:

u ∈W 1,2(−δ0, T ;L2(Ω)) ∩ L∞(−δ0, T ;H1(Ω)),
u ≥ kc (Λu) a.e. on Γ× (0, T ),∫ T

0

∫
Ω

(ut − f) (u− w)dxdt+
∫ T

0

∫ 1

0

∇u(∇u−∇w)dxdt ≤ 0,

∀w ∈ L2(0, T ;H1(Ω)) with w ≥ kc (Λu) a.e. on Γ× (0, T ),

u = u0 a.e. on Γ× [−δ0, 0],

(6.1)
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where

[Λv](x, t) :=
∫ t

−δ0

∫
Γ

ρ(x, y, s, t)v(y, s)dΓds, ∀(x, t) ∈ Γ× [0, T ],

∀v ∈ L2(−δ0, t;L2(Ω)), 0 < t ≤ T.

We use the following notation:

K(s; v) :=
{
w ∈ H1(Ω) | w ≥ kc([Λv](s)) a.e. on Γ

}
,

ϕs(v;u) :=
1
2

∫
Ω

|∇u|2dx+
∫

Ω

IK(s;v)(u)dx, ∀u ∈ H1(Ω),

for 0 ≤ s ≤ t ≤ T , v ∈ L2(−δ0, t;L2(Ω)).
In this case, (H1) and (H2) are easily verified too. Therefore, problem (6.1) has a

solution u.

Example 6.3. We consider the following evolution problem:

u ∈W 1,2(−δ0, T ;L2(0, 1)) ∩ L∞(−δ0, T ;H1(0, 1)),
|ux| ≤ kc(Λu) a.e. on (0, 1)× (0, T ), u(0, t) = 0 for t ∈ [0, T ],∫ T

0

∫ 1

0

(ut − f) (u− w)dxdt+
∫ T

0

∫ 1

0

ux(ux − wx)dxdt ≤ 0,

∀w ∈ L2(0, T ;H1(0, 1)) with |wx| ≤ kc(Λu) a.e. on (0, 1)× (0, T ),

w(0, t) = 0 for a.e. t ∈ (0, T ),

u = u0 on (0, 1)× [−δ0, 0],

where

[Λv](x, t) :=
∫ t

−δ0

∫ 1

0

ρ(x, y, s, t)v(y, s)dyds, ∀(x, t) ∈ (0, 1)× [0, T ]

for a bounded smooth function ρ on [0, 1]× [0, 1]× [−δ0, T ]× [0, T ].
We apply Theorem 2 in the case when H = L2(0, 1), X = {z ∈ H1(0, 1); z(0) = 0}

and put

ϕs(v;u) :=
1
2

∫ 1

0

|ux|2dx+
∫ 1

0

IK(s;v)(u)dx, ∀u ∈ X, ∀0 ≤ s ≤ t,

where

K(s; v) := {w ∈ X | |wx| ≤ kc([Λv](s)) a.e. on (0, 1)} , ∀0 ≤ s ≤ t,

and IK(s;v)(·) is the indicator function of K(s; v).
We easily see that the convex function ϕs(v; ·) satisfies (Φ1), (Φ2), (Φ3).

Lemma 6.2. For each M > 0, there exists a non-negative function aM (= bM ) in L2(0, T ),
such that (H1) and (H2) hold.
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Proof. For 0 ≤ s ≤ t1 ≤ t, v ∈ V (−δ0, t) with |v|V (−δ0,t) ≤M , z ∈ D(ϕs(v; ·)) = K(s; v),
put

z̃(x) :=
kc([Λv](x, t1))
kc([Λv](x, s))

z(x)−
∫ x

0

(
kc([Λv](y, t1))
kc([Λv](y, s))

)
y

z(y)dy.

Then

|z̃x| =
∣∣∣∣kc([Λv](x, t1))
kc([Λv](x, s))

∣∣∣∣ |zx(x)| ≤ kc([Λv](x, t1))

hence, z̃ ∈ K(t1; v) = D(ϕt1(v; ·)).
Furthermore, for some positive constants C5 ∼ C8, we have

|z̃ − z|L2(0,1) ≤ {C5 (M |t1 − s|)2 · |z|2L2(0,1)}
1
2 ≤ C6M |t1 − s||z|L2(0,1).

and

|∇z̃|2L2(0,1) − |∇z|
2
L2(0,1) =

∫ 1

0

|kc(Λv(x, t1))|2 − |kc(Λv(x, s))|2

|kc(Λv(x, s))|2
|zx(x)|2dx

≤ C7

∫ 1

0

|Λv(x, t1)− Λv(x, s)||zx(x)|2dx

≤ C8M |t1 − s||zx|2L2(0,1)

Hence, if aM (t) := C9M for 0 ≤ t ≤ T , C9 = C6 + C8, then (H1) is satisfied.

In connection with semiconductor problems, a parabolic quasi-variational inequality
was treated in [8], in which the so-called penalty method is employed in order to approx-
imate the original problem.
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