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Abstract. We consider an abstract formulation for a class of parabolic quasi-variational in-

equalities or quasi-linear PDEs, which are generated by subdifferentials of convex functions with

various nonlocal constraints depending on the unknown functions. In this paper we specify a

class of convex functions {ϕt(v; ·)} on a real Hilbert space H, with parameters 0 ≤ t ≤ T and

v in a set of functions from [−δ0, T ], 0 < δ0 < ∞, into H, in order to formulate an evolution

equation of the form

u′(t) + ∂ϕt(u;u(t)) 3 f(t), 0 < t < T, in H.

Our objective is to discuss the existence question for the associated Cauchy problem.

1. Introduction. For positive numbers δ0, T , we are given sets V (−δ0, t), 0 ≤ t ≤ T,

of functions from (−δ0, t) into a real Hilbert space H and a family {ϕs(v; ·)}0≤s≤t of
proper, lower semicontinuous, convex functions ϕs(v; ·) with parameters s ∈ [0, t] and
v ∈ V (−δ0, t); here ϕs(v; ·) continuously depends upon v ∈ V (−δ0, t) in a certain nonlocal
way (see section 2 for the detailed definition). We consider a nonlinear evolution equation
of the form:

u′(t) + ∂ϕt(u;u(t)) 3 f(t), 0 < t < T, in H, (1.1)
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subject to the initial condition

u(t) = u0(t), − δ0 ≤ t ≤ 0, in H, (1.2)

where ∂ϕt(u; ·) is the subdifferential of convex function ϕt(u; ·) on H, u′ = du
dt and

u0 : [−δ0, 0]→ H and f : (0, T )→ H are prescribed as the initial and forcing functions,
respectively. This is a sort of functional differential equations generated by subdifferentials
of ϕt(v; ·) with a nonlocal dependence upon v. The objective of this paper is to specify
a class of convex functions {ϕs(v; ·)}0≤s≤t as well as its nonlocal dependence upon v ∈
V (−δ0, t) in order that Cauchy problem {(1.1), (1.2)} admits at least one local or global
in time solution u.

Variational problems are often called “quasi-variational problems”, when the con-
straints depend upon the unknowns. The stationary cases have been dealt with in many
papers, for instance, [2,5,10,13,14], but there are not so many papers dealing with the
time-evolution problems, because it is not expected for solutions to have much regularity
in time. We recall some papers [11,15,16] for time evolution quasi-variational inequalities.
In papers [11,16], the so-called monotonicity property of the mapping v → ϕs(v; ·) is used
as one of key tools in their treatment. However, the monotonicity property is too restric-
tive in many important applications, as examples of section 5 suggest. They evolved the
theory of quasi-variational evolution equations with a concept of weak solutions. The
main theorems (Theorems 3.1, 4.1 and 4.2) of this paper ensure the existence of strong
solutions without assuming the monotonicity property of the mapping v → ϕs(v; ·). A
similar attempt was made in the paper [15] for an evolution problem arising in the theory
of semiconductors.

Also, it is important to investige the large time behaviour of solutions to (1.1). How-
ever, since the dynamical system associated with (1.1) is multivalued, in general, this is
a completely new question and no result has been established yet.

The solvability of evolution equations of the form (1.1) seems delicate, as a simple
example shows below. Let us consider a scalar evolution equation

u′(t) + ∂I[2u(t),∞)(u(t)) 3 1, 0 < t < T, (1.3)

where I[2v,∞) is the indicator function of the real interval [2v,∞) and ∂I[2v,∞) is its
subdifferential, namely

I[2v,∞)(z) :=
{

0, if z ≥ 2v,
∞, if z < 2v,

∂I[2v,∞)(z) :=


0, if z > 2v,
(−∞, 0], if z = 2v,
∅, if z < 2v.

(1.4)

Any solution u of (1.3) satisfies u(t) ≥ 2u(t), hence u(t) ≤ 0. Also, because of (1.4),
u′(t) ≥ 1, if (1.3) holds at time t. Therefore, when the initial condition is u(0) = 0, (1.3)
has no solution, since u(t) > 0 for any t > 0. This is an example which shows that the
Cauchy problem has no solution, even if the mapping v → ϕt(v; ·) is regular enough.

In this paper we shall specify a class of {ϕs(v; ·)} of convex functions on H and give
a nonlocal dependence of {ϕs(v; ·)} upon v in order that the Cauchy problem (1.1)-(1.2)
has a local in time solution or more restrictedly a global in time solution.
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The solvability of problem (1.1)-(1.2) is based on that of evolution equations generated
by subdifferentials of time dependent convex functions ψt(·) of the form:

u′(t) + ∂ψt(u(t)) 3 f(t), 0 < t < T, in H (1.5)

subject to the initial condition u(0) = u0. Therefore, prior to (1.1)-(1.2) we shall recall
the important class of ψt(·) which guarantees the well-posedness of Cauchy problems for
equation (1.5). The main part of this theory was developed in [3,7,8,17].

As a typical example of equation (1.1), we apply our theorems to the following system
of inequalities:

ut −∆u ≥ f(x, t) in Q := Ω× (0, T ),

u ≥ kc(u; ·, ·) in Q,

(ut −∆u− f(x, t))(u− kc(u; ·, ·)) = 0 in Q,

∂u

∂n
≥ 0,

∂u

∂n
(u− kc(u; ·, ·)) = 0 on Σ := ∂Ω× (0, T );

(1.6)

here Ω is a bounded smooth domain in RN , f is a given function on Q, kc is a integral
mapping of the form:

kc(v;x, t) =
∫ t

−δ0

∫
Ω

ρ(x− y, t− s, v(y, s))dyds, (1.7)

where ρ is a smooth function with respect to all the variables on RN ×R×R. The above
system (1.6) is reformulated as a parabolic variational inequality of the form:

u ∈W 1,2(−δ0, T ;L2(Ω)) ∩ L∞(−δ0, T ;H1(Ω)) with u ≥ kc(u; ·, ·) a.e. in Q;∫
Q

{ut(u− w) +∇u · ∇(u− w)}dxdt ≤
∫
Q

f(x, t)(u− w)dxdt,

∀w ∈ L2(0, T ;H1(Ω)) with w ≥ kc(u; ·, ·) a.e. in Q.

(1.8)

In the system (1.8) the constraint kc = kc(u; ·, ·) depends upon the unknown u. Moreover,
it is easy to check that (1.8) is written in the form (1.1) by using the following convex
function ϕs(v; ·) on H := L2(Ω) given by

ϕs(v; z) :=


1
2

∫
Ω

|∇z|2dx, if z ∈ H1(Ω), z ≥ kc(v; ·, s) a.e. in Ω,

+∞, otherwise.

Thus equation (1.1) is an abstract formulation which includes a class of parabolic quasi-
variational inequalities.

Notation and fundamental concepts. In general, for a given real Banach space X we
denote by | · |X the norm in X.

Throughout this paper, let H be a real Hilbert space with inner product (·, ·)H and
norm | · |H . Given a proper, lower semi-continuous (l.s.c.) and convex function ψ(·) on H
we use the usual notation:

• D(ψ) := {z ∈ H;ψ(z) <∞} (effective domain).
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• ∂ψ is the subdifferential of ψ, which is a (multivalued) mapping in H defined by

z∗ ∈ ∂ψ(z)⇔ (z∗, v − z)H ≤ ψ(v)− ψ(z), ∀v ∈ H

with domain D(∂ψ) := {z ∈ H; ∂ψ(z) 6= ∅}(⊂ D(ψ)).

There is an important concept of convergence for convex functions, which was intro-
duced by Mosco [12] in order to characterize the convergence of solutions to variational
inequalities. Let {ψn} be a sequence of proper l.s.c. and convex functions on H. Then it
is said that ψn converges to a proper, l.s.c. and convex function ψ on H in the sense of
Mosco, if the following two conditions (M1) and (M2) are fulfilled:

(M1) lim infn→∞ ψn(z) ≥ ψ(z) for every z ∈ H.
(M2) For each z ∈ D(ψ) there is a sequence {zn} in H such that zn → z in H and

ψn(zn)→ ψ(z) as n→∞.

For basic properties of convex functions we refer to monographs [1,4,9].

2. A class of time-dependent convex functions. Given a family {ψt} := {ψt}0≤t≤T
of time-dependent proper, l.s.c. and convex functions ψt on H for a positive finite number
T , let us consider an evolution equation generated by the subdifferential ∂ψt in the
following form:

(CP )
{
u′(t) + ∂ψt(u(t)) 3 f(t), 0 < t < T, in H,

u(0) = u0 in H,
(2.1)

where f and u0 are respectively prescribed in L2(0, T ;H) and H. We say that u is a
solution of (CP ) on [0, T ], if u ∈ C([0, T ];H)∩W 1,2

loc ((0, T ];H), ψ(·)(u) ∈ L1(0, T ), u(0) =
u0 and f(t)− u′(t) ∈ ∂ψt(u(t)) holds for a.e. t ∈ (0, T ). When the data {ψt}, u0, f are
explicitly indicated, (CP ) is denoted by (CP ; {ψt}, u0, f).

Now, we specify a class of families {ψt} of time-dependent convex functions on H

so that problem (2.1) admits a solution. Let {ar} := {ar; 0 ≤ r < ∞} and {br} :=
{br; 0 ≤ r <∞} be subsets consisting of non-negative functions in L2(0, T ) and L1(0, T ),
respectively. Then we define the class G({ar}, {br}) of {ψt} as follows.

Definition 2.1. We denote by G({ar}, {br}) the set of all families {ψt} := {ψt}0≤t≤T
of proper (i.e. not identically ∞), l.s.c., non-negative and convex function ψt(·) on H

satisfying that ∀r > 0, ∀s, t ∈ [0, T ] with s ≤ t and ∀z ∈ D(ψs) with |z|H ≤ r, ∃z̃ ∈
D(ψt) such that

|z̃ − z|H ≤
∫ t

s

ar(τ)dτ(1 + ψs(z)
1
2 ), ψt(z̃)− ψs(z) ≤

∫ t

s

br(τ)dτ(1 + ψs(z)).

We may assume without loss of generality that ar, br are non-decreasing with respect
to r > 0, namely ar1 ≥ ar2 , br1 ≥ br2 a.e. on [0, T ], if r1 > r2. If the time interval [0, T ]
has to be indicated explicitly, we denote G({ar}, {br}) by G[0,T ]({ar}, {br}).

Furthermore, let {Mr}0≤r<∞ be a family of non-negative numbers. We then put

G({Mr}) =
⋃

|ar|L2(0,T )≤Mr, |br|L1(0,T )≤Mr,0≤∀r<∞

G({ar}, {br}); (2.2)

this is denoted by G[0,T ]({Mr}), when the interval [0, T ] is indicated explicitly.
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We recall an existence-uniqueness result on (CP ).

Theorem 2.1 (cf. [3,7,8,17]). Assume that {ψt} ∈ G({ar}, {br}). Let f ∈ L2(0, T ;H)
and u0 ∈ D(ψ0). Then, (CP ) has one and only one solution u on [0, T ] such that

√
tu′ ∈ L2(0, T ;H), sup

0<t≤T
tψt(u(t)) <∞.

Moreover, if u0 ∈ D(ψ0), then

u′ ∈ L2(0, T ;H), sup
0≤t≤T

ψt(u(t)) <∞.

We recall briefly the proof of the above theorem, since the key ideas for the solvability
of our quasi-variational evolution problem (1.1) are found there.

The construction of a solution of (2.1) is made by showing the convergence of the
solutions uλ of the following approximate problems, with real parameters λ ∈ (0, 1], as
λ ↓ 0:

u′λ(t) + ∂ψtλ(uλ(t)) = f(t) in H for a.e. t ∈ [0, T ], (2.3)

with initial condition uλ(0) = u0, where ψtλ is the Moreau-Yosida approximation, i.e.

ψtλ(v) := inf
z∈H

{
1

2λ
|v − z|2H + ψt(z)

}
, ∀v ∈ H.

In order to get the uniform estimates for approximate solutions uλ with respect to
λ ∈ (0, 1] we derive the following key inequality from the time-dependence condition on
ψt(·) mentioned in Definition 2.1:

d

dt
ψtλ(uλ(t))− (∂ψtλ(uλ(t)), u′λ(t))H

≤ ar(t)|∂ψtλ(uλ(t))|H(ψtλ(uλ(t))
1
2 + 1) + br(t)(ψtλ(uλ(t)) + 1), a.e. t ∈ [0, T ], (2.4)

for any r > |uλ|L∞(0,T ;H).
First of all, taking the inner product of the both sides of (2.3) and uλ(t) − h(t) for

any function h ∈W 1,2(0, T ;H) with ψ(·)(h) ∈ L1(0, T ), we have

d

dt

{
1
2
|uλ(t)|2H − (uλ(t), h(t))H

}
+ (uλ(t), h′(t)− f(t))H + ψtλ(uλ(t))

≤ ψtλ(h(t))− (f(t), h(t))H , for a.e. t ∈ [0, T ]; (2.5)

note here that the existence of such a function h is also shown from our condition on
the time-dependence of ψt(·), i.e., {ψt} ∈ G({ar}, {br}), mentioned in Definition 2.1.
Applying the Gronwall’s lemma to (2.5) yields an inequality of the form

|uλ|2L∞(0,T ;H) +
∫ T

0

ψtλ(uλ(t))dt ≤ R1(|u0|H + |f |L2(0,T ;H)), ∀λ ∈ (0, 1], (2.6)

where R1(·) is a non-negative and non-decreasing function from [0,∞) into [0,∞) which
depends only on the class G({Mr}).

Next, taking the inner product of the both sides of (2.3) and u′λ, we obtain that

|u′λ(τ)|2H + (∂ψtλ(uλ(τ)), u′λ(τ))H = (f(τ), u′λ(τ))H , for a.e. τ ∈ (0, T ).
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Using inequality (2.4) in the above relation, we see for any r > R1(|u0|H + |f |L2(0,T ;H))
that

d

dτ
ψτλ(uλ(τ)) + |u′λ(τ)|2H

≤ (f(τ), u′λ(τ))H + ar(t)|∂ψtλ(uλ(t))|H(ψtλ(uλ(t))
1
2 + 1) + br(t)(ψtλ(uλ(t)) + 1),

for a.e. τ ∈ (0, T ), ∀λ ∈ (0, 1],

so that
d

dτ
ψτλ(uλ(τ)) +

1
2
|u′λ(τ)|2H ≤ kr(τ)(ψτλ(uλ(τ)) + 1), a.e. τ ∈ (0, T ), ∀λ ∈ (0, 1], (2.7)

where
kr(τ) := 6(|ar(τ)|2 + |br(τ)|+ |f(τ)|2H), a.e. τ ∈ [0, T ]. (2.8)

Further, multiplying both sides of (2.7) by τ , we get

d

dτ
{τψτλ(uλ(τ))}+

τ

2
|u′λ(τ)|2H ≤ (τkr(τ) + 1)(ψτλ(uλ(τ)) + 1) (2.9)

a.e. τ ∈ (0, T ), ∀λ ∈ (0, 1],

From these inequalities (2.6), (2.7) and (2.9) we see that {uλ} is bounded in W 1,2(0, T ;H)
and {ψtλ(uλ)} is bounded in L∞(0, T ), and moreover by the usual monotonicity argument
that uλ converges to the solution u of (CP) as λ ↓ 0 in the sense that

uλ → u in C([0, T ];H), weakly in W 1,2(0, T ;H),

∂ψλ(uλ)→ ξ in L2(0, T ;H), ξ(t) := f(t)− u′(t) ∈ ∂ψt(u(t)) a.e. t ∈ (0, T ).

Accordingly, integrating energy inequalities (2.7) and (2.9) in time and letting λ ↓ 0, we
obtain the following estimates for the solution u of (CP ):

|u|2L∞(0,T ;H) +
∫ T

0

ψt(u(t))dt ≤ R1(|u0|H + |f |L2(0,T ;H)), (2.10)

ψt(u(t))− ψs(u(s)) +
1
2

∫ t

s

|u′(τ)|2Hdτ ≤
∫ t

s

kr(τ)(ψτ (u(τ)) + 1)dτ, (2.11)

tψt(u(t))− sψs(u(s)) +
1
2

∫ t

s

τ |u′(τ)|2Hdτ ≤
∫ t

s

(τkr(τ) + 1)(ψτ (u(τ)) + 1)dτ, (2.12)

for all s, t with 0 ≤ s ≤ t ≤ T and all r > R1(|u0|H + |f |L2(0,T ;H)).

The results mentioned above are summarized in the following theorem.

Theorem 2.2. Let G({Mr}) be as given by (2.2). Then we have:

(i) For each positive number p1 there is a positive constant P1, depending on G({Mr}),
such that

|u|2L∞(0,T ;H) + |
√
tu′|2L2(0,T ;H) + sup

0≤t≤T
tψt(u(t)) +

∫ T

0

ψt(u(t))dt ≤ P1 (2.13)

for every solution u of (CP ), whenever |u0|H + |f |L2(0,T ;H) ≤ p1.
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(ii) For each positive number p2 there is a positive constant P2, depending on G({Mr}),
such that

|u′|2L2(0,T ;H) + sup
0≤t≤T

ψt(u(t)) ≤ P2 (2.14)

for every solution u of (CP ), whenever |u0|H + ψ0(u0) + |f |L2(0,T ;H) ≤ p2.

In construction of solutions of our quasi-variational evolution equations the next con-
vergence theorem plays an important role together with the above Theorem 2.2. Our
result is based on the concept of convergence of convex functions due to Mosco.

Theorem 2.3. Let {ψtn} be a sequence in G({Mr}) and {u0n} and {fn} be sequences in
H and L2(0, T ;H), respectively, such that

(a) ψtn converges to ψt on H in the sense of Mosco as n→∞ for every t ∈ [0, T ], where
{ψt} is a family in G({Mr}).

(b) u0n ∈ D(ψ0
n), u0 ∈ D(ψ0), un0 → u0 in H, and fn → f in L2(0, T ;H) as n→∞.

Then the solution un of (CP ; {ψtn}, u0n, fn) tends to the solution u of (CP ; {ψt}, u0, f)
in the sense that

un → u in C([0, T ];H),
√
tu′n →

√
tu′ weakly in L2([0, T ];H), (2.15)∫ T

0

ψtn(un)dt→
∫ T

0

ψt(u)dt as n→∞. (2.16)

Moreover, if {ψ0
n(u0n)} is bounded, then

u′n → u′ weakly in L2([0, T ];H), ψtn(un(t))→ ψt(u(t)) for a.e. t ∈ [0, T ]. (2.17)

For the detailed proofs of Theorems 2.1, 2.2 and 2.3, see [8; Chapter 1].

3. Local existence result. In order to formulate functions ϕt(v; ·) precisely we intro-
duce a time-independent, non-negative, proper, l.s.c. and convex function ϕ0(·) on H

such that

(ϕ0) the set {z ∈ H; |z|H ≤ r, ϕ0(z) ≤ r} is compact in H for each r ≥ 0.

Let δ0 be a fixed positive number and T > 0 be a finite time. For each t ∈ [0, T ] we define
a closed convex subset V(−δ0, t) of W 1,2(−δ0, t;H) by

V(−δ0, t) := {v;V[−δ0,t](v) <∞} (3.1)

with
V[−δ0,t](v) := sup

−δ0≤s≤t
ϕ0(v(s)) + |v(0)|2H + |v′|2L2(−δ0,t;H) (3.2)

where v′(t) = dv(t)
dt .

Now, to each v ∈ V(−δ0, t) a family {ϕs(v; ·)}0≤s≤t of functions ϕs(v; ·) on H is
assigned such that

(Φ1) ϕs(v; z) is proper, l.s.c., non-negative and convex in z ∈ H, and it is determined
by s ∈ [0, t] and v on [−δ0, s]; namely, for v1, v2 ∈ V(−δ0, t), we have ϕs(v1, ·) ≡
ϕs(v2, ·) on H whenever v1 ≡ v2 on [−δ0, s];

(Φ2) ϕs(v; z) ≥ ϕ0(z), ∀v ∈ V(−δ0, t), 0 ≤ ∀s ≤ ∀t ≤ T ;
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(Φ3) If 0 ≤ sn ≤ t ≤ T, vn ∈ V(−δ0, t), supn∈N V[−δ0,t](vn) < ∞, sn → s and vn → v

in C([−δ0, t];H), then ϕsn(vn; ·)→ ϕs(v; ·) on H in the sense of Mosco.

We give the definition of solutions for evolution equation (1.1).

Definition 3.1. Let u0 ∈ C([−δ0, 0];H) and f ∈ L2(0, T ;H). Then we say that u is a
solution of the Cauchy problem

CP (u0, f)

{
u′(t) + ∂ϕt(u;u(t)) 3 f(t), 0 < t < T,

u = u0 on [−δ0, 0]

on [0, T ], if u satisfies that u ∈ C([−δ0, T ];H), u = u0 on [−δ0, 0], u ∈ W 1,2(δ, T ;H)
for every (small) δ > 0, ϕ(·)(u;u(·)) ∈ L1(0, T ) and f(t) − u′(t) ∈ ∂ϕt(u;u(t)) for a.e.
t ∈ (0, T ).

Next, in order to formulate our local existence result for CP (u0, f) we introduce the
following function spaces: given any function u0 in V(−δ0, 0), 0 < R <∞ and t ∈ [0, T ],
we put

V(u0;−δ0, t) := {v ∈ V(−δ0, t); v = u0 on [−δ0, 0]}, (3.3)
and

VR(u0;−δ0, t) := {v ∈ V(u0;−δ0, t); sup
0≤s≤t

{ϕ0(v(s)) + |v′|2L2(0,s;H)} ≤ R}. (3.4)

We are in a position to state a local existence result for problem CP (u0, f).

Theorem 3.1. Let 0 < T <∞ and u0 ∈ V(−δ0, 0) with ϕ0(u0;u0(0)) <∞. Assume that
there are positive numbers T0 ≤ T and R > ϕ0(u0;u0(0)), a family {Mr}0≤r<∞ of positive
numbers Mr and a set {{ϕt(v; ·)}; v ∈ VR(u0;−δ0, T0)} of families {ϕt(v; ·)}0≤t≤T0 of
convex functions satisfying the following condition:

(∗) There are two families {avr ; v ∈ VR(u0;−δ0, T0), 0 ≤ r < ∞} of non-negative
functions in L2(0, T0) and {bvr ; v ∈ VR(u0;−δ0, T0), 0 ≤ r <∞} of non-negative functions
in L1(0, T0) such that

(H1) |avr |L2(0,T0) ≤ Mr and |bvr |L1(0,T0) ≤ Mr for all r > 0 and all v ∈ VR(u0;−δ0, T0),
and {ϕt(v; ·)} ∈ G({avr}, {bvr}) for all v ∈ VR(u0;−δ0, T0);

(H2) for each finite r > 0 and ε > 0 there is a positive number δrε > 0 such that∫ δrε

0

(avr(τ)2 + bvr(τ))dτ < ε, ∀v ∈ VR(u0;−δ0, T0).

Then, for each f ∈ L2(0, T0;H), problem CP (u0, f) has at least one solution u on an
interval [0, T ′] with 0<T ′≤T0 such that u∈V(−δ0, T ′;H) and sup0≤t≤T ′ ϕ

t(u;u(t))<∞.

In the rest of this section we give a proof of Theorem 3.1. Let v be any element in
VR(u0;−δ0, T0). Then, by (H1), {ϕt(v; ·)} ∈ G({avr}, {bvr}) with |avr |L2(0,T0) ≤ Mr and
|bvr |L1(0,T0) ≤Mr for all r ≥ 0. Now, consider the problem{

u′(t) + ∂ϕt(v;u(t)) 3 f(t), a.e. t ∈ [0, T0],
u(0) = u0(0).

(3.5)

By virtue of Theorem 2.1, this problem has a unique solution u ∈ W 1,2(0, T0;H) such
that sup0≤t≤T0

ϕt(v;u(t)) <∞. On account of (ii) of Theorem 2.2 we have the following
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uniform estimates with respect to v ∈ VR(u0;−δ0, T0):

|u′|2L2(0,T0;H)+ sup
0≤t≤T0

ϕt(v;u(t)) ≤ P2, hence |u|L∞(0,T0;H) ≤ |u0|H+
√
T0P2 =: r0, (3.6)

where P2 is a positive constant independent of v ∈ VR(u0;−δ0, T0)
Moreover, we have:

Lemma 3.1. Let τ0 be a positive number such that R > ϕ0(u0;u0(0)) + τ0. Then there
exists a positive number T1 such that

ϕt(v;u(t)) + |u′|2L2(0,T1;H) ≤ ϕ
0(u0;u0(0)) + τ0, ∀t ∈ [0, T1], (3.7)

for any v ∈ VR(u0;−δ0, T0) and the solution u of (3.5).

Proof. By taking the inner product between the both sides of the equation in (3.5) and
u′(t), we have

|u′(t)|2H + (ξ(t), u′(t))H = (f(t), u′(t))H , a.e. t ∈ [0, T0], (3.8)

where ξ(t) := f(t)−u′(t) ∈ ∂ϕt(v;u(t)) for a.e. t ∈ [0, T0]. By (3.6), we have |u|L∞(0,T0;H)

< r := r0 + 1 and hence (cf. (2.4))
d

dt
ϕt(v;u(t))− (ξ(t), u′(t))H (3.9)

≤ avr(t)|u′(t)− f(t)|H(ϕt(v;u(t))
1
2 + 1) + bvr(t)(ϕ

t(v;u(t)) + 1), a.e. t ∈ [0, T0].

Using this inequality, we see from (3.8) that

|u′(t)|2H +
d

dt
ϕt(v;u(t))

≤ |f(t)|H |u′(t)|H + (P
1
2

2 + 1)avr(t)(|u′(t)|H + |f(t)|H) + (P2 + 1)bvr(t)

for a.e. t ∈ [0, T0]. Hence, for any t ∈ [0, T0],∫ t

0

|u′(τ)|2Hdτ + ϕt(v;u(t))

≤ ϕ0(u0;u0(0)) + P
1
2

2

(∫ t

0

|f(τ)|2H dτ
) 1

2

+
(∫ t

0

avr(τ)2 dτ

) 1
2

· 2(P2 + 1)(P
1
2

2 + |f |L2(0,T0;H)) + (P2 + 1)
∫ t

0

bvr(τ) dτ.

Therefore, by condition (H2) there exists a small positive number T1, independent of
v ∈ VR(u0;−δ0, T0), such that

P
1
2

2

(∫ T1

0

|f(τ)|2H dτ
) 1

2

+
(∫ T1

0

avr(τ)2 dτ

) 1
2

· 2(P2 + 1)(P
1
2

2 + |f |L2(0,T0;H))

+ (P2 + 1)
∫ T1

0

bvr(τ)dτ ≤ τ0.

Thus we have (3.7).

Proof of Theorem 3.1. By (3.4) and assumption (ϕ0) about the level set compactness of
ϕ0, VR(u0;−δ0, T0) is non-empty, compact and convex in C([−δ0, T0];H). Now, consider
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a mapping S : VR(u0;−δ0, T0)→ V(−δ0, T ) which is defined as follows:

[Sv](t) =


u0(t), for t ∈ [−δ0, 0],

u(t), for t ∈ (0, T1],

u(T1), for t ∈ (T1, T0],

(3.10)

where u is the solution of (3.5) associated with v ∈ VR(u0;−δ0, T0) and T1 is the same
number as in Lemma 3.1. Then, for every v ∈ VR(u0;−δ0, T0), it follows from the defini-
tion of S and Lemma 3.1 that Sv ∈ V(u0;−δ0, T0) and

sup
0≤s≤T0

{ϕ0([Sv](s)) + |[Sv]′|2L2(0,s;H)} = sup
0≤s≤T1

{ϕ0(u(s)) + |u′|2L2(0,s;H)}

≤ sup
0≤s≤T1

{ϕs(v;u(s)) + |u′|2L2(0,s;H)}

≤ ϕ0(u0;u0(0)) + τ0 ≤ R,
where u is the solution of (3.5). Thus S maps VR(u0;−δ0, T0) into itself.

Next, we show the continuity of S in VR(u0;−δ0, T0) with respect to the topology of
C([−δ0, T0];H). Let {vn} be any sequence in VR(u0;−δ0, T0) and suppose that vn → v

in C([−δ0, T0];H) (as n → ∞). It is clear that v ∈ VR(u0;−δ0, T0) and {V[−δ0,T0](vn)}
is bounded. By assumption (Φ3), we see that ϕt(vn; ·) → ϕt(v; ·) on H in the sense of
Mosco for every t ∈ [0, T0]. Therefore, according to Theorem 2.3, the solution un of (3.5)
corresponding to v = vn converges to the solution u of (3.5) in the sense that

un → u in C([0, T0];H), u′n → u′ weakly in L2(0, T0;H),

This means that Svn → Sv in C([−δ0, T0];H).
We are in a position to apply the fixed-point theorem for continuous mappings in

compact and convex sets. Applying it to the mapping S we see that S has at least one
fixed-point u∗ in VR(u0;−δ0, T0), i.e. Su∗ = u∗. Denoting by u the restriction of u∗ on
[−δ0, T1], we easily check from the definition (3.10) that u is a solution of CP (u0, f) on
the time interval [0, T1].

4. Global existence result. Let ϕ0 be the same as in the previous section as well
as δ0 > 0 and T > 0. In this section, we consider a closed convex subset Ṽ(−δ0, t) of
L2(−δ0, t;H) for each t ∈ [0, T ], as is defined below, in place of V(−δ0, t).

For each t ∈ [0, T ] we define

Ṽ(−δ0, t) := {v; Ṽ[−δ0,t](v) <∞}, (4.1)

where

Ṽ[−δ0,t](v) := |v|2L∞(−δ0,t;H) +
∫ t

−δ0
ϕ0(v(s))ds. (4.2)

Now, we suppose that to each v ∈ Ṽ(−δ0, t) a family {ϕs(v; ·)}0≤s≤t of functions
ϕs(v; ·) on H is assigned such that

(Φ̃1) ϕs(v; z) is proper, l.s.c., non-negative and convex in z ∈ H, and it is determined
by s ∈ [0, t] and v on [−δ0, s]; namely, for v1, v2 ∈ Ṽ(−δ0, t), we have ϕs(v1, ·) ≡
ϕs(v2, ·) on H whenever v1 = v2 a.e. on (−δ0, s);
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(Φ̃2) ϕs(v; z) ≥ ϕ0(z), ∀v ∈ Ṽ(−δ0, t), ∀0 ≤ s ≤ t ≤ T ;
(Φ̃3) If 0 ≤ sn ≤ t ≤ T, vn ∈ Ṽ(−δ0, t), supn∈N Ṽ[−δ0,t](vn) < ∞, sn → s and vn → v

in L2(−δ0, t;H), then ϕsn(vn; ·)→ ϕs(v; ·) on H in the sense of Mosco.

Next, we define a function space ṼM (−δ0, t) for each M > 0 and t ∈ [0, T ] by

ṼM (−δ0, t) := {v ∈ Ṽ(−δ0, t); Ṽ[−δ0,t](v) ≤M}.
In order to show the existence of a solution of CP (u0, f) on the whole interval [0, T ] we

relax assumptions (H1) and (H2) as follows: For each M > 0 there is a family {Mr}0≤r<∞
of positive numbers Mr and a set {{ϕt(v; ·)}; v ∈ ṼM (−δ0, T )} of families {ϕt(v; ·)}0≤t≤T
of convex functions satisfying the following condition:

(**) There are two families {avr ; v ∈ ṼM (−δ0, T ), 0 ≤ r < ∞} of non-negative func-
tions in L2(0, T ) and {bvr ; v ∈ ṼM (−δ0, T ), 0 ≤ r < ∞} of non-negative functions in
L1(0, T ) such that

(H̃1) |avr |L2(0,T ) ≤ Mr and |bvr |L1(0,T ) ≤ Mr for all r > 0 and all v ∈ ṼM (−δ0, T ), and
{ϕt(v; ·)} ∈ G({avr}, {bvr}) for all v ∈ ṼM (−δ0, T );

(H̃2) for each finite r > 0 and ε > 0 there is a positive number δrε > 0 such that∫ t+δrε

t

(avr(τ)2 + bvr(τ))dτ < ε, ∀t ∈ [0, T − δrε], ∀v ∈ ṼM (−δ0, T ).

It should be noted that these conditions are independent of initial data. Moreover we
require the following assumption (H̃3):

(H̃3) there are a positive number R0 and a family {hv} := {hv; v ∈ Ṽ(−δ0, T )} of
functions in W 1,2(0, T ;H) such that

|hv|W 1,2(0,T ;H) ≤ R0,

∫ T

0

ϕt(v;hv(t))dt ≤ R0, ∀v ∈ Ṽ(−δ0, T ).

We first show the existence of a solution CP (u0, f) on the whole interval [0, T ] for
good initial values u0.

Theorem 4.1. Suppose that (H̃1) and (H̃2) hold for every M > 0 as well as (H̃3).
Let u0 ∈ V(−δ0, 0) with ϕ0(u0;u0(0)) < ∞ and f be any function in L2(0, T ;H). Then
CP (u0, f) has at least one solution u on [0, T ] such that

u ∈W 1,2(0, T ;H), sup
0≤t≤T

ϕt(u;u(t)) <∞.

Proof. It is clear that (Φ1)− (Φ3) automatically satisfied, if (Φ̃1)− (Φ̃3) hold, and that
(H1) and (H2) follow immediately from (H̃1) and (H̃2). Therefore, according to Theorem
3.1, CP (u0, f) has a solution u on a certain time interval [0, τ ](⊂ [0, T ]) such that

u ∈W 1,2(0, τ ;H), sup
0≤t≤τ

ϕt(u;u(t)) <∞.

Consider an ordered set Z given by

Z := {(u, τ); 0 < τ ≤ T, u is a solution of CP (u0, f) on [0, τ ]}
with an order ≺ defined by

(u1, τ1) ≺ (u2, τ2)⇔ τ1 ≤ τ2, u1 = u2 on [−δ0, τ1].
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Then, by the local existence result mentioned above, Z is non-empty. Now, let Y be any
totally ordered set in Z with respect to the above order ≺. Then, putting û(t) = u(t)
if (u, τ) ∈ Y and 0 ≤ t ≤ τ , we see that û is well defined on the interval [0, τ̂) with
τ̂ := sup(u,τ)∈Y τ . Moreover, we obtain that û0 := limt↑τ̂ û(t) exists in H. In fact, since
û is a solution of CP (u0, f) on any compact interval [0, τ ] with 0 < τ < τ̂ , it follows (cf.
(2.5)) that

d

dt

{
1
2
|û(t)|2H − (û(t), h(t))H

}
+ (û(t), h′(t)− f(t))H + ϕt(û; û(t)) (4.3)

≤ ϕt(û;h(t))− (f(t), h(t))H , for a.e. t ∈ [0, τ ],

if 0 < τ < τ̂ , h ∈ W 1,2(0, τ ;H) and ϕ(·)(û;h(·)) is integrable on [0, τ ]. Here, we use
assumption (H̃3) as follows. Take an increasing sequence {τn} with τn ↑ τ̂ and define a
sequence {un} of functions by

un(t) =

{
û(t) for t ∈ [−δ0, τn],

û(τn) for t ∈ [τn, T ].

Since {un} ⊂ Ṽ(−δ0, T ), we see from (H̃3) that there are functions hn for all n such that

|hn|W 1,2(0,T ;H) ≤ R0, sup
n∈N

∫ T

0

ϕt(un;hn(t))dt ≤ R0.

Noting that ϕt(un;hn(t)) = ϕt(û;hn(t)) a.e. on [0, τn], we infer from (4.3) with h = hn
that

sup
n∈N
|û|L∞(0,τn;H) <∞, sup

n∈N

∫ τn

0

ϕt(û; û(t))dt <∞. (4.4)

Hence, û ∈ L∞(0, τ̂ ;H) and ϕ(·)(û; û(·)) is integrable on [0, τ̂ ], namely û ∈ Ṽ(−δ0, τ̂).
This shows by (H̃1) that {ϕt(û; ·)} ∈ G[0,τ̂ ]({Mr}) for some family {Mr} := {Mr}0≤r<∞
of positive numbers. By Theorem 2.1, the Cauchy problem

w′(t) + ∂ϕt(û;w(t)) 3 f(t), 0 < t < τ̂ , w(0) = u0(0).

has a unique solution w on the interval [0, τ̂ ] such that

w ∈W 1,2(0, τ̂ ;H), sup
0≤t≤τ̂

ϕt(û;w(t)) <∞.

Since w = û on [0, τ̂), it follows that û(τn) = w(τn) → w(τ̂). If w is denoted by û, the
element (û, τ̂) is an upper bound of Y . Therefore, by virtue of Zorn’s lemma, we conclude
that Z has at least one maximal element (u∗, τ∗).

If τ∗ = T is shown, then u∗ is a solution of CP (u0, f) on [0, T ], namely it is enough to
prove τ∗ = T to complete the proof. Assume that τ∗ < T . Then, since ϕτ

∗
(u∗;u∗(τ∗)) <

∞, it follows that u∗ is extended beyond time τ∗ as a solution of CP (u0, f). In fact, we
consider the problem {

ũ′(t) + ∂ϕ̃t(ũ; ũ(t)) 3 f̃(t), 0 < t < T̃ ,

ũ = ũ∗0 on [−δ̃0, 0],
(4.5)
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where T̃ := T − τ∗, δ̃0 := δ0 + τ∗, ũ∗0(t) = u∗(t+ τ∗) for t ∈ [−δ̃0, 0], f̃(t) := f(t+ τ∗) for
t ∈ (0, T̃ ) and

ϕ̃t(v; ·) := ϕt+τ
∗
(v(·+ τ∗); ·), ∀v ∈ Ṽ(−δ̃0, t), 0 < t ≤ T̃ .

It is easy to see from (H̃1) and (H̃2) that assumptions (H1) and (H2) of Theorem 3.1
are satisfied for the family {ϕ̃t(v; ·)}0≤t≤T̃ , initial datum ũ∗0 and any R > ϕ̃0(ũ∗0; ũ∗0(0)).
Therefore, problem (4.5) has a solution ũ on a certain interval [0, T̃ ′] such that

ũ ∈W 1,2(0, T̃ ′;H), sup
0≤t≤T̃ ′

ϕ̃t(ũ; ũ(t)) <∞.

Putting

u(t) :=

{
u∗(t) for t ∈ [−δ0, τ∗),

ũ(t− τ∗) for t ∈ [τ∗, τ∗ + T̃ ′],

we observe that u ∈ W 1,2(0, τ∗ + T̃ ′;H), sup0≤t≤τ∗+T̃ ′ ϕ
t(u;u(t)) < ∞ and u is a

solution of CP (u0, f) on [0, τ∗ + T̃ ′]. This contradicts the fact that (u∗, τ∗) is maximal
in Z. Consequently, τ∗ = T must be true.

Finally we show the existence of a solution of CP (u0, f) for a slightly more general
class of initial data.

Theorem 4.2. Suppose that (Φ̃1), (Φ̃2) and (Φ̃3) hold and that (H̃1) and (H̃2) hold for
every M > 0 as well as (H̃3). Let u0 ∈ Ṽ(−δ0, 0) ∩ C([−δ0, 0];H) such that there is a
sequence {u0n} in V(−δ, 0) with ϕ0(u0n;u0n(0)) <∞ satisfying that

sup
n∈N

Ṽ[−δ0,0](un0) <∞, un0 → u0 in C([−δ0, 0];H). (4.6)

Then CP (u0, f) has at least one solution u on [0, T ] such that

u ∈ C([0, T ];H),
√
tu′ ∈ L2(0, T ;H), sup

0<t≤T
tϕt(u;u(t)) <∞. (4.7)

Proof. Since un0 ∈ V(−δ0, 0) and ϕ0(un0;un0(0)) <∞, by virtue of Theorem 4.1 problem
CP (un0, f) has at least one solution un on [0, T ], i.e.

u′n(t) + ξn(t) = f(t), ξn(t) ∈ ∂ϕt(un;un(t)), a.e. t ∈ (0, T ), (4.8)

and
un = un0 on [−δ0, 0],

such that un ∈ W 1,2(0, T ;H) and sup0≤t≤T ϕ
t(un;un(t)) < ∞. Also, note from (H̃3)

that there is a sequence {hn} such that

sup
n∈N

{
|hn|2W 1,2(0,T ;H) +

∫ T

0

ϕt(un;hn(t)) dt
}
<∞. (4.9)

Taking the inner product of both sides of (4.8) and un(t)− hn(t), we get (cf. (2.5))

d

dt

{
1
2
|un(t)|2H − (un(t), hn(t))H

}
+ (un(t), h′n(t)− f(t))H + ϕt(un;un(t))

≤ ϕt(un;hn(t))− (f(t), hn(t))H
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for a.e. t ∈ (0, T ). Integrating this inequality in time, we obtain with the help of Gronwall’s
lemma and (4.9) that

sup
n∈N

{
|un|2L∞(0,T ;H) +

∫ T

0

ϕt(un;un(t)) dt
}
<∞.

Therefore we have for some constant M > 0

Ṽ[−δ0,T ](un) ≤M, ∀n = 1, 2, · · · .

Hence, by condition (H̃1), there is a family {Mr} of positive numbers Mr such that

{ϕt(un; ·)} ∈ G({Mr}), ∀n = 1, 2, · · · .

Furthermore, from (i) of Theorem 2.2 and our assumption (4.6) it follows that there is a
positive constant P1 satisfying

|un|2L∞(0,T ;H) + |
√
tu′n|2L2(0,T ;H) + sup

0<t≤T
tϕt(un;un(t))+

∫ T

0

ϕt(un;un(t))dt ≤ P1, (4.10)

for all n = 1, 2, · · · , and by (Φ̃2),

ϕ0(un(t)) ≤ P1

t
, ∀t ∈ (0, t], ∀n = 1, 2, · · · . (4.11)

Since the level set of ϕ0 is compact in H, by (4.10) and (4.11) it is easy to extract a sub-
sequence {unk

} from {un} such that unk
→ u in Cloc((0, T ];H) and hence in L2(0, T ;H)

(as k → ∞) for a certain u ∈ Ṽ(u0;−δ0;T ). This shows by our assumption (Φ̃3) that
ϕt(unk

; ·)→ ϕt(u; ·) on H in the sense of Mosco for every t ∈ [0, T ]. Here, apply Theorem
2.3 to the sequence of problems

u′nk
(t) + ∂ϕt(unk

;unk
(t)) 3 f(t), 0 < t < T, unk

(0) = unk0(0),

to see that unk
converges in C([0, T ];H) to the solution w of

w′(t) + ∂ϕt(u;w(t)) 3 f(t), 0 < t < T, w(0) = u0(0).

Then, clearly, w = u on (0, T ] and thus u must be a solution of CP (u0, f) on [0, T ] and
satisfies (4.7).

5. Obstacle problems. We begin this section with some artificial examples in order
to explore our assumptions (H1) − (H2) for local existence in time or (H̃1) − (H̃3) for
global existence in time.

Example 5.1. Let H := R, δ0 and T be fixed positive numbers. We consider a scalar
quasi-variational inequality, choosing ϕ0 ≡ 0 on R and

ϕs(v; z) :=

{
0, if z ∈ [kc(v; s),∞),

∞, otherwise,
∀v ∈W 1,2(−δ0, t), ∀0 ≤ s ≤ t ≤ T, (5.1)

where

kc(v; s) := 2v(0) + 2
∫ s

0

|v′(τ)|pdτ, ∀v ∈W 1,2(−δ0, t), ∀0 ≤ s ≤ t ≤ T, (5.2)

for a fixed number p with 0 < p ≤ 1. It is easy to check conditions (ϕ0) and (Φ1)− (Φ3)
for ϕ0 and ϕt(v, ·), respectively.
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Now, we consider

u′(t) + ∂ϕt(u;u(t)) 3 f(t), 0 < t < T, (5.3)

with initial condition

u(t) = u0(t) for all t ∈ [−δ0, 0], (5.4)

where f is given in L2(0, T ) and u0 in W 1,2(−δ0, 0) with u0(0) ≤ 0 (hence ϕ0(u0;u0(0)) <
∞). For such an initial datum u0 and any number M > 0, we choose

avr(τ) := 2|v′(τ)|p, bvr(τ) := 0 for a.e. τ ∈ (0, T ),

∀v ∈W 1,2(−δ0, T ) with v = u0 on [−δ0, 0] and |v′|2L2(0,T ) ≤M, ∀r ≥ 0.

Then, condition (∗) = {(H1)− (H2)} with T0 := T is satisfied; in fact, given z ≥ kc(v; s),
z̃ = z − kc(v; s) + kc(v; t) satisfies that

|z̃ − z| ≤ 2
∫ t

s

|v′(τ)|pdτ, ϕt(v; z̃)− ϕs(v; z) = 0.

Since avr := 2|v′|p ∈ L
2
p (0, T ), (H1) holds. Also, if 0 < p < 1, then (H2) holds, too. When

p = 1, as is easily checked, (H2) does not hold. If 0 < p < 1 and u0(0) ≤ 0, our Theorem
3.1 says that the scalar problem (5.3)-(5.4) has a local in time solution. However, in case
p = 1 and u0(0) = 0, the problem has no solution. By the way, when p = 1

2 , f ≡ 0 and
u0 ≡ 0 on [−δ0, 0], it is easy to see that the function u(t) = 4t is a solution of (5.3)-(5.4)
on [0, T ].

Example 5.2. Let ρ0 be a smooth function on R and define kc(v; ·) by

kc(v; s) :=
∫ s

−δ0
ρ0(s− τ)v(τ)dτ, ∀v ∈ L2(−δ0, t), 0 ≤ ∀s ≤ ∀t ≤ T.

We define ϕs(v; ·) by (5.1) for this obstacle function kc(v; ·). It is easy to see that condi-
tions (Φ̃1) − (Φ̃3) are fulfilled. Also, for any M > 0, conditions (H̃1) and (H̃2) hold for
avr ≡M max |ρ0| and bvr ≡ 0. Therefore, by Theorem 3.1, problem (5.3)-(5.4) has a local in
time solution, if f ∈ L2(0, T ) and the initial datum u0 is given so that u0(0) ≥ kc(u0; 0).
Furthermore, if the obstacle function is replaced by

kc(v; s) :=
∫ s

−δ0
ρ0(s− τ) min{v(τ),m0} dτ

with a positive constant m0, then kc is bounded by m1 := m0(δ0 +T ) max |ρ0| from above
and hence condition (H̃3) is satisfied; in fact, we can choose as hv in (H̃3) the constant
function m1. Accordingly, by Theorem 4.1, problem (5.3) and (5.4) has a solution on the
whole interval [0, T ].

Next, we give two typical applications to parabolic partial differential inequalities with
the unkonwn dependent obstacles; one of them is the one mentioned in the introduction.

Example 5.3. Let Ω be a bounded domain in RN with smooth boundary Γ := ∂Ω. We
put Q := Ω× (0, T ), 0 < T <∞, and H := L2(Ω). As the proper, l.s.c. convex function
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ϕ0 on L2(Ω) we take

ϕ0(z) :=


1
2

∫
Ω

|∇z|2dx, ∀z ∈ H1(Ω),

∞, otherwise.
(5.5)

Also, let ρ(·, ·, ·) be a smooth function on RN ×R ×R. Assume that ρ and its partial
derivatives ρi(x, t, v) := ∂

∂xi
ρ(x, t, v), i = 1, 2, · · · , N , satisfy

|ρ(x, s, v1)− ρ(x, t, v2)|+
N∑
i=1

|ρi(x, s, v1)− ρi(x, t, v2)| ≤ c0(|t− s|+ |v1 − v2|), (5.6)

∀(x, s, v1), (x, t, v2) ∈ RN ×R×R,

where c0 is a positive constant. We define

ϕs(v; z) :=


1
2

∫
Ω

|∇z|2dx, if z ∈ H1(Ω) and z ≥ kc(v; ·, s) a.e. on Ω,

∞, otherwise,
(5.7)

∀v ∈ L2(−δ0, t;H1(Ω)), ∀0 ≤ s ≤ t ≤ T,

where δ0 is a fixed positive number and

kc(v;x, s) =
∫ s

−δ0

∫
Ω

ρ(x− y, s− τ, v(y, τ))dydτ, ∀(x, s) ∈ Ω× [−δ0, t].

It is easy to see that conditions (ϕ0) and (Φ̃1)− (Φ̃3) are fulfilled by ϕ0(·) and ϕs(·; ·)
given by (5.5) and (5.7), respectively. Next, we check condition (∗) or (∗∗). Let M > 0
be any number and v be any function in

ṼM (−δ0, T ) :=
{
v; |v|2L∞(−δ0,T ;L2(Ω)) +

1
2
|∇v|2L2(−δ0,T ;L2(Ω)) ≤M

}
. (5.8)

Then, for each function z ∈ H1(Ω) with z ≥ kc(v; ·, s) a.e. on Ω and 0 ≤ s ≤ t ≤ T , the
function z̃ := z − kc(v; ·, s) + kc(v; ·, t) satisfies that z̃ ∈ H1(Ω) and z̃ ≥ kc(v; ·, t) a.e. on
Ω. From (5.6) it follows that

|z̃(x)− z(x)|
≤ |kc(v;x, t)− kc(v;x, s)|

≤ c0(δ0 + s)|Ω||s− t|+
∫ t

s

∫
Ω

(|ρ(x− y, t− τ, 0)|+ c0|v(y, τ)|)dydτ

≤ c0(δ0 + s)|Ω||s− t|+ {|Ω||ρ(·, ·, 0)|L∞(Q) + c0|Ω|
1
2 |v|L∞(−δ0,T ;L2(Ω))}|t− s|

≤ c1(M)|t− s|

for all v ∈ ṼM (−δ0, T ), where |Ω| denotes the volume of Ω and

c1(M) := c0(δ0 + T )|Ω|+ |Ω||ρ(·, ·, 0)|L∞(Q) + c0|Ω|
1
2
√
M.
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Similarly,∣∣∣∣ ∂∂xi (kc(v;x, s)− kc(v;x, t))
∣∣∣∣

≤ c0(δ0 + s)|Ω||s− t|+
∫ t

s

∫
Ω

(|ρi(x− y, t− τ, 0)|+ c0|v(y, τ)|)dydτ,

≤ c1(M)|t− s|

for i = 1, 2, · · · , N and all v ∈ ṼM (−δ0, T ). Therefore,

|z̃ − z|L2(Ω) ≤ c1(M)|Ω| 12 |t− s|

and
1
2
|∇z̃|2L2(Ω) −

1
2
|∇z|2L2(Ω) ≤ |∇z|L2(Ω) · c1(M)

√
N |Ω||t− s|+ c1(M)2NT |Ω||t− s|2

≤ c2(M)|t− s|
(

1√
2
|∇z|L2(Ω) + 1

)
,

where c2(M) :=
√

2c1(M)
√
N |Ω|+ c1(M)2NT |Ω|; namely,

ϕt(v; z̃)− ϕs(v; z) ≤ c2(M)|t− s|(ϕs(v; z)
1
2 + 1).

Thus, putting avr := c1(M)|Ω| 12 and bvr := c2(M) for all v ∈ Ṽ(−δ0, T ) and all r ≥ 0, we
see that (H̃1) and (H̃2) hold. Therefore, by virtue of Theorem 3.1, for given f ∈ L2(Q)
and u0 ∈ W 1,2(−δ0, 0;L2(Ω)) ∩ L∞(−δ0, 0;H1(Ω)) with u0(·, 0) ≥ kc(u0; ·, 0) a.e. on
Ω, the quasi-variational problem, denoted by (QV 1), formulated on Q′ := Ω × (0, T ′),
0 < T ′ ≤ T ,

u ∈W 1,2(−δ0, T ′;L2(Ω)) ∩ L∞(−δ0, T ′;H1(Ω)) with u ≥ kc(u; ·, ·) a.e. on Q′;∫
Q

{ut(u− w) +∇u · ∇(u− w)}dxdt ≤
∫
Q

f(x, t)(u− w)dxdt,

∀w ∈ L2(0, T ′;H1(Ω)) with w ≥ kc(u; ·, ·) a.e. on Q′,

u = u0 a.e. on Ω× [−δ0, 0],

has at least one solution u on a certain interval [0, T ′] ⊂ [0, T ]. Further suppose that ρ is
bounded from above on RN ×R ×R. Then, so is kc on Ṽ(−δ0, T ) ×RN ×R, that is,
kc ≤ k∗ for a certain positive constant k∗. In this case, ϕt(v; k∗) = 0 for all v ∈ Ṽ(−δ0, T )
and t ∈ [0, T ], which shows that (H̃3) holds. In such a case, our Theorem 4.1 says that
problem (QV 1) has a solution u on the whole interval [0, T ].

Example 5.4. Let Ω, Γ, Q and Σ be as in Example 5.3, as well as 0 < δ0 < ∞ and
0 < T < ∞. Also, we take as ϕ0 the same function as in Example 5.3, too. Let Ωi,
i = 1, 2, · · · , n, be a finite number of smooth subdomains of Ω such that Ωi ⊂ Ω, i =
1, 2, · · · , n, and Ωk ∩ Ωj = ∅ if k 6= j. We define a mapping Λi : L2(−δ0, t;H1

0 (Ω)) →
C([0, t]), 0 ≤ s ≤ t ≤ T , by

[Λiv](s) :=
∫ t

−δ0

∫
Ωi

γi(s− τ, v(x, τ))dxds, ∀v ∈ L2(−δ0, t;H1
0 (Ω)), ∀s ∈ [0, t],
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for each i = 1, 2, · · · , n, where γi(·, ·) are Lipschitz continuous functions on R × R,
i = 1, 2, · · · , n, i.e.

|γi(τ1, v1)− γi(τ2, v2)| ≤ c0(|τ1 − τ2|+ |v1 − v2|), ∀(τ1, v1), (τ2, v2) ∈ R×R, (5.9)

for a positive constant c0. Now, for each v ∈ L2(−δ0, t;H1
0 (Ω)) and s ∈ [0, T ], consider

K(v; s) := {z ∈ H1
0 (Ω); |∇z| ≤ kc([Λiv](s)) a.e. on Ωi, i = 1, 2, · · · , n},

where kc(·) is a smooth and strictly positive function on R. Clearly K(v; s) is a closed
convex subset of H1

0 (Ω) and non-empty, since 0 ∈ K(v; s).
We consider a quasi-variational problem, denoted by (QV 2), to find a function u such

that

u ∈ L2(−δ0, T ;H1
0 (Ω)) ∩W 1,2(0, T ;L2(Ω)) with u(t) ∈ K(u; t) for all t ∈ [0, T ],∫ T

0

∫
Ω

ut(u− w)dxdt+
∫ T

0

∫
Ω

∇u · ∇(u− w)dxdt ≤
∫ T

0

∫
Ω

f(u− w)dxdt,

∀w ∈ L2(−τ0, T ;H1
0 (Ω)) with w(t) ∈ K(u; t) for a.e. t ∈ (0, T ),

u(t) = u0(t) for all t ∈ [−δ0, 0],

where f is given in L2(0, T ;L2(Ω)) and u0 in W 1,2(−δ0, 0;L2(Ω)) ∩ L∞(−δ0, 0;H1(Ω))
with u0(0) ∈ K(u0; 0). Defining a proper, l.s.c. and convex function ϕs(v; ·) on L2(Ω) for
each v ∈ Ṽ(−δ0, t);L2(Ω)) (cf.(5.9)), 0 ≤ s ≤ t ≤ T , by

ϕs(v; z) :=


1
2

∫
Ω

|∇z|2dx, if z ∈ K(v; s),

∞, otherwise,

we see easily that problem (QV 2) can be described as a Cauchy problem of the form
CP (u0, f) on [0, T ]. It is easy to check that our convex functions ϕ0 and ϕs(v; ·) satisfy
conditions (ϕ0) and (Φ̃1)− (Φ̃3).

Let us verify assumptions in Theorems 4.1 (and hence Theorem 3.1). Choose a col-
lection {ηk}0≤k≤n of smooth non-negative functions on RN corresponding to the family
{Ωi} of subdomains of Ω such that

ηk = 1 on Ωk, ∀1 ≤ k ≤ n, and
n∑
k=0

ηk = 1 on Ω. (5.10)

Now, given M > 0 and any function v with |v|2L∞(−δ0,T ;L2(Ω))+ 1
2 |∇v|

2
L2(−δ0,T ;L2(Ω)) ≤M .

For any 0 ≤ s ≤ t ≤ T and z ∈ K(v; s), we put

z̃ = η0z +
n∑
i=1

ηi ·
ki(v; s)
ki(v; t)

z, ki(v; ·) := kc([Λiv](·)), i = 1, 2, · · · , n.

Then we see from (5.10) that

∇z̃ =
ki(v; t)
ki(v; s)

∇z on Ωi, i = 1, 2, · · · , n, namely, z̃ ∈ K(v; t).

Moreover, we have

|z̃(x)− z(x)| ≤
n∑
i=1

ηi(x)
|ki(v; t)− ki(v; s)|

ki(v; s)
· |z(x)|
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and

∇z̃(x) =
{
η0(x) +

n∑
i=1

ki(v; t)
ki(v; s)

ηi(x)
}
∇z(x)

+
{
∇η0(x) +

n∑
i=1

ki(v; t)
ki(v; s)

∇ηi(x)
}
z(x)

= ∇z(x) +
{ n∑
i=1

ki(v; t)− ki(v; s)
ki(v; s)

ηi(x)
}
∇z(x)

+
{ n∑
i=1

ki(v; t)− ki(v; s)
ki(v; s)

∇ηi(x)
}
z(x).

Since ki(v; τ) is Lipschitz continuous in τ , i.e. |ki(v; t)− ki(v; s)| ≤ ci(M)|t− s|, where

ci(M) := c0(T + δ0)|Ωi|+ |Ωi|max |γi(·, 0)|+ c0{|Ωi|M}
1
2 , i = 1, 2, · · · , n,

we obtain from the above relations that

|z̃ − z|L2(Ω) ≤ c∗(M)|t− s|, ϕt(v; t)− ϕs(v; z) ≤ c∗(M)|t− s|(ϕs(v; s)
1
2 + 1),

where c∗(M) is a positive constant depending only on M . Thus conditions (H̃1) and
(H̃2) are satisfied by the families of functions avr ≡ bvr ≡ c∗(M), and (H̃3) is trivially
satisfied by hv ≡ 0. Accordingly, by Theorem 4.1, our quasi-variational problem (QV 2)
has at least one solution u on the whole interval [0, T ].

Some other applications are found in a recent paper [5] treating one dimensional
gradient obstacle problems of parabolic type.

References

[1] A. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced

Publishing Program, Pitman, Boston, 1984.

[2] A. Azevedo and L. Santos, Convergence of convex sets with gradient constraint, J. Convex

Anal. 11 (2004), 285–301.

[3] M. Biroli, Sur les inéquations paraboliques avec convexe dépendant du temps, solution forte
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