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Abstract. In this note we analyze equilibria of static Stefan type problems with crystalline/sing-
ular weighted mean curvature in the plane. Our main goal is to improve the meaning of variational
solutions so that their properties allow us to call them almost classical solutions. The idea of
our approach is based on a new definition of a composition of multivalued functions.

1. Introduction. We study the regularity of solutions to the following constant curva-
ture problem

div ∂Ω(∇ξγ̄|ξ=~n) = 1 on ∂Ω, (1.1)

where div ∂Ω(∇ξγ̄|ξ=~n) is the weighted mean curvature κγ of an unknown surface, which
is the boundary ∂Ω of a simply connected region Ω. The crucial role is played here by
the given function γ̄ : Rn → R, which determines the character of the system (1.1). To
make the problem well posed we add an extra condition prescribing the volume |Ω| of
the domain Ω.

The equation (1.1) can be viewed as a static case of the quasi-stationary Stefan
problem with surface tension,

∆p = 0 in Ωt, p = κγ on ∂Ωt,
Ωt|t=0 = Ω0,

∂p
∂~n = −V~n on ∂Ωt.

(1.2)

In this equation p is the unknown diffusing quantity, its interpretation depends upon the
physics of the problem. Let us mention that system (1.2) appears in a variety of problems.
It is a model of solidification of melt, in this Stefan problem p is the temperature (cf.
[Lu]); in the Hele–Shaw problem p is the fluid pressure (see [DE]); in the tumor growth
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model (see [FR]) p is the internal pressure of the proliferating tissue; in the crystal growth
from vapor (see [GR1]) p is the supersaturation of the diffusing water vapor.

Let us go back to the description of the content of (1.2). In this system Ωt is the
evolving region, whose boundary ∂Ωt is free. The normal vector to ∂Ωt is denoted by
~n and the normal speed of ∂Ωt is V~n. The standard solvability condition implies that
|Ωt| = |Ω0|, which explains the extra requirement added to (1.1). The central point is the
weighted curvature κγ . If the anisotropy function, γ̄, and a vector field ξ on a manifold
S are sufficiently smooth, then we set (cf. [Si])

div Sξ = tr (Id− ~n⊗ ~n)∇ξ.

Thus, if γ̄ and the manifold S are regular enough, then κγ is well defined.
We notice that (1.1) simplifies if Ω is a region in the plane,

div ∂Ω∇ξγ̄|ξ=~n =
(
d

ds
∇ξγ̄(ξ)|ξ=~n

)
· ~τ , (1.3)

where s is the arc-length parameter of the curve ∂Ω and ~τ is the tangent vector to ∂Ω
such that the system (~τ , ~n) is positively oriented. In the classical, isotropic setting γ̄(x)
is just |x|. As a result, (1.3) turns into the classical Frenet formula

κ =
(
d

ds
~n

)
· ~τ .

In this case we will obtain a circle as a solution to (1.1).
We will show how to make sense out of formula (1.1) for γ̄ which is just convex.

Throughout this note we restrict ourselves to the two dimensional case. At this point we
note that there is an extensive literature on the problem of how to interpret κγ in the case
of crystalline γ, see [ACM], [BNP], [BCN], [GR]. The issue is the non-differentiability of
γ̄ as well as an implicit lack of smoothness of the unknown curve.

The authors of the papers mentioned above set up an auxiliary variational problem,
which stems from the fact that we have to select a section of the subdifferential ∂γ̄(~n).
Our approach is completely different. In a sense, we do not define κγ altogether.

We have to recall the notion of solution to (1.1). We will achieve this during the
generalization of the definition of κγ . We are interested in γ̄ : R2 → R, which is barely
convex and one-homogeneous. Thus, we are permitted to write

γ̄(x) = |x|γ
(
x

|x|

)
.

Since x
|x| depends only upon the angle φ between the vector x and the x1 axis we shall

subsequently write γ = γ(φ).
We shall say that γ̄ is crystalline if its Frank diagram, Fγ , i.e.

Fγ = {p ∈ R2 : γ̄(p) ≤ 1}

is convex, with Lipschitz, but not C1 boundary.
We notice that under our assumptions γ̄ defines a metric in R2, where Fγ is a unit

ball. The unit ball in the dual space, i.e.

Wγ = {x ∈ R2 : ∀~n ∈ R2, |~n| = 1, x · ~n ≤ γ̄(~n)}.
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is called the Wulff shape of γ. A very nice introduction to these geometric objects and
their role in modelling, especially in material sciences may be found in the book by
Gurtin, [Gu].

Let us suppose that a curve Γ we are dealing with is parameterized by the angle φ(s)
and s is the arc-length parameter. In addition, for a fixed θ ∈ [0, 2π], we set

I(φ) = Iγθ (φ) = γ(φ) +
∫ φ

θ

dψ

∫ ψ

θ

γ(t) dt. (1.4)

Then Iγθ is convex as long γ̄ is convex, i.e. γ′′(φ) + γ(φ) ≥ 0 in D′([0, 2π]) holds and the
weighted mean curvature takes the following form (see [MR1, eq. (3.6)])

κγ = (γ′′(φ) + γ(φ))
dφ

ds
(s) =

d

ds

d

dφ
Iγθ (φ).

Hence (1.1) can be viewed as follows
d

dφ
Iγθ (φ) = s− s̄+ s∗.

If γ is no longer C2, then we generalize (1.1) by

∂φI
γ
θ (φ) 3 s− s̄+ s∗ a.e., (1.5)

where ∂φI
γ
θ (φ) is the subdifferential of Iγθ and s̄, s∗ are properly chosen constants. We

refer the reader to [MR1] for more details. A solution to the inclusion (1.5) yields an
angle parametrization of a curve Γ we seek, i.e. a solution to (1.1), where Γ = ∂Ω.

Let us recall from [MR1] the result on solvability of (1.1) for any general convex γ̄.

Theorem 1.1. Let us suppose that γ̄ : R2 → R is a convex, one-homogeneous, function.
Then, there exists ϕ a solution to (1.1), i.e. a function satisfying (1.5). Moreover the
solution defines a closed curve Γ, and it is unique up to a translation; namely it is the
Wulff shape of γ̄.

In the statement of Theorem 1.1 the regularity of the curve we obtain is hidden. We
also have to explain what exactly we mean by a solution, this will be done in Section 3.
Certainly, the convexity assumption on γ̄ implies that the solution Γ must be convex as
well. In particular, it follows that the curve is a W 1

p -submanifold of any p <∞. However,
the notion of solution used here does not seem to be satisfactory. It is just an inclusion,
cf. (3.1), i.e. the solution of (1.1) is a selection of a multivalued operator, see Section
3 for more details. We would like to improve this part of the result by examining the
“smoothness” of the solutions.

We expect that regularity of solutions to (1.1) should be compatible with the space
regularity of parabolic problems with the elliptic operator such as the LHS of (1.1). In
[MR2] we studied

wt =
∂

∂s

∂J

∂φ
(wx), (1.6)

augmented with initial and boundary conditions. We considered there a special J

J(φ) =
3∑
k=0

π

2

∣∣∣∣φ− 3π
2

+ k
π

2

∣∣∣∣.
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When J(φ) = |φ|, then equation (1.6) is called the total variation flow, see [BCN], because
it arises when the total variation is minimized by the steepest descent.

The non-smoothness of J prompts us to replace ∂J
∂ϕ in (1.6) by the subdifferential ∂J .

In order to deal with the regularity problem of (1.6) we introduced a special notion of
solution, called almost classical solutions. We showed that the unique weak solution to
(1.6), if the data are not too bad, is an almost classical solution, see [MR2, Theorem 2.2].
This means, in particular, that the following equality holds:

wt =
∂

∂s
∂φJ ◦̄∂w, (1.7)

where ∂w is a generalized, multivalued derivative of w and ◦̄ is a composition of multi-
valued operators, which will be defined below in Section 2.

We will see that these two new notions are flexible and ready to be applied here to
problem (1.1). Indeed, this is exactly the content of the theorem below, which is the main
result of this note.

Theorem 1.2. The unique solution ϕ of (1.1) is almost classical, i.e. the equation (1.1)
is fulfilled pointwise.

This statement requires further explanations. We generalized (1.1) to make sense for
merely convex γ̄. However, from the point of view of Theorem 1.2 the formula (1.5) is
too broad, hence we improve the meaning of solutions. On the way, the notion of the
subdifferential of a convex function appeared naturally. Formula (1.7) suggests that this
subdifferential is evaluated at our solution ϕ, which has jumps. Here comes the need of
compositions ◦̄. The final result of the composition is a linear function with slope one
and this is exactly the content of Theorem 1.2.

The above program is performed in two stages. In Section 2 we will define the com-
position ◦̄ rigorously, and we will provide examples of how the definition works. In the
last Section 3 we will recall the notion of solution to (1.1) introduced in [MR1], and we
devote ourselves to the proof of Theorem 1.2.

2. The composition ◦̄. We begin with the obvious task of specifying the class of op-
erators for which the composition will be well-defined. We will present a more general
setting than the one which would be sufficient to state our result. We hinted above that
ϕ may be interpreted as a special multifunction. Namely, we shall say that a multival-
ued mapping A defined on an interval I with values in R is a maximal multifunction of
bounded variation (maximal BV-multifunction for short), if it can be decomposed in the
following way

A = M − C,

where C and M are increasing (non-decreasing) functions treated as maximal monotone
operators. In addition, for each x ∈ I at most one of the sets M(x), C(x) contains more
than one point.

We can recall here the following definition of a BV -function. Namely, an L1(loc)-
function A : [a, b]→ R is called to be of bounded variation provided that its distributional
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derivative is a Radon measure and

‖A‖TV ([a,b]) =
∫ b

a

|dA|

is finite. The quantity ‖A‖TV ([a,b]) is called the total variation of A, see [Ru, Chapter 8],
[Zi, §5.1]. As usual in that case, we have to be careful with the endpoints of the domain,
which is closed.

In the following considerations it is sufficient to assume that φ we deal with is a
maximal BV -multifunction. Further restrictions will be specified later.

Thanks to the elementary properties of monotone functions at each point of the
interior of the domain of Ω there exist the left- and right-hand-side limits and they
determine the jumps as follows

φ(s0) = [ lim
s→s−0

φ(s), lim
s→s+0

φ(s)]or (2.1)

for each s ∈ Ω, where

[k, l]or =

{
[k, l] for k ≤ l,
[l, k] for l < k,

For the sake of convenience of the presentation, we now define the set of singularities
of a maximal monotone operator.

Definition 2.1. Let us suppose that f : [ψ, θ]→ R is a maximal monotone (multivalued)
operator. We assume that the set

⋃
x∈[ψ,θ] f(x) is bounded. We put

S(f) = {σ ∈ [ψ, θ] : ∂f(σ) = [r, t] and r < t}.

We will call S(f) the set of singularities of f .

Obviously, S(f) is at most countable, so we shall frequently write S(f) = {σk}k∈Z ,
where σk denotes points of S(f) and Z, the set of indices, is at most countable.

We shall distinguish a subclass of the maximal BV -multifunction, which is particularly
suitable for our analysis. A special role in this process will be played by the sets Ξk(φ).
They are pre-images of the singular set of f . Namely, if σk ∈ S(f), and φ : [a, b]→ [ψ, θ]
is a maximal BV-multifunction, then we set

Ξk(φ) = {s ∈ [a, b] : φ(s) 3 σk}.

Of course Ξk(φ) is a sum of its connected components, we note, however, that each
component is a closed subset of [a, b], because at each point φ has one sided limits.

Definition 2.2. We say that a maximal BV-multivalued function φ : [a, b] → R is of
admissible total variation (ATV for short), and we shall write φ ∈ ATV[a, b], iff [a, b]
may be decomposed into a finite collections of closed intervals Il = [al, bl], l = 1, . . . ,
K(φ), i.e. [a, b] =

⋃K(φ)
l=1 Ik such that (am, bm) ∩ (al, bl) = ∅, m 6= l and for each l the

restriction φ|(al,bl) or −φ|(al,bl) is a maximal monotone operator and (al, bl) is maximal
(with respect to inclusion of sets) with this property. We note that this maximality
includes the degenerate cases, i.e. we admit al = bl. Moreover, K(φ) denotes the number
of elements of the considered collection.
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The points bl = al+1 are special, there the multifunction φ switches between being
decreasing and being increasing. These may be continuity points or jumps.

In particular, it follows that for each k ∈ Z and for each connected component [d, e]
of Ξk(φ) there exists ε > 0 and the two conditions below are fulfilled:

(i) φ(s) > σk for s ∈ (e, e+ ε) or φ(s) < σk for s ∈ (e, e+ ε);
(ii) φ(s) > σk for s ∈ (d− ε, d) or φ(s) < σk for s ∈ (d− ε, d).

We want to stress that Definition 2.2 excludes BV-functions with infinitely many
oscillations which accumulate at one point as in the case of the function e−1/x2

sin 1
x2 .

We are now ready to recall the multi-stage process of the definition of the composition
◦̄ (see [MR2] for a special case).

Definition 2.3. We define the composition

B◦̄A : [a, b]→ R,

where A : [a, b] → [ψ, θ] is an ATV function, B : [ψ, θ] → R is a multivalued maximal
monotone operator.

The interval [a, b] is split as follows:

[a, b] = Dr ∪ Df ∪ Ds,
where

Df =
{⋃
k

(ak, bk) : A|(ak,bk) = θk,where θk is a constant
}

;

Ds = {s ∈ [a, b] : A(s) = [σs, τs] and σs < τs};

Dr = [a, b] \ (Df ∪ Ds).
Here, Df denotes the flat areas of A. In the definition of Df each interval (al, bl) is
understood to be maximal with respect to inclusion of sets. The set of discontinuity
points of A equals Ds. At this point we recall that a BV -function admits only one type of
discontinuity, i.e. the right and left side limits for all points always exist, so only ’jumps’
are admitted. The regular part of A in this decomposition is Dr, i.e. it contains what is
left after removing singularities: the flat parts and jumps.

We consider three steps of the definition corresponding to the above decomposition:

1. For s ∈ Dr the set A(s) is a singleton, hence

B◦̄A(s) = B(A(s)) for s ∈ Dr (2.2)

is a well-defined object.
2. For s ∈ Df we consider the maximal interval (ak, bk) containing s and such that

A|(ak,bk) = θk. Here, we are required to consider two sub-cases:
(a) If B(θk) is a singleton, then

B◦̄A(s) = B(θk) for s ∈ (ak, bk). (2.3)

(b) If B(θk) = [uk, vk], then we have four further cases depending upon the behavior
of A in a neighborhood of (ak, bk). For sufficiently small ε > 0 we have:

(i) A is increasing: A(s) < θk for s ∈ (ak − ε, ak), A(s) > θk for s ∈ (bk, bk + ε);
(ii) A is decreasing: A(s) > θk for s ∈ (ak − ε, ak), A(s) < θk for s ∈ (bk, bk + ε);
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(iii) A is convex: A(s) > θk for s ∈ (ak − ε, ak), A(s) > θk for s ∈ (bk, bk + ε);
(iv) A is concave: A(s) < θk for s ∈ (ak − ε, ak), A(s) < θk for s ∈ (bk, bk + ε).

If (i) occurs, then we put

B◦̄A(s) = xk(s− bk) + yk(s− ak) for s ∈ (ak, bk), (2.4)

where
xk =

uk
ak − bk

and yk =
vk

bk − ak
.

If (ii) holds, then we put

B◦̄A(s) = xk(s− bk) + yk(s− ak) for s ∈ (ak, bk), (2.5)

where
xk =

vk
ak − bk

and yk =
uk

bk − ak
.

For (iii) we just put
B◦̄A(s) = vk for s ∈ (ak, bk). (2.6)

Finally, for (iv) we put
B◦̄A(s) = uk for s ∈ (ak, bk). (2.7)

3. For s ∈ Ds, first, we note that this set consists of at most countably many points
and A(s) = [αs, βs], where αs < βs. If s /∈ {a, b}, then we put

B◦̄A(s) = [ lim
t→s−

B◦̄A(t), lim
t→s+

B◦̄A(t)]or. (2.8)

If s belongs to {a, b}, say s = a, (the other case, s = b is the same), we note that by (2.1)

A(a) = [αa, lim
t→a+

A(t)]or. (2.9)

Then, we put
B◦̄A(a) =

⋃
σ∈A(a)\{limt→a+ A(t)}

B(σ). (2.10)

Let us underline that it is required to remove the point limt→a+ A(t) in the definition
(2.9), since this value can be related to the case 2b—see examples below. The endpoints
of the intervals in the set Df are treated by (2.8). They form an at most countable set.

Now we present some illustrations of the new notion of composition. We assume below
that B,A : [0, 1]→ [0, 1] and both operators are maximal monotone.

Example 1. Let

B(t) =
{

0, t ∈ [0, 1),
[0, 1], t = 1,

A =
{

[0, 1], t = 0,
1, t ∈ (0, 1].

Then, we have
B◦̄A(t) = t.

In order to evaluate the composition we used: 2(bi) and 3 formula (2.10). See Figure 1.
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(0, 0)

(1, 1)

B

(0, 0)

(1, 1)

A

�
�

�
�

�

(0, 0)

(1, 1)

B◦̄A

Fig. 1

Example 2. Let

B(t) =


[0, 1/2], t = 0,

1/2, t ∈ (0, 1),
[1/2, 1], t = 1,

A =
{

[0, 1], t = 0,
1, t ∈ (0, 1].

Then

B◦̄A(t) =
{

[0, 1/2], t = 0,
1/2(s+ 1), t ∈ (0, 1].

Here we used: 2(bi) and 3. See Figure 2.

(0, 0)

(1, 1)

B

(0, 0)

(1, 1)

A

���
��

(0, 0)

(1, 1)

B◦̄A

Fig. 2

Example 3. Let

B(t) =


0, t ∈ [0, 1/2),

[0, 1], t = 1/2,
1 t ∈ (1/2, 1],

A =


[1/2, 1], t = 0,

1/2, t ∈ (0, 1/2],
t, t ∈ (1/2, 1].

Then B◦̄A(t) = 1. Here we used: 1, 2(biii) and 3 line (2.8). See Figure 3.

(0, 0)

(1, 1)

B

�
�
�

(0, 1) (1, 1)

A

(0, 1) (1, 1)

B◦̄A

Fig. 3



STATIC STEFAN TYPE PROBLEMS 231

Example 4. Let

B(t) =


0, t ∈ [0, 1/2),

[0, 1], t = 1/2,
1, t ∈ (1/2, 1],

A =


t, t ∈ [0, 1/2),

[0, 1/2], t = 1/2,
2t− 1, t ∈ (1/2, 1),
[0, 1], t = 1.

Then

B◦̄A(t) =


0, t ∈ [0, 3/4),

[0, 1], t = 3/4,
1, t ∈ (3/4, 1),

[0, 1], t = 1.

Here we used: 1 and 3, only. See Figure 4.

(0, 0)

(1, 1)

B

�
��

�
�
�
�
�

(0, 0)

(1, 1)

A

(0, 0)

(1, 1)

B◦̄A

Fig. 4

These examples suggest that the composition has good properties. Indeed, we show
the following result.

Lemma 2.1. Let us suppose that B : [ψ, θ] → R is multivalued and maximal monotone,
such that the set

⋃
x∈[ψ,θ] f(x) is bounded. If moreover A is an ATV-function, then B◦̄A

belongs to the ATV-class, too.

Proof. Due to the structure of functions in the ATV-class, first, we may restrict ourselves
to one interval [al, bl] from collection for the function A – see Definition 2.2. Thus A is a
monotone, say increasing, function on [al, bl]. Since A is increasing on [al, bl], it is clear
that formally

‖B◦̄A‖TV (al,bl) ≤ ‖B‖TV (ψ,θ). (2.11)

We note that the right-hand-side above is finite, because B is defined over a closed interval
[ψ, θ] and by assumption B takes on only finite values.

We have to make sure that B◦̄A ∈ TV (al, bl). The problem for end points a and b is
solved by (2.9). In our case it is equivalent to verifying that B◦̄A is a monotone operator.
We shall show that for all t1 > t2 in the domain of A(

B◦̄A(t1)−B◦̄A(t2), t1 − t2
)
≥ 0, (2.12)

where F denotes an arbitrary selection of F .
Since A(t1) > A(t2), the monotonicity of B implies (2.12). The only difficulty occurs

when A(t1) = A(t2) = σ and t1, t2 ∈ (p, q) where the interval (p, q) is a connected element
of Df . In this case we look at part 2 of the definition. If B(σ) is a singleton, then the
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LHS of the inequality (2.12) is zero. If not, i.e.,

B(σ) = [r, t],

then by (2.4) we calculate that

B◦̄A(t1)−B◦̄A(t2) = x(t1 − q) + y(t1 − p)− x(t2 − q)− y(t2 − p) =
t− r
q − p

(t1 − t2) > 0.

So (2.12) follows and we conclude that B◦̄A ∈ BV on each element of the decomposition
of the domain of A given in Definition 2.2. The case of degenerate intervals, i.e. al = bl
follows immediately from Definition 2.3, part 3.

Since the behavior at the endpoints {al, bl} is controlled by the definition of the
composition, (2.1) is fulfilled at these points. Hence we deduce the claim for the whole
domain of the composition by combining the results for each of the intervals [al, bl]. Thus,
for a general ATV-function we have

‖B◦̄A‖TV (a,b) ≤ K(A)‖B‖TV (ψ,θ),

where K(A) is the number of changes of the monotonicity of the function A, i.e. the
number of intervals postulated in Definition 2.2. Due to the definition we have also

K(B◦̄A) ≤ K(A).

This finishes the proof of Lemma 2.1.

3. Solutions to (1.1) are almost classical. We recall the notion of a solution to (1.1).
According to [MR1, definition 3.1], if γ̄ is one-homogeneous and convex, then by a solution
to (1.1) we mean a closed curve Γ whose angle parameterization ϕ(·) is a monotone
(increasing) multivalued function, which can be treated locally as an L1 function, and
the differential inclusion (1.5) holds with initial data ϕ|s=s̄ = ϕ̄ and s? ∈ ∂ϕIγϑ(ϕ̄).

We continue the discussion started at the end of Section 1. Since ∂φI
γ
θ (φ) is a maximal

monotone operator, we immediately obtain a candidate for a solution, namely we find

ϕ(s) ∈ (∂φI
γ
θ )−1(s− s̄+ s∗). (3.1)

We notice that all the selections define a unique L1 representative. Thus, since the RHS
of (3.1) is ATV-function, so we may define the solution in that class by putting

ϕ(s) = (∂φI
γ
θ )−1(s− s̄+ s∗). (3.2)

Indeed, by [MR1, Theorem 1] the inclusion above yields the desired solution. Formula
(3.1) implies that ϕ is a monotone operator, and ∂φI

γ
θ is a maximal monotone operator,

hence the composition ◦̄ is applicable here. Moreover, we claim that

∂φI
γ
θ ◦̄ϕ = s− s̄+ s∗ pointwise. (3.3)

Indeed, this is the main result of this note. From now on, we shall suppress the superscript
γ and the subscript θ.

Theorem 3.1. Let us suppose that γ̄ is one-homogeneous and convex, I is given by (1.4)
and ϕ is defined in (3.2). Then

d

ds
∂I ◦̄ϕ = 1.
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Proof. Let us set t = s− s̄+s∗, in order to show ∂I ◦̄φ(t) = t, we consider the three cases
postulated by the definition of the composition.

1o In the first case t ∈ Dr. Thus, ϕ(t) is a singleton, thus (∂I ◦̄ϕ)(t) = ∂I(ϕ(t)).
In addition, t ∈ Dr implies that t does not belong to any closed interval on which ϕ is
constant, i.e. there is ε > 0 such that ϕ|(t,t+ε) and ϕ|(t−ε,t) are increasing. From this, we in
turn infer that ∂I(ϕ(t)) must be a singleton or ∂I(ϕ(t)) = {I ′(ϕ(t))} and I ′ is continuous
at ϕ(t). As a result, by the very definition of ϕ, we conclude that ∂I ◦̄φ(t) = I ′(ϕ(t)) = t.

2o Let us suppose that t ∈ Df , i.e. there exists (d, e) such that ϕ|(d,e) = const. and
t ∈ [d, e]. The very definition of ϕ implies that const. = σk for a singular value σk of I
and ∂I(σk) = [d, e]. Since ϕ is increasing we end up applying part 2(bi) of Definition 2.3.
This, after working out the coefficients in (2.4) yields

∂I ◦̄ϕ(s) =
d

d− e
(s− e) +

e

e− d
(s− d) = s for s ∈ [d, e].

3o The final case corresponds to t ∈ Ds, i.e. ϕ(t) = [σ, τ ]. But, for all elements
ρ ∈ [σ, τ ], by the definition of ϕ we have ∂J(ρ) = {t}. Thus, by the third part of
Definition 2.3, ∂I ◦̄ϕ(t) = t. Our claim follows.

In other words, Theorem 3.1 is equivalent to the following statement:

Let B be a maximal monotone operator, B : R→ R, then B◦̄B−1 = Id.

Taking the standard definition of the composition we would get: B ◦B−1 3 Id, only.
If we consider Example 1, we would get instead of Id the whole square [0, 1]× [0, 1]. This
explains the hidden special character of our new composition ◦̄. We hope that this new
approach simplifies and improves the theory.

Let us comment on another aspect of this theorem. Let us suppose that Iε is a strictly
convex regularization of I and Iε converges uniformly to I. We immediately notice the
existence of solutions ϕε to the regularized problems, i.e.

dIε
dφ

(ϕε(s)) = s− s̄+ s∗.

By Helly’s theorem we deduce the existence of sequence εk → 0 such that dIεkdφ (φ)→ Ω(φ)
and ϕεk(s) → ϕ0(s) and the convergence is for every argument. Due to the lack of
continuity of Ω we cannot write

lim
k→∞

dIεk
dφ

(ϕεk(s)) = Ω(ϕ0(s)).

However, Ω is a selection of the subdifferential ∂I, ϕ0 is a selection of ϕ and the above
theorem permits us to write

lim
k→∞

dIεk
dφ

(ϕεk(s)) = ∂I ◦̄ϕ(s).

However, it is not clear if the above identity stays true for general ϕ and I.
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