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Abstract. In this paper, a one-dimensional Euler-Lagrange equation associated with the to-

tal variation energy, and Euler-Lagrange equations generated by approximating total variations

with linear growth, are considered. Each of the problems presented can be regarded as a govern-

ing equation for steady-states in solid-liquid phase transitions. On the basis of precise structural

analysis for the solutions, the continuous dependence between the solution classes of approxi-

mating problems and that of the limiting Euler-Lagrange equation will be studied by means of

the analytical methods of set-valued analysis.

1. Introduction. Let Ω be the one-dimensional open interval (0, 1), let κ > 0 be a small
and fixed constant, and let −1 < θ∗ < 1 be a given constant.

In this paper, the following inclusions:

−κ
(
Dw

|Dw|

)
x

+ ∂I[−1,1](w) 3 w + θ∗ in Ω, (1)

−κ
(

Dw√
ε2 + |Dw|2

)
x

+ ∂I[−1,1](w) 3 w + θ∗ in Ω for 0 < ε < 1, (2)

subject to homogeneous Neumann type boundary conditions, are considered, where
∂I[−1,1] is the subdifferential of the indicator function I[−1,1] on the closed interval [−1, 1].

The first inclusion (1) is derived as the Euler-Lagrange equation of the following
functional:

w ∈ L2(Ω) 7→ F0(w) := κVar(w; Ω) +
∫

Ω

(
I[−1,1](w)− 1

2
|w + θ∗|2

)
dx, (3)
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which includes the total variation Var(w; Ω) (=
∫

Ω
|Dw|) of the parameter w ∈ L2(Ω).

So, the inclusion (1) is just formal, and the rigorous one is

(P )0 κ∂V0(w) 3 w + θ∗ in L2(Ω),

with the use of the L2-subdifferential ∂V0 of the following proper l.s.c. and convex func-
tion:

z ∈ L2(Ω) 7→ V0(z) := Var(z; Ω) +
∫

Ω

I[−1,1](z) dx,

or equivalently, in the form of the variational inequality:

κV0(w)−
∫

Ω

(w + θ∗)w dx ≤ κV0(z)−
∫

Ω

(w + θ∗)z dx for any z ∈ D∗,

with the use of the domain:

D∗ :=
{
ζ ∈ BV (Ω) |ζ| ≤ 1, a.e. in Ω

}
(4)

of test functions. Here, let us note that the above D∗ coincides with the effective domain
D(V0) of the convex function V0.

The functional F0, given in (3), is an energy functional, which was proposed and
studied by Visintin [7, Chapter VI] as a possible choice of the free energy in solid-liquid
phase transitions. In the context, w = w(x) denotes the nonconserved order parameter,
and θ∗ denotes the (constant) relative temperature. Also, in (3), the part of the total
variation is called interfacial energy, and this term is supposed to contribute the pattern
formations of the interfaces. On the other hand, another integral part is called bulk
energy, and this term is supposed to characterize the bi-stability of solid-liquid phases by
the double-well function:

ω ∈ R 7→ I[−1,1](ω)− 1
2
|ω + θ∗|2

as in the integral. In view of this, the problem (P )0 (or inclusion (1)) can be regarded
as a governing equation of the steady-states in solid-liquid phase transitions, under the
constant equilibrium temperature.

For any 0 < ε < 1, the second inclusion (2) is derived as the Euler-Lagrange equation
for the following free energy:

w ∈ L2(Ω) 7→ κVarε(w; Ω) +
∫

Ω

{
I[−1,1](w)− 1

2
|w + θ∗|2

}
dx,

which includes the approximating total variation:

z ∈ L1(Ω) 7→ Varε(z; Ω) := inf

 lim
i→+∞

∫
Ω

√
ε2 + (ϕi)2

x dx
{ϕi} ⊂ C1(Ω),
ϕi → z in L1(Ω)
as i→ +∞

 (5)

with linear growth. So, for any 0 < ε < 1, the formal expression (2) is rigorously provided
in the form of:

(P )ε ∂Vε(w) 3 w + θ∗ in L2(Ω),

with the use of the L2-subdifferential ∂Vε of the following proper l.s.c. and convex function
on L2(Ω):

z ∈ L2(Ω) 7→ Vε(z) := Varε(z; Ω) +
∫

Ω

I[−1,1](z) dx,
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or equivalently, in the form of the variational inequality:

κVε(w)−
∫

Ω

(w + θ∗)w dx ≤ κVε(z)−
∫

Ω

(w + θ∗)z dx for any z ∈ D∗, (6)

with the use of the same domain D∗ as in (4). Here, let us note that D∗ coincides with
effective domains of convex functions Vε, for all 0 < ε < 1.

Now, for the sequence {Vε | 0 < ε < 1} of convex functions, it is easily checked that
Vε converges to V0 in the sense of Mosco [4] as ε ↘ 0. Hence, the problem (P )0 can
be regarded as a limiting problem of problems (P )ε as ε ↘ 0, and the approximating
problems (P )ε (0 < ε < 1) are supposed to represent some regularized situations for the
solutions of the problem (P )0.

Recently, the structural analysis for solutions of (P )0 has been studied in [3], and the
reported results have enabled us to see concrete patterns of steady-states (steady-state
patterns) represented by (P )0. Therefore, applying a similar approach to approximating
problems (P )ε (0 < ε < 1), we can expect to know the precise correspondence between
the steady-states represented by the limiting problem (P )0, and those represented by the
approximating problems (P )ε (0 < ε < 1).

Our main focus will be on:

• structural analysis for solutions of approximating problems (P )ε (0 < ε < 1);
• limiting properties for the solution classes of (P )ε as ε ↘ 0, and comparison with

the solution class of (P )0.

Consequently, the above approximating situations will be exactly demonstrated, and the
ε-convergence of solution classes will be characterized by means of analytical methods of
set-valued analysis.

2. Preliminaries. Throughout this paper, the class of all Borel subsets in Ω (= (0, 1))
is denoted by B(Ω), and the measure theoretical notations, such as “a.e.”, “dx”, and so
on, are all with respect to the one-dimensional Lebesgue measure L1, if not otherwise
specified.

For an abstract Banach space X, we denote by | · |X the norm of X, and denote
by distX(ξ, A) the distance between a point ξ ∈ X and a subset A ⊂ X, defined as
distX(ξ, A) := infα∈A |ξ − α|X .

For any L1(Ω), we denote by |Dz| the so-called total variation measure of z, and we
call z a function of bounded variation, or simply BV-function, if:

|Dz|(Ω) = Var(z; Ω) := sup
{∫

Ω

zϕx dx
ϕ ∈ C1

c (Ω) and
|ϕ| ≤ 1 on Ω

}
< +∞. (7)

The class of all BV-functions is denoted by BV (Ω), and then the functional space BV (Ω)
forms a Banach space endowed with the norm:

|z|BV (Ω) := |z|L1(Ω) + Var(z; Ω) for any z ∈ BV (Ω).

Also, the space BV (Ω) is continuously embedded into L∞(Ω) and compactly embedded
into L1(Ω). Additionally, with regard to one-dimensional BV-functions, the following
properties are fundamental (cf. [1, Chapter 3]).
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(BV1) For any z ∈ BV (Ω), there exists a fine representation z̄ : Ω→ R, such that:

(i) z̄ is described by a difference of two monotone functions, hence z̄ admits the
right-hand limits z̄(x+) at all x ∈ [0, 1), and the left-hand limits z̄(x−) at
all x ∈ (0, 1];

(ii) z̄(0) = z̄(0+), z̄(1) = z̄(1−), and z̄ is continuous except on an at most
countable set Az :=

{
y ∈ Ω |Dz|({y}) 6= 0

}
;

(iii) z̄ is differentiable except on a zero-set Sz with respect to L1, hence the
derivative z̄x(x) (approximate differential) exists for all x ∈ Ω \ Sz;

(iv) the total variation Var(z; Ω) of z coincides with the following quantity

pVar(z̄; Ω) := sup

{
n∑
i=1

|z̄(yi)− z̄(yi−1)| n ∈N and
0 = y0 < y1 < · · · < yn = 1

}
,

called the pointwise variation of z̄.

(BV2) For the total variation measure |Dz| of any z ∈ BV (Ω), let us denote by |Dza|
and |Dzs|, respectively, the absolutely continuous part and the singular part of
|Dz|, with respect to L1. Then:

|Dza|(B) =
∫
B

|z̄x| dx and |Dzs|(B) =
∑

x∈Az∩B
|z̄(x+)− z̄(x−)|+ |Dzc|(B)

for any B ∈ B(Ω), where |Dzc| is the so-called Cantor part of |Dz|, defined as:

|Dzc|(B) := |Dzs|(B ∩ (Sz \Az)) for any B ∈ B(Ω).

Now, a BV-function z is called a function of special bounded variation, or simply
SBV-function, if |Dzc| ≡ 0 in B(Ω).

On the basis of the above properties, the representation of the approximating total
variation Varε(z; Ω), for every 0 < ε < 1 and z ∈ L1(Ω), is characterized as follows (cf.
[1, Chapter 5]).

(BV3) For any 0 < ε < 1, the functional z ∈ L1(Ω) 7→ Varε(z; Ω) is proper, l.s.c. and
convex in L1(Ω), and the effective domain of this convex functional coincides with
the space BV (Ω).

(BV4) For any z ∈ BV (Ω), there exists a unique Radon measure
√
ε2 + |Dz|2 such that

Varε(z; Ω) =
√
ε2 + |Dz|2(Ω), and∫

B

√
ε2 + |Dz|2 =

∫
B

√
ε2 + z̄2

x dx+
∫
B

|Dzs| for any B ∈ B(Ω).

Remark 1. In general, BV-functions can be defined on any open interval in a manner
similar to (7). Then, analogous properties to (BV1)-(BV4) are also observed for any BV-
function defined on any open interval. Especially, in the light of (BV1), we subsequently
identify any BV-function with its fine representation.

Next, for arbitrary 0 < ε < 1 and arbitrary constants a, b ∈ R, let us denote by
(CP ; a, b)ε the following Cauchy problem for a second order ordinary differential equation:
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(CP ; a, b)ε


−κ
(

γx(x)√
ε2 + γx(x)2

)
x

= γ(x) + θ∗, x ∈ R,

γ(0) = a, γx(0) = b,

which will be an important key in the structural analysis for solutions of approximating
problems. With regard to this Cauchy problem, it is not so difficult to see the following
properties.

Proposition 1 (Key properties for (CP ; a, b)ε). Let us fix any 0 < ε < 1. Then, the
following three statements hold.

(I) For all a, b ∈ R, there exists a certain open interval I(a,b) ⊂ R such that 0 ∈ I(a,b)

and the Cauchy problem (CP ; a, b)ε admits a unique solution γ ∈ C2(I(a,b)) on
I(a,b). Furthermore, if γ + θ∗ > 0 (resp. γ + θ∗ < 0) in I(a,b), then the solution γ

is strictly concave (resp. strictly convex) in I(a,b).
(II) If a+ θ∗ = 0 and b 6= 0, then there exists a unique constant λ(b)

ε > 0 fulfilling:

(i) λ
(b)
ε >

√
κ/(2ε) and the open interval (−λ(b)

ε , λ
(b)
ε ) can be taken as the existence

domain I(−θ∗,b) as in the assertion (I);
(ii) for the solution γ of (CP ;−θ∗, b)ε, the translation γ + θ∗ is an odd function

on (−λ(b)
ε , λ

(b)
ε ), |γ(λ(b)

ε −) + θ∗| = |γ(−λ(b)
ε +) + θ∗| <

√
2κε, |γx(λ(b)

ε −)| =
|γx(−λ(b)

ε +)| = 0 and |γ + θ∗|L1(0,λ
(b)
ε )

< κ.

(III) If |a+ θ∗| ≥
√

2κε and b = 0, then there exists a unique constant µ(a)
ε > 0 fulfilling:

(iii) µ
(a)
ε < 2κ/|a+θ∗| and the open interval (−µ(a)

ε , µ
(a)
ε ) can be taken as the existence

domain I(a,0) as in the assertion (I);
(iv) for the solution γ of (CP ; a, 0)ε, the translation γ+ θ∗ is an even function with no

sign-change on (−µ(a)
ε , µ

(a)
ε ), |γ(µ(a)

ε −)+θ∗|= |γ(−µ(a)
ε +)+θ∗|=

√
|a+θ∗|2− 2κε,

|γx(µ(a)
ε −)| = |γx(−µ(a)

ε +)| = +∞, and |γ + θ∗|L1(0,µ
(a)
ε )

= κ;
(v) if 0 < ε0 < 1 and |a0 + θ∗| >

√
2κε0, then

• a function a ∈ R \ [−θ∗ −
√

2κε0,−θ∗ +
√

2κε0] 7→ µ
(a)
ε0 is continuous

and strictly decreasing (resp. strictly increasing) in (−θ∗+
√

2κε0,+∞)
(resp. in (−∞,−θ∗ −

√
2κε0));

• a function ε ∈ (0, ε0) 7→ µ
(a0)
ε is continuous and strictly increasing,

and µ(a0)
ε ↘ κ/|a0 + θ∗| as ε↘ 0.

Proof. Assertions (I)-(III) are checked by applying the Cauchy-Lipschitz theorem to the
equivalent vectorial formula to (CP ; a, b)ε (a, b ∈ R):

d

dx

[
γ

ζ

]
=

[
ζ

− 1
κε2

(γ + θ∗)
√
ε2 + ζ2

3

]
in I(a,b), subject to

[
γ(0)
ζ(0)

]
=
[
a

b

]
,
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and the following equalities:

− κ γx(t)√
ε2 + γx(t)2

+ κ
γx(s)√

ε2 + γx(s)2
=
∫ t

s

(γ + θ∗) dx,

κε2√
ε2 + γx(t)2

− κε2√
ε2 + γx(s)2

=
1
2
|γ(t) + θ∗|2 −

1
2
|γ(s) + θ∗|2,(8)

for all t, s ∈ I(a,b) with t ≥ s, which are directly derived from the differential equation in
(CP ; a, b)ε. Incidentally, the item (v) of (III) is a direct consequence of the following key
equality:

µ(a)
ε = κ

∫ 1

0

1− ξ√
ξ(2− ξ)

· 1√
|a+ θ∗|2 − 2κεξ

dξ,

which is obtained by using (8) under s = 0 and standard techniques of the integration
by substitution.

In the rest, we set:

0 < κ < κ∗ :=
1− |θ∗|

4
and 0 < ε < εκ :=

κ

2
, (9)

and for any 0 < ε < εκ, any a ∈ R with |a+ θ∗| ≥
√

2κε and any ` ≥ µ(a)
ε , we denote by

γ
(a)
ε a C1-function on (−`, `), defined as:

γ(a)
ε (x; `) :=


γ(x− (`− µ(a)

ε )), if `− µ(a)
ε < x < `,

γ(0), if −`+ µ
(a)
ε ≤ x ≤ `− µ(a)

ε ,
γ(x+ (`− µ(a)

ε )), if −` < x < −`+ µ
(a)
ε ,

(10)

with the use of the solution γ ∈ C2(−µ(a)
ε , µ

(a)
ε ) of (CP ; a, 0)ε.

3. Statement of the main results. Let us start by referring to the result reported in
[3], which is concerned with the structure of solutions of the limiting problem (P )0.

Proposition 2 (cf. [3, Theorem 1.1]). Let us denote by S(0) the class of all solutions
of the problem (P )0. Then, in the space L2(Ω), the class S(0) coincides with the union⋃+∞
n=0 Sn(0) of functional classes Sn(0) (n = 0, 1, 2, . . .), defined as follows.

(S0)0 S0(0) := {−1,−θ∗, 1}.
(S1)0 For any n ∈N , z ∈ Sn(0) if and only if z is expressed by:

z(x) =
n∑
k=0

(ck + θ∗)χJk
(x)− θ∗ for a.e. x ∈ Ω,

with constants ck ∈ [−1, 1] \ {−θ∗} and open intervals Jk = (xRk , x
L
k+1) (k =

0, 1, . . . , n) determined by partition points:

xL0 = xR0 < 0 < xL1 ≤ xR1 < · · · < xLn ≤ xRn < 1 < xLn+1 = xRn+1

such that (see also Fig.1):

(s0)0 xL0 = xR0 = −xL1 and xLn+1 = xRn+1 = 2− xRn ;

(s1)0 (ck + θ∗)(ck−1 + θ∗) < 0, k = 1, . . . , n;

(s2)0 |ck + θ∗|L1(Jk)
{
≥ 2κ, if |ck| = 1,
= 2κ, if |ck| < 1,

k = 0, 1, . . . , n.
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Fig. 1

Remark 2. In the light of the conditions (9) and (s2)0 of (S1)0 of Proposition 2, there
exists a certain maximal number n(0) ∈ N such that Sn(0) 6= ∅, if 0 ≤ n ≤ n(0), and
otherwise empty.

In this paper, two theorems will be stated as the main results. The first theorem is
concerned with the structure of solutions of (P )ε for 0 < ε < εκ.

Theorem 1 (Structural theorem for approximating solutions). Let us assume 0 < ε < εκ,
and let us denote by S(ε) the class of all solutions of the approximating problem (P )ε.
Then, in the space L2(Ω), the class S(ε) coincides with the union

⋃+∞
n=0 Sn(ε) of functional

classes Sn(ε) (n = 0, 1, 2, · · · ) defined as follows.

(S0)ε S0(ε) := {−1,−θ∗, 1}.
(S1)ε For any n ∈N , z ∈ Sn(ε) if and only if z is expressed by:

z(x) =
n∑
k=0

(γε,k(x) + θ∗)χJε,k
(x)− θ∗ for a.e. x ∈ Ω,

with functions γε,k ∈ BV (Ω), open intervals Jε,k := (xε,k, xε,k+1) (k = 0, 1, . . . , n)
determined by partition points:

xε,0 < 0 < xε,1 < · · · < xε,n < 1 < xε,n+1 (11)

such that (see also Fig. 2):

Fig. 2
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(s0)ε xε,0 = −xε,1 and xε,n+1 = 2− xε,n;

(s1)ε for every k = 0, 1, . . . , n, γε,k ≡ −θ∗ on Ω \ Jε,k, and there exists a unique
triplet [x̄ε,k, `ε,k, cε,k] of a spatial point x̄ε,k ∈ Ω and constants `ε,k > 0 and
cε,k ∈ [−1, 1] \ {−θ∗}, satisfying x̄ε,k =

xε,k+1 + xε,k
2

, `ε,k =
xε,k+1 − xε,k

2
,

γε,k(x) = γ
(cε,k)
ε (x− x̄ε,k; `ε,k) for any x ∈ Jε,k,

where γ(·)
ε (·; ·) is the C1-function given in (10);

(s2)ε (cε,k + θ∗)(cε,k−1 + θ∗) < 0, k = 1, . . . , n;

(s3)ε |γε,k + θ∗|L1(Jε,k)

{
≥ 2κ, if |cε,k| = 1,
= 2κ, if |cε,k| < 1,

k = 0, 1, . . . , n.

Remark 3. A similar situation as in Remark 2 is also observed in the above Theorem 1.
Namely, when 0 < ε < εκ, the properties reported in (III) of Proposition 1 imply the
existence of the maximal number n(ε) ∈ N , such that Sn(ε) 6= ∅, if 0 ≤ n ≤ n(ε), and
otherwise empty. Especially, from (v) of (III) of Proposition 1, we further see n(ε) ≤ n(0),
where n(0) is the maximal number mentioned in Remark 2.

On account of Proposition 2 and Theorem 1, we can naturally identify the notation
S(ε) (0 ≤ ε < εκ) with the following set-valued mapping:

ε ∈ [0, εκ) 7→ S(ε) ⊂ X∗ := {z ∈ D∗ | |Dz|(Ω) ≤ 2n(0)} (12)

from the interval [0, εκ) into the compact subset X∗ in L2(Ω).
Now, the second theorem is concerned with the limiting observation of the above

set-valued mapping S = S(ε) as ε↘ 0.

Theorem 2 (Limiting observation as ε↘ 0). For the set-valued mapping, given in (12),
the limit-supremum:

lim
ε↘0
S(ε) := {z ∈ L2(Ω) | lim

ε↘0
distL2(Ω)(z,S(ε)) = 0}

and the limit-infimum:
lim
ε↘0
S(ε) := {z ∈ L2(Ω) | lim

ε↘0
distL2(Ω)(z,S(ε)) = 0};

are nonempty and coincide with each other, namely the limit S∗(0) := limε↘0 S(ε) ex-
ists. Moreover, this limit is the union

⋃n(0)
n=0 S∗,n(0) of functional classes S∗,n(0) (n =

0, 1, . . . , n(0)), defined as S∗,0(0) := {−1,−θ∗, 1}, and:

S∗,n(0) :=

z ∈ Sn(0)
◦ xLk = xRk for k = 1, . . . , n,
◦ |ck0 | < 1 or |ck0 +θ∗|L1(Jk0) > 2κ
for some 0 ≤ k0 ≤ n.

 ; (13)

for n = 1, . . . , n(0).

Remark 4. As another consequence of Theorem 2, we see that limε↘0 S(ε) ⊂=/ S(0).

Therefore, by virtue of (12) and [2, Section 1.4], it is possible to conclude that the set-
valued mapping S = S(ε) is upper semi-continuous, but not lower semi-continuous, at
ε = 0.
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Remark 5. In the case that the singular diffusion as in (1) is regularized by p-Laplacians,
a similar conclusion as in Theorem 2 was reported in [5, Theorem 4.1]. According to the
result, any approximation limit by p-Laplacians is required to satisfy the symmetry with
respect to −θ∗, besides conditions as in (13). In view of this, the approximation range in
this paper is absolutely wider than that by p-Laplacians, although either approximation
method can cover only restricted part of the solutions of the limiting problem (P )0.

4. Proof of Theorem 1. We immediately check that w is a constant solution of (P )ε
if and only if w ∈ S0(ε), by the method adopted in [6, Proposition 4.1]. In view of this,
we deal with only nonconstant functions.

The assertion is reduced to showing that S(ε) \ S0(ε) =
⋃n(ε)
n=1 Sn(ε). We divide the

argument into two subsections, to prove inclusions S(ε) \ S0(ε) ⊂
⋃n(ε)
n=1 Sn(ε) and S(ε) \

S0(ε) ⊃
⋃n(ε)
n=1 Sn(ε), respectively.

4.1. Proof of S(ε) \ S0(ε) ⊂
⋃n(ε)
n=1 Sn(ε). Let us fix arbitrary 0 < ε < εκ, and take

any nonconstant solution w ∈ S(ε) \ S0(ε) of the problem (P )ε. Then, the claim in this
subsection is proved through some steps, stated in the following lemmas and remarks.

Lemma 1 (Step 1). Let us set:

Kε :=

 x ∈ Ω
◦ (w(x+)+θ∗)(w(x−)+θ∗) ≤ 0, if x ∈ Ω,
◦ w(x+)+θ∗ = 0 (resp. w(x−)+θ∗ = 0),
if x = 0 ∈ ∂Ω (resp. x = 1 ∈ ∂Ω)

 .

Then, Kε is closed subset in Ω. Hence, Ω \Kε is a disjoint union of at most countably
many relatively open intervals Iε,k (k = 0, 1, 2, . . .) in Ω.

Lemma 2 (Step 2). For every k = 0, 1, 2, . . ., w + θ∗ has no sign-change in Iε,k, namely
w + θ∗ > 0 in Iε,k or w + θ∗ < 0 in Iε,k.

Lemma 3 (Step 3). For every k = 0, 1, 2, . . .:

(step 3-1) w is continuous in Iε,k;
(step 3-2) w is concave (resp. convex) in Iε,k, if w + θ∗ > 0 (resp. w + θ∗ < 0) in Iε,k.

Remark 6. The above Lemma 3 implies that w is a locally Lipschitz function (SBV-
function) on the interior int(Iε,k) of Iε,k for all k = 0, 1, 2, . . ..

Lemma 4 (Step 4). For every k = 0, 1, 2, . . ., if |w| < 1 in an open interval I ⊂⊂ int(Iε,k),
then w ∈ C2(I) and w solves the following second order ordinary differential equation:

−κ
(
fε(wx)

)
x

= w + θ∗; (14)

in I, where fε : R→ (−1, 1) is a smooth and strictly monotone function, defined as:

fε(ω) :=
ω√

ε2 + ω2
for all ω ∈ R. (15)

Lemma 5 (Step 5). Let us set aε,k := inf Iε,k and bε,k := sup Iε,k, for k = 0, 1, 2, . . . .
Then, for every k = 0, 1, 2, . . .:

(step 5-1) |w(aε,k+)| < 1 (resp. |w(bε,k−)| < 1), if aε,k ∈ Ω (resp. bε,k ∈ Ω);
(step 5-2) |wx(aε,k+)| = +∞ (resp. |wx(bε,k−)| = +∞), if aε,k ∈ Ω (resp. bε,k ∈ Ω);
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(step 5-3) wx(aε,k+) = 0 (resp. wx(bε,k−) = 0), if aε,k = 0 ∈ ∂Ω (resp. bε,k = 1 ∈ ∂Ω);
(step 5-4) w ∈ C1(Iε,k) and there exists a point ξε,k ∈ Iε,k such that wx(ξε,k) = 0.

Remark 7. In view of (III) of Proposition 1 and Lemmas 4-5, it will be seen that:

L1(Iε,k) ≥ min{µ(1)
ε , µ(−1)

ε } ≥ κ

1 + |θ∗|
;

and hence the closed (compact) set Kε ⊂ Ω will be expressed as a disjoint union of at
most a finite number of compact intervals. Furthermore, for any index k,

(7a) w(aε,k+) + θ∗ 6= 0 or |wx(aε,k+)| = +∞;
(7b) w(bε,k−) + θ∗ 6= 0 or |wx(bε,k−)| = +∞.

In fact, if one of (7a) and (7b) does not hold, then we find a certain index k1 and a
finite constant b1 ∈ R such that b1 = wx(aε,k1+) or b1 = wx(bε,k1−). In either event, the
following contradictory inequality:

L1(Iε,k1) ≥ λ(b1)
ε >

√
κ

2ε
>

√
κ

2εκ
=

√
κ

2
· 2
κ

= 1 = L1(Ω).

will be derived from (9), (II) of Proposition 1 and (step 5-4) of Lemma 5.

Lemma 6 (Step 6). Kε is a finite set, and Kε ∩ ∂Ω = ∅.

Remark 8. On account of Preposition 1, Lemmas 4-6 and Remark 7, the setting of these
intervals can be arranged as:

Iε,k :=


[aε,0, bε,0) (= [0, aε,1)), if k = 0,
(aε,k, bε,k) (= (bε,k−1, aε,k+1)), if 0 < k < n,
(aε,n, bε,n] (= (bε,n−1, 1]), if k = n,

(16)

by using a certain finite number n ∈N with n ≤ n(ε). Furthermore, putting:

cε,k := w(ξε,k) for k = 0, 1, . . . , n, (17)

Lemmas 4-5 enable us to conclude that:

w(x) =


γ

(cε,0)
ε (x; bε,0), if x ∈ Iε,0,

γ
(cε,k)
ε

(
x− bε,k + aε,k

2
;
bε,k − aε,k

2

)
, if x ∈ Iε,k and 0 < k < n,

γ
(cε,n)
ε (x− 1; 1− aε,n), if x ∈ Iε,n.

Lemma 7 (Step 7). Under the reorganized settings as in (16)-(17), (cε,k + θ∗)(cε,k−1 +
θ∗) < 0 for k = 1, . . . , n.

As a consequence of all of the above facts, the nonconstant solution w will be supposed
to belong to the class Sn(ε) for some finite number n ∈ N with n ≤ n(ε). Then, the
partition points, as in (11), will be settled as:

xε,k :=


−aε,1 = −bε,0 for k = 0,
aε,k = bε,k−1 for 1 ≤ k ≤ n,
2− aε,n = 2− bε,n−1 for k = n+ 1.

Now, the rest of this subsection will be devoted to the proofs of Lemmas 1-7.
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Proofs of Lemmas 1-2. We refer to [3], because Lemmas 1 and 2 are proved, respectively,
just by applying the same demonstration techniques adopted in [3, Lemmas 2.2 and 2.3]
with slight modifications.

Proof of Lemma 3. Claims (step 3-1)-(step 3-2) are proved by means of contradiction
arguments. For simplicity, let us consider only the case that w + θ∗ > 0 in Iε,k (k ∈
N ∪ {0}), because the other case is similarly obtained.

When we prove (step 3-1), we assume the existence of a discontinuity point x◦1 ∈ Iε,k
(actually x◦1 ∈ int(Iε,k)) of w, and define a test function w◦1 ∈ D∗ for the variational
inequality (6), by putting:

w◦1(x) :=



min{w(x) + (w(x◦1+)− w(x◦1−)), 1},
if x ∈ Iε,k, w(x◦1+) > w(x◦1−) and x < x◦1,

min{w(x)− (w(x◦1+)− w(x◦1−)), 1},
if x ∈ Iε,k, w(x◦1+) < w(x◦1−) and x > x◦1,

w(x), otherwise.

Then, by using (BV1)-(BV4), Remark 1, and approximation arguments based on (5), it
is not difficult to check that:

Vε(w◦1) ≤ Vε(w) and −
∫

Ω

(w + θ∗)(w◦1 − w) dx < 0.

This contradicts (6).
Next, to prove (step 3-2), we temporarily negate the assumption, and take a maximal

open interval (a◦1, b
◦
1) ⊂ Iε,k (k ∈N ∪ {0}) such that:

w(τa◦1 + (1− τ)b◦1) < τw(a◦1) + (1− τ)w(b◦1) for all 0 < τ < 1,

by continuity of w in Iε,k. Here, let us define a function w◦2 ∈ D∗, by putting:

w◦2(x) :=


τw(a◦1) + (1− τ)w(b◦1),

if x = τa◦1 +(1− τ)b◦1 ∈ (a◦1, b
◦
1) with τ = (b◦1−x)/(b◦1−a◦1);

w(x), otherwise.

Then, noting that the 2-dimensional segment:

L◦ε :=
{
τ

(
a◦1,

1
ε
w(a◦1)

)
+ (1− τ)

(
b◦1,

1
ε
w(b◦1)

)
0 ≤ τ ≤ 1

}
⊂ R2

realizes the shortest route between two points (a◦1, w(a◦1)/ε), (b◦1, w(b◦1)/ε) ∈ R2, it can
be calculated that:

Vε(w◦2)− Vε(w) =
∫

(a◦1 ,b
◦
1)

√
ε2 + |Dw◦2 |2 −

∫
(a◦1 ,b

◦
1)

√
ε2 + |Dw|2(18)

= ε

(∫ b◦1

a◦1

√
1 +

(
1
ε
w◦2

)2

x

dx−
∫

(a◦1 ,b
◦
1)

√
1 +

∣∣∣∣D(1
ε
w

)∣∣∣∣2) ≤ 0,

by approximation arguments for w. Also, we easily have:

−
∫

Ω

(w + θ∗)(w◦2 − w) dx < 0. (19)

Inequalities (18)-(19) contradict (6).
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Proof of Lemma 4. This lemma is concluded by applying the usual variational method.
In fact, due to the Lipschitz continuity of w in I ⊂⊂ int(Iε,k) (k ∈ N ∪ {0}), we can
calculate the first variation of the variational inequality (6), to obtain:

−κ [fε(wx)]′ = w + θ∗ in D′(I); (20)

where “[ · ]′” denotes the distributional differential, and fε is the smooth and strictly
increasing function given in (15).

Equality (20) implies w ∈ W 2,∞(I), since wx ∈ L∞(I) and fε has a smooth inverse
f−1
ε on (−1, 1). Furthermore, combining (20), the smoothness of fε and the continuity of
wx on I, we conclude that w ∈ C2(I).

Proof of Lemma 5. Claims (step 5-1)-(step 5-4) are proved by means of contradiction
arguments. Then, in either claim, the key to derive a contradiction is in the point that
the graph of the extension:

wex(x) :=

{
w(x), if x ∈ Ω = (0, 1),

w(0+) (resp. w(1−)), if x ≤ 0 (resp. x ≥ 1),
for any x ∈ R,

of w, including the vertical segmental parts by jumps, does not have C1-regularity
(roughly, the graph has an angular shape) at some point (x◦2, w(x◦2)) ∈ Ω× [−1, 1].

Let us demonstrate the above rough sketch, by taking the proof of (step 5-1) as an
analogy. To this end, it is enough to consider only the case of w(bε,k−) = 1, since other
cases are similarly proved. In this case, it is supposed that the graph of wex has an angular
shape at (bε,k, w(bε,k−)) ∈ Ω× [−1, 1]. Also, due to Lemma 4 and the concavity of w, it
is not so difficult to check that

wx(bε,k−) ≥ 0 and w ∈ C2[bε,k − δ◦1 , bε,k] for some small δ◦1 > 0. (21)

Here, for any 0 < δ < δ◦1 , let us define a function w◦1,δ, by putting:

w◦1,δ(x) :=


τw(bε,k − δ) + (1− τ)

(
w(bε,k − δ)− δ

)
,

if x = τ(bε,k − δ) + (1− τ)bε,k ∈ Iε,k with τ = (bε,k − x)/δ,

w(x), otherwise, for any x ∈ Ω.

Then, taking account of (BV4), (21) and the fact that w(bε,k−) = 1 > −θ∗ ≥ w(bε,k+),
we calculate that:

Vε(w◦1,δ)− Vε(w) ≤ ε
[
−δ
ε
−

√
δ2 +

(
δ

ε
wx(bε,k−)

)2

+

√
δ2 +

(
δ

ε

)2

+
(√

δ2 +
(
δ

ε
wx(bε,k−)

)2

−
∫ bε,k

bε,k−δ

√
1 +

(
1
ε
w

)2

x

dx

)]
≤ − δ(1 + ε−

√
1 + ε2) +O(δ2);

and

0 ≤ −
∫

Ω

(w + θ∗)(w◦1,δ − w) dx ≤ 2
∫ bε,k

bε,k−δ
(δ + δ|wx(bε,k − δ◦1)|) dx = O(δ2), as δ ↘ 0.
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Hence,

κVε(w◦1,δ)−
∫

Ω

(w + θ∗)w◦1,δ dx ≤ κVε(w)−
∫

Ω

(w + θ∗)w dx

−δ(1 + ε−
√

1 + ε2) +O(δ2), as δ ↘ 0.

This contradicts (6).
The demonstration methods of the remaining (step 5-2)-(step 5-4) are analogous to

that used in the previous lemma.

Proof of Lemma 6. In the light of Remark 7, our goal is to show that y◦1 = y◦2 /∈ ∂Ω =
{0, 1}, for any connected component [y◦1 , y

◦
2 ] of Kε.

Here, if y◦1 = 0 ∈ ∂Ω (resp. y◦2 = 1 ∈ ∂Ω), then a contradiction is derived from the
following inequalities:

Vε(w◦3) < Vε(w) and −
∫

Ω

(w + θ∗)(w◦3 − w) dx < 0,

for a test function w◦3 ∈ D∗ for (6), given as:

w◦3(x) :=

{
w(ξε,k◦1 ), if 0 < x < ξε,k◦1 (resp. ξε,k◦1 < x < 1),

w(x), otherwise,

where ξε,k◦0 is the zero point of wx in Iε,k◦1 , found in (step 5-4) of Lemma 5. Thus, [y◦1 , y
◦
2 ]∩

∂Ω = ∅, equivalently [y◦1 , y
◦
2 ] ⊂ Ω.

In view of this, let us next assume that 0 < y◦1 < y◦2 < 1, and let us take a neighboring
interval Iε,k◦1 of the interval [y◦1 , y

◦
2 ] with an index k◦1 ∈N ∪ {0}. Then, we may say that

x < y◦1 for any x ∈ Iε,k◦1 , since the other case is similarly obtained. Under this situation,
a function w◦4 ∈ D∗, defined as:

w◦4(x) :=


w(x− (y◦2 − y◦1)), if ξε,k◦1 + (y◦2 − y◦1) ≤ x < y◦2 ,

w(ξε,k◦1 ), if ξε,k◦1 ≤ x < ξε,k◦1 + (y◦2 − y◦1),

w(x), otherwise,

can be taken as a test function for (6), because it is actually seen that:

Vε(w◦4) ≤ Vε(w) and −
∫

Ω

(w + θ∗)(w◦4 − w) dx < 0.

Proof of Lemma 7. Under the settings as in (16)-(17), let us assume that (cε,k◦2 +
θ∗)(cε,k◦2−1 + θ∗) > 0 for some 1 ≤ k◦2 ≤ n, to show a contradiction. Then, it is enough to
consider only the case that 0 < cε,k◦2−1 +θ∗ < cε,k◦2 +θ∗, because proofs of other cases are
essentially the same. In this case, we reach a contradiction with the use of a test function
w◦5 for (6), given as:

w◦5(x) :=

{
ck◦2−1, if ξε,k◦2−1 < x < bε,k◦2−1,

w(x), otherwise,

which satisfies the following contradictory inequalities:

Vε(w◦5) < Vε(w) and −
∫

Ω

(w + θ∗)(w◦5 − w) dx < 0.
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4.2. Proof of S(ε) \ S0(ε) ⊃
⋃n(ε)
n=1 Sn(ε). Let us fix any 0 < ε < εκ, and let us take any

w ∈
⋃n(ε)
n=1 Sn(ε). Then, we may assume that w ∈ S1(ε), −θ∗ < cε,0 < 1, cε,1 = −1 and

dε,1 := `ε,1 − µ(−1)
ε > 0, since the proofs for other situations are analogous. Here, let us

put:

Ω0 := (0, 1− dε,1) and Ω1 := (1− dε,1, 1).

Then, taking account of (BV4), the governing ordinary differential equations (14) in both
intervals (0, xε,1) and (xε,1, 1−dε,1), and the associated boundary conditions, we calculate
that:∫

Ω0

(w + θ∗)(ϕ− w) dx = lim
δ↘0

∫
Ω0\[xε,1−δ,xε,1+δ]

(w + θ∗)(ϕ− w) dx

= κ lim
δ↘0

(
[−fε(wx(x))(ϕ− w)(x)]xε,1−δ

0 + [−fε(wx(x))(ϕ− w)(x)]1−dε,1
xε,1+δ

+
∫

Ω0\[xε,1−δ,xε,1+δ]

fε(wx)(ϕ− w)x dx
)

= κ(w(xε,1+)− w(xε,1−)) +
∫

Ω0\{xε,1}
fε(wx)(ϕ− w)x dx

≤ κ
√
ε2 + |Dϕ|2(Ω0)− κ

√
ε2 + |Dw|2(Ω0), for any ϕ ∈ C1(Ω0)

Also, since w ≡ −1 in Ω1,∫
Ω1

(w + θ∗)(ϕ− w) dx ≤ 0 ≤ κ
√
ε2 + |Dϕ|2(Ω1)− κ

√
ε2 + |Dw|2(Ω1),

for any ϕ ∈ C1(Ω1). Therefore, using the standard approximation argument, and noting
the fact that w is a SBV-function, it is calculated that:∫

Ω

(w + θ∗)(z − w) dx =
1∑
k=0

∫
Ωk

(w + θ∗)(z − w) dx

≤
1∑
k=0

(
κ
√
ε2 + |Dz|2(Ωk)− κ

√
ε2 + |Dw|2(Ωk)

)
≤ κVε(z)− κVε(w),

for all z ∈ D∗. Thus, w is a nonconstant solution of (P )ε, namely w ∈ S(ε) \ S0(ε).

5. Proof of Theorem 2. By the definitions of the limit-supremum limε↘0 S(ε) and
the limit-infimum limε↘0 S(ε), the assertion can be restated in the form of the following
inclusions:

lim
ε↘0
S(ε) ⊂ S∗(0) ⊂ lim

ε↘0
S(ε). (22)

Now, the proof is divided into two subsections, which are concerned with respective
inclusions as in (22).
5.1. Proof of limε↘0 S(ε) ⊂ S∗(0). This inclusion is proved by means of a contradiction
argument. So, let us assume that w∗ ∈ limε↘0 S(ε)\S∗(0). Then, by the definition of the
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limit-supremum, we can take sequences {εi} ⊂ (0, εκ) and {wi} ⊂ D∗, such that:
• wi ∈ S(εi) \ S∗(0) =

n(ε)⋃
n=1

Sn(εi), i = 1, 2, 3, . . .,

• εi ↘ 0, wi → w∗ in L2(Ω), and wi(x) → w∗(x) a.e.
x ∈ Ω, as i→ +∞.

(23)

Additionally, since n(ε) ≤ n(0) for 0 < ε < εκ, we may say that wi ∈ Sn(εi), i =
1, 2, 3, . . ., for a certain number 1 ≤ n ≤ n(0), by taking a subsequence if necessary.
Therefore, on account of conditions (s0)ε-(s3)ε as in Theorem 1 and conditions (s0)0-
(s2)0 as in Proposition 2, it is not difficult to verify that w∗ ∈ Sn(0). Also, from the
convergence as in (23), we further see that xLk = xRk for k = 1, . . . , n.

Hence, as the last possibility, the solution w∗ ∈ Sn(0) is supposed to satisfy that:

|ck| = 1 and |ck + θ∗|L1(Jk) = 2κ for all k = 0, 1, . . . , n.

But even in this case, the following contradictory inequality:

L1(Ω) =
n∑
k=0

L1(Jεi,k ∩ Ω) >
n∑
k=0

L1(Jk ∩ Ω) = L1(Ω), i = 1, 2, 3, . . . ,

will be seen from (III) of Proposition 1.

5.2. Proof of S∗(0) ⊂ limε↘0 S(ε). Let us take any w∗ ∈ S∗(0). Then, in the light of
the definition of the limit-infimum, all we have to do will be to construct a sequence
{wε | 0 < ε < εκ} ⊂ D∗ of approximating solutions wε, such that:

wε ∈ S(ε) for all 0 < ε < εκ, and wε → w∗ in L2(Ω) as ε↘ 0. (24)

The construction is as follows.
First, let us consider w∗ constant. Under this situation, we immediately find the

approximating sequence by setting wε ≡ w∗ in Ω for all 0 < ε < εκ, since:

S0(ε) = S0(0) = S∗,0(0) = {−1,−θ∗, 1} for all 0 < ε < εκ.

Secondly, let w∗ ∈ S∗,n(0) for some 1 ≤ n ≤ n(0), and let us take the index 1 ≤ k0 ≤ n
as in (13).

Under this situation, we can construct the required approximating sequence {wε | 0 <
ε < εκ} by the continuous dependence of the constant µ(a)

ε , mentioned in (v) of (III) of
Proposition 1. Here, we pick up the following two cases of w∗, to show the essence of the
construction methods.

Case A: n = 1, ck = (−1)k for k = 0, 1, and |c1 + θ∗|L1(J1) > 2κ (k0 = 1). In this case,
we find, for example, the following functions wε (0 < ε < εκ), given by:

wε(x) :=


(γ(c0)
ε (x; `A,ε) + θ∗)χ(0,`A,ε)(x)

+(γ(c1)
ε (x− 1; 1− `A,ε) + θ∗)χ(`A,ε,1)(x)− θ∗, if 0 < ε < εA,

−θ∗, if εA ≤ ε < εκ, for any x ∈ Ω,

as members of the approximating sequence, where γ(·)
ε (·; ·) is the C1-function given in (10),

0 < εA < εκ is a small constant taken to satisfy max{xL1 , µ
(1)
εA } + µ

(−1)
εA < 1 (= L1(Ω)),

and for any 0 < ε < εA, `A,ε is a positive constant given by `A,ε := max{xL1 , µ
(c0)
ε }. In
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fact, by using the properties as in (III) of Proposition 1, it is not difficult to check that
this sequence {wε | 0 < ε < εκ} fulfills the approximating property as in (24).

Case B: n = 1, −θ∗ < c0 < 1 and |c1 + θ∗|L1(J1) = 2κ (k0 = 0). In this case, the
constituent functions wε (0 < ε < εκ) are, for example, given as:

wε(x) :=


(γ(cB,ε)
ε (x; 1− µ(c1)

ε ) + θ∗)χ(0,1−µ(c1)
ε )

(x)

+(γ(c1)
ε (x− 1;µ(c1)

ε ) + θ∗)χ(1−µ(c1)
ε ,1)

(x)− θ∗, if 0 < ε < εB ,

−θ∗, if εB ≤ ε < εκ, for any x ∈ Ω.

Here, 0 < εB < εκ is a small constant taken to satisfy µ
(1)
εB + µ

(c1)
εB < 1, and for any

0 < ε < εB , c0 < cB,ε < 1 is a constant taken to satisfy µ
(cB,ε)
ε + µ

(c1)
ε = 1. Then, from

(v) of (III) of Proposition 1, it will be seen that the constants εB and cB,ε (0 < ε < εB)
are well-defined, and moreover, the sequence {wε | 0 < ε < εκ} fulfills (24).

In other cases, we will find the approximating sequence {wε | 0 < ε < εκ} analo-
gously.
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