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Abstract. This paper contains some results concerning self-similar radial solutions for some
system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions
with small mass. Our approach is based on a fixed point analysis for an appropriate integral
operator acting on a suitably defined convex subset of some cone in the space of bounded and
continuous functions.

1. Introduction. In this paper we study nonlocal, singular boundary value problem

Φ′′(y) +
1
4

Φ′(y) +
1
2y

Φ′(y)e−τy/4
(∫ y

0

eτz/4Φ′(z) dz
)

= 0,(1)

Φ(0) = 0, Φ(∞) =
M

2π
,

arising from the following parabolic system modelling chemotaxis

∂u

∂t
= ∇ · (∇u− u∇v), x ∈ R2, t > 0,(2)

τ
∂v

∂t
= ∆v + u, x ∈ R2, t > 0.(3)

as a self-similar profiles considered e.g. by Yūki Naito in [8] with τ = 1. The author proves
therein that for τ = 1 and total mass 0 ≤ M =

∫
R2 u small enough the solutions behave

asymptotically like self-similar solutions of that system. More specifically, by self-similar
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solutions of (2)–(3) we mean the solutions obtained by the change of variables

u =
1
t
W

(
|x|√
t

)
, v = Z

(
|x|√
t

)
,

Φ(y) =
1
2

∫ y

0

W (
√
t)dt, Ψ(y) =

1
2

∫ y

0

Z(
√
t)dt,

which allows us to reduce the problem (2)–(3) to (1). These special solutions can play an
important role as asymptotic self-similar profiles for the original problem (2)–(3) as was
stressed on before.

In this paper we shall consider a more general system with the parameter τ > 0 as
in [4], [10] or in a survey article [9]. The case of the parabolic-elliptic system with τ = 0
has been considered in [3] and [5].

The authors of [5] proved asymptotically self-similar behavior of solutions of (2)–(3)
with τ = 0 using entropy methods. It was proved in [1], [3] that given 0 ≤ M < 8π
self-similar solutions exist and they are unique. For M > 8π there are no solutions of (1).

The related models have been considered e.g. in [6], [12] and [13].
For the parabolic system (2)–(3) the determination of the optimal range ofM leading

to the existence of self-similar solutions for a given τ and their uniqueness with a given
M seem to be an open problem. They are determined by the equation (1). The results
in this direction can be found in [10], where preliminary estimates from [2] for τ = 1 had
been greatly improved. In particular, the authors of [10] proved that

• if 0 < τ ≤ 1/2, then solutions of (1) exist exactly for M ∈ [0, 8π),
• if τ ∈ (1/2, 1], then a necessary condition for the existence of solutions of (1) reads
M < 4π3/3,

• if τ > 1, then a necessary condition for the existence of solutions of (1) reads
M < τ24π3/3.

Then, the last result was improved in [4] to

† if τ > 1, then a necessary condition for the existence of solutions of (1) reads
M
2π < min

{
τ 2

3π
2, 4(τ + 1)

}
.

The last three properties provide only a priori bounds for the parameters and thus
the existence in the full range of parameters is not guaranteed. As for the existence
result it was shown in [10, Th. 2] that self-similar solutions form a one-parameter family
parametrized by τ > 0, and their L1 norms tend to 8π as the parameter goes to ∞.

Thus, the uniqueness does not hold if there is a self-similar solution for M > 8π.
It should be noted that the solutions of (1) are smooth as a consequence of an anal-

ysis of the self-similar solutions of the original system (2)–(3) without radial symmetry
assumptions. In fact, each self-similar solution of (2)–(3) is radial, [10, Th. 3]. A different
construction of self-similar solutions of (2)–(3) was given in [2].

The results in [8, Th. 3] allowed the author to obtain the uniqueness in a certain
class of functions of sufficiently small self-similar solutions. The proof involved the use of
perturbation arguments via the contraction mapping theorem.
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The problem of the uniqueness of self-similar solutions mentioned in [8, Remark 1 (i)]
is important. If this was true it would permit one to prove a stronger version of Theorem
3 in [8], i.e. the asymptotics of any global in time solution u is described by that of the
unique self-similar solution corresponding to the same mass M as that for u.

Whether this property holds for (1) is an open question as was stated in [4]. Some
numerical experiments carried out by J. Dolbeault for τ > 0.9 suggest that it is not the
case. Moreover, it should be noted that for some nonlinear parabolic equations there are
multiple self-similar solutions, see e.g. [7].

In view of the previous considerations, the uniqueness would not hold if there was a
self-similar solution for M > 8π.

The problem (1) with the boundary conditions can be reduced to some integral equa-
tion. Indeed, it can be transformed into

(4) (Φ′(y)ey/4)′ +
1
2
ey/4T Φ′(y) = 0,

where the operator T is defined by

(5) T φ(y) =
1
y
φ(y)e−τy/4

∫ y

0

φ(z)eτz/4 dz.

Integrating (4) and multiplying by e−y/4 one obtains

(6) Φ′(y) = Φ′(0)e−y/4 − 1
2
ST Φ′(y),

where the linear operator S is defined as

(7) Sφ(y) = e−y/4
∫ y

0

φ(z)ez/4 dz.

Next, integrating (6) once again from 0 to∞ and using mass constraint
∫∞
0

Φ′(y) dy = M
2π

one can plug the value of Φ′(0) in (6) to get the following equation

(8) Φ′(y) =
(
M

8π
+

1
8

∫ ∞
0

ST Φ′(y) dy
)
e−y/4 − 1

2
ST Φ′(y).

Thus setting φ = Φ′ and defining the operator P by

(9) Pφ(y) =
(
M

8π
+

1
8

∫ ∞
0

ST φ(y) dy
)
e−y/4 − 1

2
ST φ(y),

the problem (1) can be reduced to looking for a fixed point of the operator P.
We announce the main result to be proven in the next section.

Theorem 1.1. If the mass parameter M is small enough then the operator P has a fixed
point and therefore (1) has a solution.

This theorem gives an alternative approach to the existence of self-similar solutions
problem, cf. [2] and [10], where for each τ > 0 and M ∈ (0, 8π) the existence of such
solutions has been shown. We also show that the positivity property requires in our
approach an assumption on M < 8π, cf. Lemma 2.1. Finally we prove in Lemma 2.2 that
solutions concentrated at 0 are not allowed.
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Notation.

• We denote by BC([0,∞)) the space of bounded and continuous functions defined
on the interval [0,∞) equipped with the sup norm |φ|∞ = supy≥0 |φ(y)|.

• BR = B(0, R) denotes the closed ball in the space BC([0,∞)).
• By the arrow ↘ we denote the monotonicity property of a nonincreasing function.
• We set m = M

2π .

2. Main results. First, we will state some properties of the operator P and the opera-
tors T ,S appearing in the definition of P. Namely, setting

m =
M

2π
,

we can list the following statements.

(A)
∫∞
0
Pφ(z) dz = m for any τ > 0 if only all the terms in (9) are well defined.

(B) Pφ(y)ey/4 ↘ , i.e. the function is nonincreasing, for any φ ≥ 0 and any τ > 0.
(C) For any positive φ such that φ(y)ey/4 ↘ we have

T φ(y) ≥ φ(y)2e(1−τ)y/4 for any τ ≥ 1,

T φ(y) ≥ φ(y)2 for any τ ≤ 1.

For τ > 1 a more accurate estimate is available, i.e.

T φ(y) ≥ 4
y(τ − 1)

φ(y)2(1− e(1−τ)y/4).

(D) For any positive φ such that φ(y)ey/4 ↘ we have

ST φ(y) ≥ φ(y)
∫ y

0

φ(z)e(1−τ)z/4 dz for any τ ≥ 1,

while

ST φ(y) ≥ φ(y)
∫ y

0

φ(z) dz and
∫ ∞

0

ST φ(y) dy ≥ 1
2
m2

for
∫∞
0
φ(z) dz = m and any τ ≤ 1.

(E) For any τ > 0 and any φ such that φ(y)ey/4 ↘ and
∫∞
0
φ(z) dz = m we have the

estimates

T φ(y) ≤ |φ|∞φ(y)e−min{τ,1}y/4 and T φ(y) ≤ m

y
φ(y).

(F) We have

T φ(y) ≤ |φ|2∞e−(τ+1)y/4 if φ(y)e1/4y ↘ and τ ≤ 1,

T φ(y) ≤ |φ|2∞e−y/2 if φ(y)e1/4y ↘ and τ ≥ 1.

(G) ST φ(y) ≤ |φ|∞me−y/4 if
∫∞
0
φ(y)dy = m and φ(y)e1/4y ↘ .

(H) We can estimate

ST φ(y) ≤ |φ|2∞
4
τ

(e−y/4 − e−(τ+1)y/4) if φ(y)e1/4y ↘ and τ ≤ 1,
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while
ST φ(y) ≤ |φ|2∞4(e−y/4 − e−y/2) for φ(y)e1/4y ↘ and τ ≥ 1.

(I) For any τ ≤ 1 and φ such that
∫∞
0
φ(y)dy = m and φ(y)e1/4y ↘ we have the

following lower bounds

sup
y≥0

φ(y)ey/4 ≥ m/4 and sup
y≥0
Pφ(y)ey/4 ≥ m2/16 +m/4.

(J) P
(

1
4me

−y/4) = 1
2me

−y/2 for any positive m = M
2π and τ = 1.

We relegate the proofs of the above claims to Appendix. Now we find some convex
invariant set under the action of the compact operator P.

Lemma 2.1. The operator P is compact and maps the set K ∩B(0, R) into K where

(10) K =
{
φ ∈ BC([0,∞)) : φ(y) ≥ 0,

∫ ∞
0

φ(z)dz =
M

2π
and φ(y)e1/4y ↘

}
,

M < 8π and R2 ≤ M
8π for τ > 1 or R2 ≤ τ

2

(
M
8π + M2

64π

)
for τ ≤ 1.

Proof. First of all the operators T and S, by (E) and (G), are both bounded and positive,
i.e. mapping positive functions into positive ones. The proof of the compactness of the
operator P is a standard application of the Ascoli-Arzelà theorem if we use the asymptotic
decay property of the operator P i.e. Pφ(y) ≤ Pφ(0)e−y/4 following directly from the
property (B) together with the estimate Pφ(y) ≥ − 1

2ST φ(y) and estimate (G). We use
here the boundedness of both T and S. For the compactness criterion in the space of
bounded and continuous functions one can see, e.g., [11].

The property of the invariance of the part of the set K related to B(0, R) under the
action of the operator P follows from straightforward calculations to be presented below.
Due to the property (B) the only nontrivial fact which guarantees that P : K∩B(0, R)→
K is that Pφ(y) ≥ 0. This inequality, by definition of P (9) and property (B), is equivalent
to

(11)
m

4
+

1
8

∫ ∞
0

ST φ(y) dy − 1
2

lim
y→∞

ST φ(y)ey/4 ≥ 0 .

This condition can be rephrased as

(12)
m

4
+

1
8

∫ ∞
0

ST φ(y) dy − 1
2

∫ ∞
0

T φ(y)ey/4 dy ≥ 0 .

This is guaranteed by the relation
∫∞
0
ST φ(y) dy = 4

∫∞
0
T φ(y) dy and the second prop-

erty from (F), i.e. T φ(y) ≤ |φ|2∞e−y/2 for any τ ≥ 1, as

1
2

∫ ∞
0

T φ(y)(ey/4 − 1) dy ≤ R2

and

(13) R2 ≤ m

4
.
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For τ ≤ 1 to guarantee (12) we use (D)
∫∞
0
ST φ(y) dy ≥ m2/2 and (E) T φ(y) ≤

Rφ(y)e−τy/4 which implies

m

4
+
m2

16
− R

2

∫ ∞
0

φ(y)e(1−τ)y/4 dy ≥ m

4
+
m2

16
− 2
τ
R2 ≥ 0

or

(14) R2 ≤ τ

2

(
m

4
+
m2

16

)
.

On the other hand by the property (B), m =
∫∞
0
φ(y) dy ≤ 4R. Combining this

estimate with either (13) or (14) we can see that necessarily m ≤ 4 and M ≤ 8π, which
seems to be a natural condition for our considerations.

Lemma 2.2. For 1 < τ < 2 there are no fixed points of the integral operator (9) such that

(15)
∫ ∞

0

yφ(y)2 dy > 2
∫ ∞

0

φ(y) dy ,

and thus no solutions to equation (1) exist. More generally, for arbitrary τ > 1 a similar
condition guaranteeing nonexistence can be stated

(16)
∫ ∞

0

ψ(y)φ(y)2 dy >
∫ ∞

0

φ(y) dy

where the function ψ is defined by

(17) ψ(y) =
8

y(τ − 1)
(1− e(1−τ)y/4)(ey/4 − 1) .

Proof. Let us recall that by integration by parts we have
∫∞
0
ST φ(y) dy = 4

∫∞
0
T φ(y) dy,

thus positivity of Pφ (11) rephrased as (12) is violated if the limit of the function
Pφ(y)ey/4 at ∞ is negative, i.e.

m

4
+

1
2

∫ ∞
0

T φ(y)(1− ey/4) dy < 0

or

(18)
∫ ∞

0

T φ(y)(ey/4 − 1) dy >
m

2
.

Next, by the first property from (C) the inequality (18) follows from

(19)
∫ ∞

0

χ(y)φ(y)2 dy >
m

2
,

where the function χ is defined by χ(y) = e(2−τ)y/4 − e(1−τ)y/4. Then expanding the
function χ in Taylor series and neglecting positive terms but the first one (the zero order
terms cancel out) one can use for 1 < τ < 2 the estimate χ(y) ≥ y/4 to estimate (19)
and get 1

4

∫∞
0
yφ(y)2 dy > m

2 whence the announced estimate follows.
To show (16) we use essentially the same estimate as before, i.e. (18), but this time

we use the last estimate from (C) to get the claim.

Now we state the invariance of some convex set under the action of P.

Theorem 2.3. If the mass parameter m is small enough then the operator P maps some
ball BR intersected with the convex set K in the space of bounded and continuous functions
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equipped with the sup norm into BR. To be more specific we require for m < 1 that τ > 1
or 8m

(4+m)(2−m)2 < τ ≤ 1.

Proof. First of all the operators T and S, by (E) and (G), are both bounded and positive,
i.e. mapping positive functions into positive ones. Next note that, due to the monotonicity
property Pφ(y)e1/4y ↘ stated in (B), the sup norm of Pφ is attained at 0 and since
ST φ(0) = 0 it can be estimated, for any |φ|∞ ≤ R, as follows

|Pφ|∞ = Pφ(0) =
M

8π
+

1
8

∫ ∞
0

ST φ(y) dy =
M

8π
+

1
2

∫ ∞
0

T φ(y) dy

≤ M

8π
+
M

4π
|φ|∞ ≤

M

8π
+
M

4π
R .

In the above estimate we integrated by parts to get
∫∞
0
ST φ(y) dy = 4

∫∞
0
T φ(y) dy and

used the estimate T φ(y) ≤ |φ|∞φ(y) following directly from (E). Next we use Lemma
2.1. Recall that the convex set

B(0, R) ∩
{
φ ∈ BC : φ(y) ≥ 0,

∫ ∞
0

φ(z) dz =
M

2π
, φ(y)e1/4y ↘

}
is mapped by the operator P into K. Moreover, if R is large enough to guarantee

(20)
M

8π
+
M

4π
R ≤ R ,

which is satisfied if the coefficient M is less than 4π, then P maps B(0, R) ∩ K into
B(0, R).

Thus to guarantee the invariance of the set B(0, R) ∩ K under the action of the
operator P for τ > 1 we have to combine (20) expressed equivalently for m = M

2π < 2 as

(21) R ≥ m/4
1−m/2

with condition (13). Hence we end up with the following condition m2−5m+4 > 0. This
holds in view of m < 2 for any m < 1.

For τ ≤ 1 (21) and (14) yield(
m/4

1−m/2

)2

<
τ

2

(
m

4
+
m2

16

)
whence

(22) τ >
8m

(4 +m)(2−m)2
.

The compactness property of P following from Lemma 2.1 together with invariance
of the set K ∩ B(0, R) under the action of the operator P guaranteed by Theorem 2.3
suffice to use the Schauder theorem and obtain a fixed point for the operator P. Thus we
have proved the main Theorem 1.1 stated in the introduction.

Thus we have obtained a fixed point of P and a solution to (1) or self-similar one to
the corresponding parabolic system.

Remark 2.4. Although the range of the parameter is not optimal compared to the
previously known results, it should be noted that the invariance of the convex set K,
guaranteeing the positivity property of the solutions, appears in this approach to be of



310 R. STAŃCZY

more importance as it naturally yields the necessary estimate M ≤ 8π. It suggests that
the probable lack of an existence result for M > 8π can be attributed to the requirement
of the nonnegativity of the solutions both for the stationary and evolutionary problems.
We hope that this might shed a new light on the problem and help to provide more
thorough understanding of the criticality of the 8π value of the mass parameter.

3. Appendix. Justifications of the claims (A)–(J) from the previous section are given
below.

(A) This property follows immediately from (9) by integration since the last two terms
cancel out.

(B) This property follows from definitions (5), (7) and (9) if we multiply Pφ(y) by
ey/4, get − 1

2

∫ y
0
T φ(y)ey/4 dy + const and use the nonnegativity of T φ implied by φ ≥ 0.

(C) We estimate using (5) and monotonicity of the function φ(y)ey/4 ↘ as follows

(23) T φ(y) =
1
y
φ(y)e−τy/4

∫ y

0

φ(z)eτz/4 dz ≥ 1
y
φ(y)e−τy/4

∫ y

0

φ(y)ey/4e(τ−1)z/4 dz.

Next, for τ ≥ 1, we drop the term e(τ−1)z/4 estimating it from below by 1. For τ ≤ 1 since
the function φ(z)eτz/4 is nonincreasing therefore φ(z)eτz/4 ≥ φ(y)eτy/4 for any z ≤ y thus

T φ(y) ≥ 1
y
φ(y)e−τy/4

∫ y

0

φ(y)eτy/4 dz = φ(y)2.

The last claim follows directly from (23) after the integration of the term
∫ y
0
e(τ−1)z/4 dz

giving a sharper estimate for τ > 1 but less explicit one. Indeed, this is better estimate as
the function 4

y(τ−1)

(
e(τ−1)y/4 − 1

)
can be bounded from below by 1. It can be ascertained

by proving that this function is nondecreasing and has the limit equal to 1 as y → 0+.
(D) This is a direct conclusion from the estimates (C), monotonicity φ(y)ey/4 ↘ and

the definition of S in (7). Indeed, one can estimate easily for any τ ≤ 1

ST φ(y) ≥ e−y/4
∫ y

0

φ(z)2ez/4 dz ≥ e−y/4
∫ y

0

φ(z)φ(y)ey/4 dz ,

while for any τ > 1 one obtains

ST φ(y) ≥ e−y/4
∫ y

0

φ(z)2e(2−τ)z/4 dz ≥ e−y/4
∫ y

0

φ(z)e(1−τ)z/4φ(y)ey/4 dz.

The last claim in (D), involving lower estimate by the squared mass, follows from

ST φ(y) ≥ φ(y)
∫ y

0

φ(z) dz

by integration by parts∫ ∞
0

φ(y)
∫ y

0

φ(z) dz dy =
(∫ ∞

0

φ(y) dy
)2

−
∫ ∞

0

φ(y)
∫ y

0

φ(z) dz dy.

(E) For τ ≤ 1 as before using the monotonicity property φ(y)ey/4 ↘ we deduce that
φ(y) ≤ |φ|∞e−y/4 as its maximum value is attained at 0. Next, we use this inequality to
proceed as follows

T φ(y) ≤ 1
y
φ(y)|φ|∞e−τy/4

∫ y

0

e(τ−1)z/4 dz

and estimating e(τ−1)z/4 from above by 1 as τ ≤ 1 yields the claim.



RADIALLY SYMMETRIC SOLUTIONS OF CHEMOTAXIS SYSTEM 311

For τ ≥ 1 we proceed as for the case τ ≤ 1 but this time we estimate e(τ−1)z/4 from
above by e(τ−1)y/4 for any z ≤ y. Namely,

T φ(y) ≤ 1
y
φ(y)|φ|∞e−τy/4

∫ y

0

e(τ−1)z/4 dz ≤ 1
y
φ(y)|φ|∞e−τy/4

∫ y

0

e(τ−1)y/4 dz.

In this case the monotonicity property φ(y)ey/4 ↘ was also used to get φ(z) ≤ |φ|∞e−z/4.
The last claim follows for any τ > 0 and

∫∞
0
φ(z) dz = m, by eτz/4 ≤ eτy/4 for z ≤ y,

from
T φ(y) ≤ 1

y
φ(y)e−τy/4eτy/4

∫ y

0

φ(z) dz ≤ 1
y
φ(y)

∫ y

0

φ(z) dz

and in consequence T φ(y) ≤ 1
yφ(y)m.

(F) Due to the monotonicity property φ(y)ey/4 ↘ the sup norm of the function
φ(y)ey/4 is attained at 0 whence φ(y) ≤ |φ|∞e−y/4 follows. Then one applies this estimate
to the first property from (E) to derive the required estimate.

(G) This is a direct conclusion from the estimate (E) and the definition of S (7). For
τ ≤ 1 we drop the term e(τ−1)z/4 (cf. the lines of the proof (H) below).

(H) Applying the first estimate from (E) and the inequality φ(z) ≤ |φ|∞e−z/4 following
from (B) we obtain

ST φ(y) ≤ e−y/4
∫ y

0

T φ(z)ez/4 dz ≤ e−y/4
∫ y

0

|φ|∞φ(z)e1−min{τ,1}z/4 dz .

Integration of the last term gives the required estimate.
(I) First by φ(y)ey/4 ↘ we have φ(y) ≤ e−y/4 supz≥0 φ(z)ez/4. Then integration yields

m =
∫∞
0
φ(y) dy ≤ 4 supz≥0 φ(z)ez/4. The next lower bound follows by (B) and the lower

estimates for ST (D) from

sup
y≥0
Pφ(y)ey/4 = Pφ(0) =

m

4
+

1
8

∫ ∞
0

ST φ(y) dy ≥ m

4
+
m2

16
.

(J) The property follows from straightforward calculations after substitution of the
function φ(y) = 1

4me
−y/4 in the definition of the operator P.
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