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Abstract. In this paper we consider optimal control problems for abstract nonlinear evolution
equations associated with time-dependent subdifferentials in a real Hilbert space. We prove the
existence of an optimal control that minimizes the nonlinear cost functional. Also, we study
approximating control problems of our equations. Then, we show the relationship between the
original optimal control problem and the approximating ones. Moreover, we give some applica-
tions of our abstract results.

1. Introduction. This paper is concerned with an optimal control problem for a non-
linear evolution equation in a real Hilbert space H, of the form:

(1)

{
u′(t) + ∂ϕt(u(t)) + g(t, u(t)) 3 f(t) in H, for t ∈ (0, T );

u(0) = u0;

where T > 0 is a fixed finite time, u′ = du
dt , ∂ϕ

t is the subdifferential of a time-dependent
convex function ϕt on H, g(t, ·) is a perturbation small relative to ϕt, f is a given forcing
term, and u0 ∈ H is a given initial condition.

The main object of this paper is to study the following optimal control problem to (1),
denoted by (OP).

Problem (OP). Find a function (optimal control) f∗ ∈ L2(0, T ;H) such that

J(f∗) = inf
f∈L2(0,T ;H)

J(f).
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Here, J is a cost functional defined by:

(2) J(f) :=
1
2

∫ T

0

|(u− ud)(t)|2Hdt+
1
2

∫ T

0

|f(t)|2Hdt for any f ∈ L2(0, T ;H),

where | · |H denotes the norm of H, the main parameter f is the control, ud is a given
desired target profile in L2(0, T ;H), and u is a unique solution to (1).

Many mathematicians have already studied the optimal control problems of abstract
evolution equations (cf. [1, 3, 6, 7, 9, 13, 14, 15]). In particular, if g(t, ·) is a continuous
operator in H, Hu–Papageorgiou [7] studied the optimal control problem (OP). Also,
Cardinali–Papageorgiou [3] studied the min-max problem for subdifferential evolution
inclusions. For the related topics of optimal control problems for subdifferential evolution
inclusions, we refer to the series of papers by Papageorgiou (cf. [3, 6, 7, 13]).

Now, the aim of the present paper is to consider the approximating problems of (1)
and (OP). Then, the main novelties found in this paper are:

(i) to prove the existence of an optimal control for (OP);
(ii) to show the existence of optimal controls for the approximating problems of (OP);
(iii) to show the relationship between the limits of sequences of approximating optimal

controls and the optimal controls of the limiting problem (OP).

The plan of this paper is as follows. In the next Section 2, we state the main re-
sults (Theorems 2.1–2.3) concerning (OP) and its approximating problems. In Section 3,
we prove Theorem 2.1 concerned with the existence of an optimal control to (OP). In
Section 4, we study the approximating problems of (OP). Then, by using the relation-
ship between (1) and its approximating equations, we prove Theorems 2.2 and 2.3. In
Section 5, we give some applications of our abstract results (Theorems 2.1–2.3).

1.1. Notations. Throughout this paper, let H be a real Hilbert space with norm | · |H
and inner product (·, ·). For a proper (i.e., not identically equal to infinity), l.s.c. (lower
semi-continuous) and convex function ψ : H → R∪{∞}, the effective domain D(ψ) of ψ
is defined by

D(ψ) := {z ∈ H; ψ(z) <∞}.
We denote by ∂ψ the subdifferential of ψ in the topology of H. In general, the subdif-
ferential is a possibly multi-valued operator from H into itself, and for any z ∈ H, the
value ∂ψ(z) is defined as:

∂ψ(z) := {z∗ ∈ H ; (z∗, y − z) ≤ ψ(y)− ψ(z) for all y ∈ H}.
Then, the set D(∂ψ) := {z ∈ H ; ∂ψ(z) 6= ∅} is called the domain of ∂ψ. We refer to the
monograph by Brézis [2] for detailed properties and related notions of convex functions
and their subdifferentials.

2. Assumptions and main results. We begin by defining the solutions of our state
problem (1). In the following sections, we denote by (CP;f, u0) the state problem (1)
when the data of the control f and the initial condition u0 are specified:

(CP;f, u0)

{
u′(t) + ∂ϕt(u(t)) + g(t, u(t)) 3 f(t) in H, for t ∈ (0, T );

u(0) = u0.
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Definition 2.1. Given f ∈ L2(0, T ;H) and u0 ∈ H, the function u : [0, T ]→ H is called
a solution to (CP; f, u0), if u ∈ C([0, T ];H), u′ ∈ L2

loc((0, T ];H), ϕ(·)(u) ∈ L1(0, T ),
u(0) = u0, u(t) ∈ D(∂ϕt) and f(t) − u′(t) − g(t, u(t)) ∈ ∂ϕt(u(t)) for a.e. t ∈ [0, T ],
namely

(f(t)− u′(t)− g(t, u(t)), y − u(t)) ≤ ϕt(y)− ϕt(u(t)) for any y ∈ H, a.e. t ∈ [0, T ].

Let {ar} := {ar; r ≥ 0} and {br} := {br; r ≥ 0} be two families of real functions in
W 1,2(0, T ) and W 1,1(0, T ), respectively. We introduce a class Φ({ar}, {br}) of families of
time-dependent proper l.s.c. and convex functions ϕt on H.

Definition 2.2. We denote by Φ({ar}, {br}) the class of all families {ϕt} := {ϕt; t ∈
[0, T ]} of proper l.s.c. and convex functions ϕt on H such that

{z ∈ H; |z|H ≤ k, ϕt(z) ≤ k} is compact in H for every k ≥ 0 and t ∈ [0, T ],

and the following property (∗) is fulfilled:

(∗) for each r ≥ 0, s, t ∈ [0, T ] with s ≤ t, and z ∈ D(ϕs) with |z|H ≤ r, there exists
z̃ ∈ D(ϕt) such that

|z̃ − z|H ≤ |ar(t)− ar(s)|(1 + |ϕs(z)| 12 )

and
ϕt(z̃)− ϕs(z) ≤ |br(t)− br(s)|(1 + |ϕs(z)|).

Remark 2.1 (cf. [8, Chapter 1]). Assume {ϕt} ∈ Φ({ar}, {br}), f ∈ L2(0, T ;H) and
u0 ∈ D(ϕ0), where D(ϕ0) denotes the closure of D(ϕ0) in H. Then, Kenmochi [8, Cha-
pter 1] has already proved that the following Cauchy problem has a unique solution u on
[0, T ]: {

u′(t) + ∂ϕt(u(t)) 3 f(t) in H, for t ∈ (0, T );

u(0) = u0.

Next, we introduce the class G({ϕt}) of time-dependent perturbations g(t, ·) associated
with {ϕt} ∈ Φ({ar}, {br}).

Definition 2.3. We denote by G({ϕt}) the class of all families {g(t, ·)} := {g(t, ·);
t ∈ [0, T ]} of single-valued operators g(t, ·) from D(g(t, ·)) ⊂ H into H which fulfill
the following conditions (g1)–(g4).

(g1) D(ϕt) ⊂ D(g(t, ·)) ⊂ H for all t ∈ [0, T ], and g(·, v(·)) is (strongly) measurable on
J for any interval J ⊂ [0, T ] and v ∈ L2

loc(J ;H) with v(t) ∈ D(ϕt) for a.e. t ∈ J .
(g2) There are positive constants C0, C1 and C2 such that

|g(t, z)|2H ≤ C0ϕ
t(z) + C1|z|2H + C2, ∀t ∈ [0, T ], ∀z ∈ D(ϕt).

(g3) (Demi-closedness) If {tn} ⊂ [0, T ], zn ∈ D(ϕtn), tn → t, zn → z in H (as n→∞)
and {ϕtn(zn)} is bounded, then g(tn, zn)→ g(t, z) weakly in H as n→∞.

(g4) For each δ > 0, there exists a positive constant Cδ > 0 such that

|(g(t, z1)− g(t, z2), z1 − z2)| ≤ δ(z∗1 − z∗2 , z1 − z2) + Cδ|z1 − z2|2H ,
∀t ∈ [0, T ], ∀zi ∈ D(ϕt), ∀z∗i ∈ ∂ϕt(zi), i = 1, 2.
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We recall that existence and uniqueness of solutions for (CP; f, u0) was obtained in
[12, Theorem III] and [17, Theorem 2.1].

Proposition 2.1 (cf. [12, Theorem III], [17, Theorem 2.1]). Assume {ϕt}∈Φ({ar}, {br}),
{g(t, ·)} ∈ G({ϕt}), f ∈L2(0, T ;H) and u0 ∈D(ϕ0). Then, the Cauchy problem (CP; f, u0)
has one and only one solution u on [0, T ]. In particular, if u0 ∈ D(ϕ0), then the solution
u of (CP; f, u0) satisfies that u′ ∈ L2(0, T ;H).

Now, we state the first main result in this paper, which is concerned with the existence
of an optimal control for (OP).

Theorem 2.1. Assume {ϕt} ∈ Φ({ar}, {br}), {g(t, ·)} ∈ G({ϕt}), u0 ∈ D(ϕ0) and ud ∈
L2(0, T ;H). Then, the problem (OP) has at least one optimal control f∗ ∈ L2(0, T ;H)
so that

J(f∗) = inf
f∈L2(0,T ;H)

J(f),

where J(·) is the cost functional given in (2).

The proof of Theorem 2.1 is given in Section 3 by using the well-posedness of the
state problem (CP; f, u0).

Next, we study approximating problems for (CP; f, u0) and (OP). In fact, for each
ε ∈ (0, 1], we consider the following nonlinear evolution equation in a Hilbert space H,
denoted by (CP; f, u0,ε)ε:

(3) (CP; f, u0,ε)ε

{
u′ε(t) + ∂ϕtε(uε(t)) + gε(t, uε(t)) 3 f(t) in H, for t ∈ (0, T );

u(0) = u0,ε;

where ∂ϕtε is the subdifferential of the time-dependent proper l.s.c. convex function ϕtε on
H, gε(t, ·) is a perturbation small relative to ϕtε, f is a given forcing term, and u0,ε ∈ H
is a given initial condition.

Clearly, we observe from Proposition 2.1 that for each ε ∈ (0, 1], the Cauchy problem
(CP; f, u0,ε)ε has a unique solution uε on [0, T ], if {ϕtε} ∈ Φ({ar}, {br}), {gε(t, ·)} ∈
G({ϕtε}), f ∈ L2(0, T ;H) and u0,ε ∈ D(ϕ0

ε).
Now, for each ε ∈ (0, 1], we consider the following approximating optimal control

problem, denoted by (OP)1,ε, of the original problem (OP).

Problem (OP)1,ε. Find a function (optimal control) f∗1,ε ∈ L2(0, T ;H) such that

J1,ε(f∗1,ε) = inf
f∈L2(0,T ;H)

J1,ε(f).

Here, J1,ε is a cost functional defined by:

J1,ε(f) :=
1
2

∫ T

0

|(uε − ud)(t)|2Hdt+
1
2

∫ T

0

|f(t)|2Hdt for any f ∈ L2(0, T ;H),(4)

where uε is the unique solution of the approximating state problem (CP; f, u0,ε)ε on [0, T ].

The next object of this paper is to show the relationship between (OP) and (OP)1,ε.
To do so, we recall a notion of convergence for convex functions, developed by Mosco [10].
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Definition 2.4 (cf. [10]). Let ψ, ψn (n ∈ N) be proper, l.s.c. and convex functions on a
Hilbert space H. Then, we say that ψn converges to ψ on H in the sense of Mosco [10]
as n→∞ if the following two conditions are satisfied:

(i) for any subsequence {ψnk
} ⊂ {ψn}, if zk → z weakly in H as k →∞, then

lim inf
k→∞

ψnk
(zk) ≥ ψ(z);

(ii) for any z ∈ D(ψ), there is a sequence {zn} in H such that

zn → z in H as n→∞ and lim
n→∞

ψn(zn) = ψ(z).

Now, we state our second main result in this paper, which is concerned with the
relationship between problems (OP) and (OP)1,ε (ε ∈ (0, 1]).

Theorem 2.2. Assume ud ∈ L2(0, T ;H), ε ∈ (0, 1], {ϕtε} ∈ Φ({ar}, {br}), {gε(t, ·)} ∈
G({ϕtε}), and u0,ε ∈ D(ϕ0

ε). Then, for each ε ∈ (0, 1], the approximating problem (OP)1,ε
has at least one optimal control f∗1,ε ∈ L2(0, T ;H) so that

J1,ε(f∗1,ε) = inf
f∈L2(0,T ;H)

J1,ε(f).

Furthermore, assume that

(A1) ϕtε converges to ϕt on H in the sense of Mosco [10] for each t ∈ [0, T ] (as ε→ 0),
and

⋃
ε∈[0,1]{z ∈ H; |z|H ≤ k, ϕtε(z) ≤ k} is relatively compact in H for every real

k ≥ 0 and t ∈ [0, T ], where {ϕt0} = {ϕt} ∈ Φ({ar}, {br}) when ε = 0;
(A2) gε(tε, zε)→ g(t, z) weakly in H (as ε→ 0), if tε ∈ [0, T ], tε → t, zε → z in H and

{ϕtεε (zε)} is bounded, where {g(t, ·)} ∈ G({ϕt});
(A3) u0,ε → u0 in H for some u0 ∈ D(ϕ0).

Then, there is a subsequence {εk} ⊂ {ε} and a function f∗∗ ∈ L2(0, T ;H) such that f∗∗

is an optimal control of (OP), εk → 0, and

(5) f∗1,εk
→ f∗∗ weakly in L2(0, T ;H) as k →∞.

In order to show the strong convergence of optimal controls, we consider another type
of approximating optimal control problems for each ε ∈ (0, 1], denoted by (OP)2,ε, as
follows.

Problem (OP)2,ε. Find a function (optimal control) f∗2,ε ∈ L2(0, T ;H) such that

J2,ε(f∗2,ε) = inf
f∈L2(0,T ;H)

J2,ε(f).

Here, J2,ε is a cost functional defined by:

J2,ε(f) :=
1
2

∫ T

0

|(uε − ud)(t)|2Hdt+
1
2

∫ T

0

|f(t)|2Hdt+
1
2

∫ T

0

|(f − f∗)(t)|2Hdt,(6)

for any f ∈ L2(0, T ;H)

where f∗ is the optimal control of (OP) found in Theorem 2.1, and uε is the unique
solution of the approximating state problem (CP; f, u0,ε)ε on [0, T ].

Now, we state our final main result in this paper, which is concerned with the rela-
tionship between problems (OP) and (OP)2,ε (ε ∈ (0, 1]).
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Theorem 2.3. Assume ud ∈ L2(0, T ;H), ε ∈ (0, 1], {ϕtε} ∈ Φ({ar}, {br}), {gε(t, ·)} ∈
G({ϕtε}), and u0,ε ∈ D(ϕ0

ε). Let {ϕt} ∈ Φ({ar}, {br}), {g(t, ·)} ∈ G({ϕt}), u0 ∈ D(ϕ0),
and f∗ be the optimal control obtained in Theorem 2.1. Then, for each ε ∈ (0, 1], the
approximating problem (OP)2,ε has at least one optimal control f∗2,ε ∈ L2(0, T ;H) so that

J2,ε(f∗2,ε) = inf
f∈L2(0,T ;H)

J2,ε(f).

Furthermore, suppose the convergence assumptions (A1), (A2) and (A3) in Theorem 2.2
hold. Let u∗ε and u∗ be the unique solutions of (CP;f∗2,ε, u0,ε)ε and (CP;f∗,u0) on [0, T ],
respectively. Then, there is a subsequence {εk} ⊂ {ε} such that εk → 0,

(7) f∗2,εk
→ f∗ strongly in L2(0, T ;H)

and

(8) u∗εk
→ u∗ strongly in C([0, T ];H)

as k →∞.

The proof of Theorems 2.2 and 2.3 is given in Section 4. Roughly, the convergences (5)
and (7) are proved by using the continuous dependence between solutions of (CP; f, u0)
and the approximating solutions of (CP;f, u0,ε)ε.

3. Optimal control problem (OP). In this section, we prove Theorem 2.1 concerned
with the existence of an optimal control for (OP). Throughout this section, we assume
all the conditions of Theorem 2.1.

First, we recall the result of continuous dependence of solutions for (CP; f, u0), stated
as follows.

Proposition 3.1 (cf. [17, Lemma 4.1]). Assume {ϕt} ∈ Φ({ar}, {br}) and {g(t, ·)} ∈
G({ϕt}). Let f ∈ L2(0, T ;H), u0 ∈ D(ϕ0), and u be the unique solution to (CP;f, u0)
on [0, T ]. Also, let {fn} ⊂ L2(0, T ;H), {u0,n} ⊂ D(ϕ0), and un be the unique solution to
(CP;fn, u0,n) on [0, T ]. Assume that

u0,n → u0 in H and fn → f weakly in L2(0, T ;H) as n→∞.
Then, the following convergence holds:

un → u strongly in C([0, T ];H) as n→∞.
Proposition 3.1 has already been proved in [17, Lemma 4.1].
Now, let us prove our main Theorem 2.1, which is concerned with the existence of an

optimal control for (OP).

Proof of Theorem 2.1. By a quite standard method, we can prove Theorem 2.1. In fact,
let {fn} ⊂ L2(0, T ;H) be a minimizing sequence so that

lim
n→∞

J(fn) = inf
f∈L2(0,T ;H)

J(f).

Then, by the definition (2) of J(·), we see that {fn} is bounded in L2(0, T ;H). Hence,
there is a subsequence {nk} ⊂ {n} and a function f∗ ∈ L2(0, T ;H) such that nk → ∞
and

(9) fnk
→ f∗ weakly in L2(0, T ;H) as k →∞.
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For any k ∈ N, let unk
be the unique solution to (CP;fnk

, u0) on [0, T ]. Then, from
(9) and Proposition 3.1, we observe that

(10) unk
→ u∗ strongly in C([0, T ];H) as k →∞,

where u∗ is the unique solution to (CP;f∗, u0) on [0, T ].
Hence, it follows from (9)–(10) and the weak lower semicontinuity of L2-norm that

J(f∗) ≤ lim
k→∞

J(fnk
) = inf

f∈L2(0,T ;H)
J(f).

The above inequality implies that f∗ ∈ L2(0, T ;H) is an optimal control for (OP). Thus,
the proof of Theorem 2.1 has been completed.

4. Approximating problems (OP)1,ε and (OP)2,ε. In this section, we consider the
approximating optimal control problems (OP)1,ε and (OP)2,ε (ε ∈ (0, 1]). Then, by using
the convergence result for solutions to (CP; f, u0) and (CP;f, u0,ε)ε, we prove Theorem 2.2
(resp. Theorem 2.3) concerned with the relationship between (OP) and its approximating
problems (OP)1,ε (resp. (OP)2,ε).

Here, we give the key proposition to showing Theorems 2.2 and 2.3.

Proposition 4.1 (cf. [17, Lemma 4.2]). Assume ε∈ (0, 1], {ϕtε}∈Φ({ar}, {br}), {gε(t, ·)}
∈ G({ϕtε}), u0,ε ∈ D(ϕ0

ε), {ϕt} ∈ Φ({ar}, {br}), {g(t, ·)} ∈ G({ϕt}) and u0 ∈ D(ϕ0).
Also, suppose the convergence assumptions (A1), (A2) and (A3) in Theorem 2.2 hold.
Furthermore, assume {fε} ⊂ L2(0, T ;H), f ∈ L2(0, T ;H) and

fε → f weakly in L2(0, T ;H) as ε→ 0.

Then, the solution uε of (CP;fε, u0,ε)ε converges to the solution u of (CP;f, u0) on [0, T ]
in the following sense:

uε → u strongly in C([0, T ];H) as ε→ 0.

By a slight modification of the proof of [17, Lemma 4.2], we can show Proposition 4.1,
so we omit its proof.

Now, by using Proposition 4.1, we prove Theorem 2.2, which is concerned with the
relationship between (OP) and (OP)1,ε (ε ∈ (0, 1]).

Proof of Theorem 2.2. First, note from Proposition 3.1 that we obtain the convergence of
solutions for (CP; f, u0,ε)ε. In fact, we have only to replace ϕt (resp. g(t, ·)) with ϕtε (resp.
gε(t, ·)) in Proposition 3.1. Thus, for each ε ∈ (0, 1], by the same proof of Theorem 2.1,
we can show the existence of an optimal control f∗1,ε of (OP)1,ε such that

J1,ε(f∗1,ε) = inf
f∈L2(0,T ;H)

J1,ε(f),

where J1,ε(·) is the cost functional defined in (4).
Now, we show (5). Let f be any function in L2(0, T ;H). Also, let uε be the unique

solution for (CP;f, u0,ε)ε on [0, T ], and let u be the unique solution for (CP;f, u0) on
[0, T ]. Then, we observe from the assumptions (A1)–(A3) and Proposition 4.1 that

(11) uε → u strongly in C([0, T ];H) as ε→ 0.
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Since f∗1,ε is the optimal control of (OP)1,ε, we see that

(12) J1,ε(f∗1,ε) ≤ J1,ε(f) =
1
2

∫ T

0

|(uε − ud)(t)|2Hdt+
1
2

∫ T

0

|f(t)|2Hdt.

Clearly, it follows from (4), (11)–(12) that {f∗1,ε} is bounded in L2(0, T ;H) with respect
to ε ∈ (0, 1]. Thus, there is a subsequence {εk} ⊂ {ε} and a function f∗∗ ∈ L2(0, T ;H)
such that εk → 0 and

(13) f∗1,εk
→ f∗∗ weakly in L2(0, T ;H) as k →∞.

For any k ∈ N, let u∗εk
be the unique solution of (CP;f∗1,εk

, u0,εk
)εk

on [0, T ]. Then,
by (13), the assumptions (A1)–(A3) and Proposition 4.1, we see that u∗εk

converges to
the unique solution u∗∗ of (CP;f∗∗, u0) on [0, T ] in the sense that

(14) u∗εk
→ u∗∗ strongly in C([0, T ];H) as k →∞.

Now, by using (11)–(14) and the weak lower semicontinuity of L2-norm, we see that

J(f∗∗) ≤ lim inf
k→∞

J1,εk
(f∗1,εk

) ≤ J(f).

Since f is any function in L2(0, T ;H), we infer from the above inequality that f∗∗ is
the optimal control of (OP) satisfying the convergence (13) (i.e. (5)). Thus, the proof of
Theorem 2.2 has been completed.

Next, by using Proposition 4.1, we show Theorem 2.3, which is concerned with the
relationship between the optimal control problems (OP) and (OP)2,ε (ε ∈ (0, 1]).

Proof of Theorem 2.3. First, note that by the same argument in Theorem 2.1, namely,
by using the continuous dependence of solutions for (CP; f, u0,ε)ε (cf. Proposition 3.1),
we can get the existence of an optimal control f∗2,ε of (OP)2,ε for each ε ∈ (0, 1], such
that

J2,ε(f∗2,ε) = inf
f∈L2(0,T ;H)

J2,ε(f),

where J2,ε(·) is the cost functional defined in (6).
Now, we show (7)–(8). Let f∗ be the optimal control of (OP) obtained in Theorem 2.1.

Also, let uε be the unique solution to (CP;f∗, u0,ε)ε on [0, T ], and let u∗ be the unique
solution to (CP;f∗, u0) on [0, T ]. Then, we observe from the assumptions (A1)–(A3) and
Proposition 4.1 that

(15) uε → u∗ strongly in C([0, T ];H) as ε→ 0.

On the other hand, since f∗2,ε is the optimal control of (OP)2,ε, we see that

(16) J2,ε(f∗2,ε) ≤ J2,ε(f∗) =
1
2

∫ T

0

|(uε − ud)(t)|2Hdt+
1
2

∫ T

0

|f∗(t)|2Hdt.

Clearly, it follows from (6) and (15)–(16) that {f∗2,ε} is bounded in L2(0, T ;H) with
respect to ε ∈ (0, 1]. Thus, there is a subsequence {εk} ⊂ {ε} and a function f◦ ∈
L2(0, T ;H) such that εk → 0 and

(17) f∗2,εk
→ f◦ weakly in L2(0, T ;H) as k →∞.
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For any k ∈ N, let u∗εk
be the unique solution of (CP;f∗2,εk

, u0,εk
)εk

on [0, T ]. Then, by
the assumptions (A1)–(A3), (17) and Proposition 4.1, we see that u∗εk

converges to the
unique solution u◦ of (CP;f◦, u0) on [0, T ] in the sense that

(18) u∗εk
→ u◦ strongly in C([0, T ];H) as k →∞.

Now, by using (15)–(18) and the weak lower semicontinuity of L2-norm, we see that

1
2

lim sup
k→∞

∫ T

0

|(f∗2,εk
− f∗)(t)|2Hdt

≤ lim sup
k→∞

(
J2,εk

(f∗)− 1
2

∫ T

0

|(u∗εk
− ud)(t)|2Hdt−

1
2

∫ T

0

|f∗2,εk
(t)|2Hdt

)

≤ 1
2

∫ T

0

|(u∗ − ud)(t)|2Hdt+
1
2

∫ T

0

|f∗(t)|2Hdt

−1
2

lim inf
k→∞

∫ T

0

|(u∗εk
− ud)(t)|2Hdt−

1
2

lim inf
k→∞

∫ T

0

|f∗2,εk
(t)|2Hdt

≤ J(f∗)− 1
2

∫ T

0

|(u◦ − ud)(t)|2Hdt−
1
2

∫ T

0

|f◦(t)|2Hdt

= J(f∗)− J(f◦).

Thus, we have

J(f◦) +
1
2

lim sup
k→∞

∫ T

0

|(f∗2,εk
− f∗)(t)|2Hdt ≤ J(f∗).

Since f∗ is the optimal control to (OP), we see that

(19)
1
2

lim sup
k→∞

∫ T

0

|(f∗2,εk
− f∗)(t)|2Hdt = 0.

Therefore, we observe from (17) and (19) that f◦ = f∗ and the convergence (7) holds,
i.e.,

f∗2,εk
→ f∗ strongly in L2(0, T ;H) as k →∞.

Also, we infer from (18) and the uniqueness of solutions to (P;f∗, u0) that u◦ = u∗

and the convergence (8) holds, i.e.,

u∗εk
→ u∗ strongly in C([0, T ];H) as k →∞.

Thus, the proof of Theorem 2.3 has been completed.

5. Applications. In this section, we give some applications of our abstract results (The-
orems 2.1–2.3).

5.1. Mixed boundary condition. Let us consider the following initial-boundary value prob-
lem with a Signorini–Dirichlet–Neumann type mixed boundary condition, denoted by (P).
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Problem (P). Find a function u ∈ C([0, T ];L2(Ω)) ∩W 1,2
loc ((0, T ];L2(Ω)) which fulfills

the following system:

u′ − div(|∇u|p−2∇u) + g(u) = f(t, x) in (0, T )× Ω;

u ≤ h(t), ν · (|∇u|p−2∇u) ≤ 0

and (u− h(t))ν · (|∇u|p−2∇u) = 0 on (0, T )× ΓS ;

u = h(t) on (0, T )× ΓD;

ν · (|∇u|p−2∇u) = 0 on (0, T )× ΓN ;

u(0, ·) = u0 in Ω.

Here, p is a fixed number with 2 ≤ p < ∞, Ω is a bounded domain in Rm (m ≥ 1), and
the boundary Γ of Ω is smooth and admits a mutually disjoint decomposition such as

Γ = ΓD ∪ ΓN ∪ ΓS .

Also, ν is the outward normal vector on the boundary Γ, g : R→ R is a given Lipschitz
function, f and u0 are given data, and h(t, x) is a given function satisfying

h ∈W 1,2(0, T ;W 1,p(Ω)).

The main object of this subsection is to consider the optimal control problem of (P)
by applying the abstract result (Theorem 2.1). To do so, for each t ∈ [0, T ], define a
convex set K(t) by

K(t) := {z ∈W 1,p(Ω) ; z ≤ h(t) on ΓS and z = h(t) on ΓD}.

Also, we choose L2(Ω) as a real Hilbert space H, and we define a family {ϕt} of proper
l.s.c. convex functions ϕt : L2(Ω)→ R ∪ {∞} by

(20) ϕt(z) :=


1
p

∫
Ω

|∇z(x)|pdx if z ∈ K(t),

∞ if z ∈ L2(Ω) \K(t).

Then, by similar calculations to [8, Proposition 3.2.2], we can get the following lemma.

Lemma 5.1 (cf. [8, Proposition 3.2.2]). Put for any r ≥ 0 and t ∈ [0, T ]

ar(t) = br(t) := M

∫ t

0

|h′(τ)|W 1,p(Ω)dτ,

where M is a (sufficiently large) positive constant. Then, {ϕt} ∈ Φ({ar}, {br}) and
{g(·)} ∈ G({ϕt}).

Clearly, the initial-boundary value problem (P) can be transformed into the following
evolution equation (CP; f, u0):

(CP; f, u0)

{
u′(t) + ∂ϕt(u(t)) + g(u(t)) 3 f(t) in L2(Ω), for t ∈ (0, T );

u(0) = u0.

Therefore, by applying Proposition 2.1, we see that the initial-boundary value problem
(P) has one and only one solution u on [0, T ] for each f ∈ L2(0, T ;L2(Ω)) and u0 ∈
K(0)

L2(Ω)
= D(ϕ0)

L2(Ω)
, where K(0)

L2(Ω)
denotes the closure of K(0) in L2(Ω).
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Also, by applying Theorem 2.1 we see that for each ud ∈ L2(0, T ;L2(Ω)) and u0 ∈
K(0)

L2(Ω)
, the following optimal control problem to (P) has at least one solution f∗ ∈

L2(0, T ;L2(Ω)):

(21) J(f∗) = inf
f∈L2(0,T ;L2(Ω))

J(f),

where J(·) is the cost functional given in (2) with H = L2(Ω).
Next, we study the approximating problem of (P) from the view-point of numerical

analysis. In fact, for each ε ∈ (0, 1] let us consider the following approximating problem
of (P), denoted by (P)ε.

Problem (P)ε. Find a function uε ∈ C([0, T ];L2(Ω))∩W 1,2
loc ((0, T ];L2(Ω)) which fulfills

the following system:

u′ε − div(|∇uε|p−2∇uε) + g(uε) = f(t, x) in (0, T )× Ω;

ν · (|∇uε|p−2∇uε) = −uε − h(t)
ε

· χD −
[uε − h(t)]+

ε
· χS on (0, T )× Γ;

uε(0, ·) = u0,ε in Ω;

where u0,ε ∈ L2(Ω), χj is the characteristic function of (0, T ) × Γj (j = D,S), and [z]+

is the positive part of z.
The next object is to consider the optimal control problem of (P)ε by applying the

abstract results (Theorems 2.2 and 2.3). To do so, for each ε ∈ (0, 1] we define a family
{ϕtε} of proper l.s.c. convex functions ϕtε : L2(Ω)→ R ∪ {∞} by

ϕtε(z) :=



1
p

∫
Ω

|∇z(x)|pdx+
1
2ε

∫
ΓD

|z − h(t)|2dΓ

+
1
2ε

∫
ΓS

([z − h(t)]+)2dΓ if z ∈ H1(Ω),

∞ if z ∈ L2(Ω) \H1(Ω).

By using the same function ar(t) = br(t) in Lemma 5.1, we observe that {ϕtε} ∈
Φ({ar}, {br}) and {g(·)} ∈ G({ϕtε}). Also, we get the following property.

Lemma 5.2. ϕtε converges to ϕt in the sense of Mosco [10] for each t ∈ [0, T ] as ε→ 0,
where ϕt is the proper, l.s.c. convex function defined in (20).

It is very easy to prove Lemma 5.2, since we employ the standard approximation of
the boundary by the penalty method in the problem (P)ε. So, we omit the detailed proof
of Lemma 5.2.

Also, we easily see that the approximating initial-boundary value problem (P)ε can
be reformulated as the following evolution equation (CP; f, u0,ε)ε:

(CP; f, u0,ε)ε

{
u′ε(t) + ∂ϕtε(uε(t)) + g(uε(t)) 3 f(t) in L2(Ω), for t ∈ (0, T );

uε(0) = u0,ε.

Therefore, by taking account of Lemma 5.2, and applying Proposition 2.1 and Theo-
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rems 2.2–2.3, we get the existence of a unique solution of (P)ε, and the relationship
between the problem (21) and the optimal control problems of (P)ε.

5.2. Allen-Cahn type equation with constraint. In this subsection, let us consider the op-
timal control problem of the following Allen-Cahn type equation with constraint, denoted
by (P).

Problem (P). Find a function u : [0, T ]→ L2(0, 1) which fulfills the following singular
diffusion equation with constraint:

u′ − κ
(
ux
|ux|

)
x

+ ∂I[−1,1](u) 3 u+ f(t, x) in Q := (0, T )× (0, 1);

ux(t, 0) = ux(t, 1) = 0, t ∈ (0, T );

u(0, x) = u0(x), x ∈ (0, 1).

Here, κ > 0 is a given (small) constant, f and u0 are given data, and ∂I[−1,1](·) is the
subdifferential of the indicator function I[−1,1](·) on the closed interval [−1, 1], that is
defined as:

I[−1,1](τ) :=

{
0 if τ ∈ [−1, 1],

∞ otherwise.

In order to transform the problem (P) into an abstract nonlinear evolution equation,
let us recall the definition of the total variation and bounded variation functions.

Definition 5.1. (I) Let z ∈ L1(0, 1). Then, z is called a bounded variation function, or
simply a BV-function, in (0, 1), if and only if:

V0(z) := sup

{∫ 1

0

zηxdx ;
η ∈ C1[0, 1] with a compact support in (0, 1),

|η| ≤ 1 on [0, 1]

}
<∞.

Here, we call V0(z) the total variation of z.
(II) We denote by BV (0, 1) the space of all BV-functions in (0, 1).

Now, let us choose L2(0, 1) as a real Hilbert space H, and let us define a functional
ϕ : L2(0, 1)→ R ∪ {∞} by

(22) ϕ(z) = κV0(z) +
∫ 1

0

I[−1,1](z)dx for any z ∈ L2(0, 1).

Then, it follows from [4, Chapter 5] that ϕ is proper, l.s.c. and convex on L2(0, 1), and
its effective domain is

D(ϕ) = {z ∈ BV (0, 1) ; |z| ≤ 1, a.e. in (0, 1)} .

Clearly, the initial-boundary value problem (P) can be reformulated as the following
evolution equation (CP; f, u0):

(CP; f, u0)

{
u′(t) + ∂ϕ(u(t))− u(t) 3 f(t) in L2(0, 1), for t ∈ (0, T );

u(0) = u0.

Here, we take the function ar(t) = br(t) ≡ 0 for any r ≥ 0 and t ∈ [0, T ], and define
the operator g(u) := −u in L2(0, 1). Then, we easily see that {ϕ} ∈ Φ({ar}, {br}) and



OPTIMAL CONTROL OF NONLINEAR EVOLUTION EQUATIONS 325

{g(·)} ∈ G({ϕ}). Therefore, by applying Proposition 2.1, we see that the problem (P)
has one and only one solution u ∈ C([0, T ];L2(0, 1)) ∩ W 1,2

loc ((0, T ];L2(0, 1)) for each

f ∈ L2(0, T ;L2(0, 1)) and u0 ∈ D(ϕ)
L2(0,1)

, where D(ϕ)
L2(0,1)

denotes the closure of
D(ϕ) in L2(0, 1).

Also, by applying Theorem 2.1, we observe that for each ud ∈ L2(0, T ;L2(0, 1)) and

u0 ∈ D(ϕ)
L2(0,1)

, the following optimal control problem to (P) has at least one solution
f∗ ∈ L2(0, T ;L2(0, 1)):

(23) J(f∗) = inf
f∈L2(0,T ;L2(0,1))

J(f),

where J(·) is the cost functional given in (2) with H = L2(0, 1).
Next, for each ε ∈ (0, 1] let us consider the following approximating problem of (P),

denoted by (P)ε.

Problem (P)ε. Find a function uε : [0, T ] → L2(0, 1) which fulfills the following equa-
tions:

u′ε − κ

(
(uε)x√

|(uε)x|2 + ε2
+ ε(uε)x

)
x

+ Fε(uε) = uε + f(t, x) in Q;

(uε)x(t, 0) = (uε)x(t, 1) = 0, t ∈ (0, T );

uε(0, x) = u0,ε(x), x ∈ (0, 1).

Here, Fε is a nondecreasing function on R defined by

Fε(r) := sign(r)
∫ |r|

0

min
{

1
ε
,

[s− 1]+

ε2

}
ds for r ∈ R,

where [s]+ denotes the positive part of s. Clearly, Fε is a C1-function with derivative
F ′ε ∈ W 1,∞(R). Note that for each ε ∈ (0, 1], the singular diffusion term (ux/|ux|)x and
the constraint ∂I[−1,1](u) in the problem (P) are approximated by(

(uε)x√
|(uε)x|2 + ε2

+ ε(uε)x

)
x

and Fε(uε),

respectively.
Now, we fix a primitive F̂ε of Fε such that

F̂ε(0) = 0 and F̂ε(r) ≥ 0 for all r ∈ R.

Then, for any ε ∈ (0, 1], let us set:

ϕε(z) :=

 κ

∫ 1

0

√
|zx|2 + ε2dx+

εκ

2

∫ 1

0

|zx|2dx+
∫ 1

0

F̂ε(z)dx if z ∈ H1(0, 1),

∞ otherwise.

Clearly, each functional ϕε (ε ∈ (0, 1]) forms a proper, l.s.c. and convex functional on
L2(0, 1) such that {ϕε} ∈ Φ({ar}, {br}) with ar(t) = br(t) ≡ 0 for any r ≥ 0 and t ∈ [0, T ].
Also, we get the following property.

Lemma 5.3 (cf. [16, Lemma 3.1]). ϕε converges to ϕ in the sense of Mosco [10] as ε→ 0,
where ϕ is the proper, l.s.c. convex function defined in (22).



326 N. YAMAZAKI

By a slight modification of [16, Lemma 3.1], we can prove Lemma 5.3, so we omit its
proof. For the detailed arguments, we refer to [16, Lemma 3.1].

We easily see that the approximating initial-boundary value problem (P)ε can be
reformulated as the following evolution equation (CP; f, u0,ε)ε:

(CP; f, u0,ε)ε

{
u′ε(t) + ∂ϕε(uε(t))− uε(t) 3 f(t) in L2(0, 1), for t ∈ (0, T );

uε(0) = u0,ε.

Here, we define the operator gε(z) := −z in L2(0, 1). Then, we easily see that {gε(·)} ∈
G({ϕε}). Therefore, by taking account of Lemma 5.3, and applying Proposition 2.1 and
Theorems 2.2–2.3, we get the existence of a unique solution of (P)ε, and the relationship
between the problem (23) and the optimal control problems of (P)ε.
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