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Abstract. This paper is part of the autumn school on “Variational problems and higher order

PDEs for affine hypersurfaces”. We discuss variational problems in equiaffine differential geome-

try, centroaffine differential geometry and relative differential geometry, which have been studied

by Blaschke [Bla], Chern [Ch], C. P. Wang [W], Li-Li-Simon [LLS], and Calabi [Ca-II]. We first

derive the Euler-Lagrange equations in these settings; these equations are complicated, strongly

nonlinear fourth order PDEs. We consider classes of solutions satisfying these equations together

with completeness conditions. We also formulate Bernstein problems and give partial solutions.
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3.1. Introduction

3.2. Preliminaries

3.3. The first variational formula

Many geometric problems in analytic formulation lead to important classes of PDEs.

The famous Minkowski and Bernstein problems are just two classical examples of such

problems which stimulated major developments in the theory of second order nonlinear

PDEs. Naturally, since the equations arise in geometric context, geometric methods play

a crucial role in these developments.

In affine differential geometry one often encounters fourth order nonlinear PDEs which

are far from being well understood. Consequently, new and significant efforts are required

for their investigation. Again, the natural approaches are typically based on geometric

ideas. The purpose of this talk is to study the fourth order equations associated with the

Bernstein problems in equiaffine differential geometry, centroaffine differential geometry

and relative differential geometry. Let us recall the following Euclidean Bernstein problem.

Theorem A (see [SSY]). Let x : M → Rn+1 be an n-dimensional minimal graph given

by

xn+1 = f(x1, . . . , xn), (x1, . . . , xn) ∈ Rn;

if n ≤ 7 then f is a linear function.

For n ≥ 8 there also exist other solutions. Many similar results were proved in different

geometries.

1. A VARIATIONAL PROBLEM IN EQUIAFFINE GEOMETRY

1.1. The first variation of the equiaffine volume. Let x : M → An+1 (n ≥ 2) be a

locally strongly convex affine hypersurface andD be a sufficiently small domain ofM with

compact support and boundary ∂D. With respect to a local frame field e1, . . . , en and its

dual frame field ω1, . . . , ωn we can express the Blaschke metric h by h =
∑

hijω
i ⊗ ωj .

In a local notation we raise and lower indices modulo h. Its affine volume (with respect

to the Blaschke metric h) is

V (D) =

∫

D

dV, (1.1.1)

where H := det(hij) and dV = |H|1/(n+2) ω1 ∧ · · · ∧ωn (see [Ch] or [LSZ-I]). We consider

the first variation δV (D) under an infinitesimal displacement ofD, with ∂D kept fixed. To

express this situation analytically, let I be the interval − 1
2 < t < 1

2 . Let f : M×I → An+1

be a smooth mapping such that its restriction to M × t, t ∈ I, is an immersion and

f(m, 0) = xt(m),m ∈ M . We consider a frame field eα(m, t) over M × I such that, for

every t ∈ I, ei(m, t) are tangent vectors and en+1(m, t) is in direction of the affine normal

to f(M × t) at (m, t). Pulling the forms ωα, ωβ
α in the frame manifold back to M × I, we

have, since ei span the tangent hyperplane at f(m, t),

ωn+1 = adt.
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Exterior differentiation gives
∑

ωi ∧ ωn+1
i + dt ∧ (aωn+1

n+1 + da) = 0.

It follows that we can set

ωn+1
i =

∑

hijω
j + hidt,

aωn+1
n+1 + da =

∑

hiω
i + hdt,

where

hij = hji.

The first variation of the volume (see [Bla], [ Ch]) is given by

V ′(0) =
n(n+ 1)

n+ 2

∫

D

|H|−1/(n+2)
L1adV |t=0, (1.1.2)

where L1 is the affine mean curvature of x.

If V ′(0) is zero for arbitrary functions a(m, t),m ∈ D, t ∈ I, satisfying a(m, 0) = 0,

hi(m, 0) = 0,m ∈ ∂D, we must have that the affine mean curvature satisfies L1 = 0.

Let x : M → An+1 be a locally strongly convex hypersurface, where the parameter

manifold M may be open, or compact with possibly empty, smooth boundary ∂M .

An allowable interior deformation of x is a differentiable map f : M × I → An+1,

where I is an open interval (−ǫ, ǫ), ǫ > 0, with the following properties:

(i) For each t ∈ I the map xt : M → An+1, defined by xt(p) = f(p, t), is a locally

strongly convex hypersurface such that, for t = 0, x0 = x.

(ii) There exists a compact subdomain
∑

′ ⊂ M (the closure of a connected, open

subset of M) with smooth boundary ∂
∑

′

, where ∂
∑

′

may contain, meet, or be disjoint

from ∂M such that, for each p ∈ M \
∑

′

and all t ∈ I, f(p, t) = x(p), and the tangent

hyperplane dxt(p) coincides with dx(p).

In the sequel, when we study variations of the affinely invariant volume of x(M) under

interior deformations, we may replace M , without loss of generality, by the compact

subdomain
∑

′ ⊂ M , otherwise from the beginning we assume that M is compact with

smooth boundary.

Definition 1.1.1. Let x : M → An+1 be a locally strongly convex hypersurface. If

L1 = 0 on M , then x(M) is called an affine maximal hypersurface.

It follows easily from (1.1.2) that affine maximal hypersurfaces are extremals of the

interior variation of the affinely invariant volume. Historically the hypersurface with L1 =

0 were called “affine minimal hypersurfaces”. Calabi (see [Ca-II]) suggested to call locally

strongly convex hypersurfaces with L1 = 0 “affine maximal hypersurfaces” because of the

following result (in fact, Calabi’s result is a little more general than this result, see[Ca-II]).

Theorem 1.1.1. Let x, x∗ : Ω → An+1 be two graphs defined on a compact domain

by locally strongly convex functions f, f∗, namely xn+1 = f(x1, . . . , xn) and xn+1 =

f∗(x1, . . . , xn), respectively. Suppose that f = f∗ and ∂f
∂xi = ∂f∗

∂xi , i = 1, 2, . . . , n on ∂Ω.

Denote by L1, L
∗

1, respectively, the affine mean curvatures of x and x∗, and by dV, dV ∗
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their equi-affinely invariant volume elements, respectively. If L1 = 0 on Ω, then
∫

Ω

dV ≥
∫

Ω

dV ∗,

and equality holds if and only if f = f∗ on Ω.

1.2. The PDE of affine maximal hypersurfaces. In this section, we derive the

partial differential equation of an affine maximal hypersurface. Let x : M → An+1 be the

graph of a strictly convex function

xn+1 = f(x1, . . . , xn), (x1, . . . , xn) ∈ Ω ⊂ An.

Choose the following unimodular affine frame field:

e1 =

(

1, 0, . . . , 0,
∂f

∂x1

)

,

e2 =

(

(0, 1, . . . , 0,
∂f

∂x2

)

,

...

en =

(

(0, 0, . . . , 0,
∂f

∂xn

)

,

en+1 = (0, 0, . . . , 0, 1).

Then the Blaschke metric h is given by

h =

[

det

(

∂2f

∂xjxi

)]

−1/(n+2)
∑

i,j

∂2f

∂xjxi
dxidxj .

The affine conormal vector field U can be identified with
[

det

(

∂2f

∂xjxi

)]

−1/(n+2)(

− ∂f

∂x1
, . . . ,− ∂f

∂xn
, 1

)

.

The formula △U + nL1U = 0 implies now the following

Theorem 1.2.1. Let x : M → An+1 be a locally strongly convex hypersurface, given as

graph of a function f ; x is an affine maximal hypersurface (which means L1 ≡ 0 on M)

if and only if f satisfies the PDE

∆

{[

det

(

∂2f

∂xj∂xi

)]

−1/(n+2)}

= 0, (1.2.1)

where the Laplacian, in local coordinates, is defined by

∆ =
1

√

det(hkl)

n
∑

i,j=1

∂

∂xi

(

hij
√

det(hkl)
∂

∂xj

)

.

Obviously, any parabolic affine hypersphere is an affine maximal hypersurface. In

particular, the elliptic paraboloid

xn+1 =
1

2
[(x1)2 + · · · + (xn)2], (x1, . . . , xn) ∈ An
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is an affine-complete maximal hypersurface. Here we call x : M → An+1 an affine-

complete hypersurface, if x is complete with respect to the Blaschke metric h.

Denote

ρ :=

[

det

(

∂2f

∂xi∂xj

)]

−1/(n+2)

.

Then (1.2.1) is equivalent to

∆ρ = 0. (1.2.1)′

Note that in terms of the coordinates x1, . . . , xn, (1.2.1) can be written as

∑

i,j

f ij ∂
2(ρn+1)

∂xi∂xj
= 0. (1.2.1)

′′

We can rewrite the PDE (1.2.1) in an equivalent form by using the Legendre func-

tion. It follows from the convexity of f that the Hessian (fxixj
) is positive definite. The

Legendre transformation relative to f is defined by (see chapter 2 of [LSZ-I])

F : D → Rn, (x1, . . . , xn) → (ξ1, . . . , ξn),

where D ⊂ Rn is the Legendre transform domain, and

ξi = fxi
=

∂f

∂xi
, i = 1, . . . , n.

The Legendre function u is defined by

u(ξ1, . . . , ξn) =
∑

i

xifxi
(x1, . . . , xn) − f(x1, . . . , xn). (1.2.2)

We know that ( ∂2u
∂ξi∂ξj

) is the inverse matrix of the Hessian matrix (fxixj
) (see [LSZ-I]).

Then the hypersurface can be represented in terms of ξ1, . . . , ξn as follows

x = (x1, . . . , xn, f(x1, . . . , xn)) =

(

∂u

∂ξ1
, . . . ,

∂u

∂ξn
,−u+

∑

i

ξi
∂

∂ξi

)

.

In terms of the coordinates ξ1, . . . , ξn, (1.2.1) can be written as

∑

uij ∂
2(ρ−1)

∂ξi∂ξj
= 0. (1.2.3)

1.3. The second variation of the affine volume. We use the same notation as in

section 1.2. Calabi calculated the second variation of the affine volume for an affine

maximal hypersurface x : M → An+1 and got

V
′′

(0) = −(n+ 1)

∫

M

{

(∆a)2 − (n+ 2)
∑

i,j

Bija,ia,j + (n+ 2)
∑

i,j

BijBija
2
}

dV, (1.3.1)

where coefficients of the Weingarten form B are denoted by Bij ; see p. 51 of [LSZ-I].

By use of (1.3.1), Calabi proved

Theorem 1.3.1 (Calabi [Ca-II]). Let x : M → A3 be an affine maximal surface, then the

second variation of the affine volume (with respect to Blaschke metric) under all interior

deformations of x is negative definite.

We end this chapter with the following conjectures:
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Chern’s affine Bernstein conjecture ([Ch]). Consider a locally strongly convex

graph x:Rn → An+1 with vanishing affine mean curvature L1 = 0. Then x is an elliptic

paraboloid.

Calabi’s affine Bernstein conjecture ([Ca-I]). Consider a locally strongly convex

hypersurface x:Mn → An+1 with vanishing affine mean curvature L1 = 0 and complete

Blaschke metric. Then x is an elliptic paraboloid.

2. A VARIATIONAL PROBLEM IN CENTROAFFINE GEOMETRY

2.0. Introduction. From the point of view of PDEs the affine hypersurface theories are

attractive topics as the study of curvature properties and variational problems leads to

difficult PDEs of order at least four. The serious difficulties as well as the challenges are

reflected by the history of famous problems such as the global classification of all locally

strongly convex affine spheres or the solution of the affine Bernstein conjectures of Calabi

and Chern in Blaschke’s unimodular theory.

In centroaffine differential geometry one studies the properties of hypersurfaces in

Rn+1 which are invariant under the centroaffine transformation group G = GL(n+1, R),

where G keeps the origin O ∈ Rn+1 fixed. In this chapter, we consider centroaffine

Bernstein problems. C. P. Wang [W] studied the Euler-Lagrange equation for the area

functional of a so called centroaffine hypersurface. As there are no general results about

the sign of the second variation of the centroaffine area integral, we use the terminology

centroaffine extremal hypersurface in case the Euler-Lagrange equation is satisfied. This

equation is given by a fourth order PDE, namely, traceT = 0, where T is the so called

Tchebychev operator; in contrast to the Euclidean and also to the above mentioned

unimodular Bernstein problems, the operator T is not related to something similar to

”extrinsic curvature”. In terms of a local representation of a hypersurface as a graph,

the Euler-Lagrange equation is given by (2.3.12) below, where the Laplacian is defined

in terms of the centroaffine metric; its expression for graphs is well known. The equation

(2.3.12) is strongly nonlinear, and, presently, any attempt of a classification of all its

solutions seems to be hopeless.

What about known examples of centroaffine extremal hypersurfaces? All proper affine

spheres satisfy the equation traceT = 0; chapter 2 in [LSZ-I] contains many local results

and the global classification of all locally strongly convex affine spheres. For proper affine

spheres the Blaschke geometry and the centroaffine geometry coincide, and, in particular,

the completeness conditions for their metrics are the same. Thus, metrically complete

proper affine hyperspheres are centroaffine extremal and complete, with the ellipsoid being

the only compact affine hypersphere. Besides affine spheres there are more examples of

centroaffine extremal hypersurfaces [W]. In section 2.3 we study classes of such examples

and give a generalized Calabi composition to produce again a family of centroaffine

extremal hypersurfaces from two given centroaffine extremal hypersurfaces. Moreover,

we derive the fourth order equation (2.3.12) for an extremal graph. The study of large

classes of examples of complete hypersurfaces in centroaffine geometry shows that the

situation here is quite different from that in the Euclidean and the affine geometries,
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resp., where, at least in low dimensions, there is only one candidate for a solution in any

of the Bernstein problems. A detailed study of the examples leads to the formulation

of different centroaffine Bernstein problems in section 2.5. For partial subclassifications,

additional assumptions on the curvature and the Tchebychev form are quite natural in

the centroaffine context, and examples show that they obviously are needed for further

subclassifications. In the last sections 2.5-2.7 we formulate and prove our main results

which give partial solutions of the centroaffine Bernstein problems.

2.1. Centroaffine hypersurfaces in Rn+1. We summarize basic formulas of cen-

troaffine hypersurface theory in terms of Cartan’s moving frames (compare [LSZ-I], chap-

ters 1-2; for an approach in the invariant calculus see [SS], chapters 4-6). We restrict to

locally strongly convex hypersurfaces as in this case the so called centroaffine metric is a

Riemannian metric; see section 4.3.3 in [SS].

Let x : M → Rn+1 be a locally strongly convex hypersurface and assume that the

position vector x is transversal to the tangent hyperplane x∗(TM) at each point p ∈M .

In particular, this implies that O /∈ x(M). In a standard terminology, a hypersurface nor-

malized by its transversal position vector is called a centroaffine hypersurface. According

to the type of the hypersurface one uses different orientations for the normalization to

get a positive definite centroaffine metric:

1. Hyperbolic type: For any point x(p) ∈ Rn+1, the origin of Rn+1 and the hyper-

surface are on different sides of the tangent hyperplane x∗(TM); the centroaffine normal

vector field is given by en+1 = x (examples are hyperbolic affine hyperspheres in Rn+1

centered at O ∈ Rn+1).

2. Elliptic type: For any point x(p) ∈ Rn+1, the origin of Rn+1 and the hypersurface

are on the same side of the tangent hyperplane x∗(TM); the centroaffine normal vector

field is given by en+1 = −x (examples are elliptic affine hyperspheres in Rn+1 centered

at O ∈ Rn+1).

As already stated in the introduction, in centroaffine differential geometry we study

the properties of hypersurfaces in Rn+1 that are invariant under the centroaffine trans-

formation group G. For the hypersurface, we choose a centroaffine frame field {e1, . . . , en,

en+1} with en+1 = −ǫx (ǫ = 1 for elliptic type, ǫ = −1 for hyperbolic type) and

e1, . . . , en ∈ TxM ; we denote by {ω1, . . . , ωn} the dual frame field of the tangential

frame field. The structure equations read

dx =
∑

i

ωiei, ωn+1 = 0, (2.1.1)

dei =
∑

j

ωj
i ej + ωn+1

i en+1, (2.1.2)

den+1 =
∑

i

ωi
n+1ei, ωn+1

n+1 = 0, ωi
n+1 = −ǫωi. (2.1.3)

Differentiation of (2.1.1) − (2.1.3) gives the integrability conditions (2.1.4)–(2.1.6):

dωi =
∑

j

ωj ∧ ωi
j ,

∑

i

ωi ∧ ωn+1
i = 0, (2.1.4)
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dωj
i =

∑

k

ωk
i ∧ ωj

k − ǫωn+1
i ∧ ωj , dωn+1

i =
∑

j

ωj
i ∧ ωn+1

j , (2.1.5)

dωi
n+1 =

∑

j

ωj
n+1 ∧ ωi

j . (2.1.6)

From the second equation of (2.1.4), we have

ωn+1
i =

∑

i,j

hijω
j , hij = hji. (2.1.7)

For locally strongly convex hypersurfaces, the quadratic form

h =
∑

i,j

hijω
iωj (2.1.8)

is positive definite by appropriate choice of the orientation; h is called the centroaffine

metric of the hypersurface. It is well known that h is independent of the choice of the

frame {e1, . . . , en} and that h is invariant under transformations of the group G. The

centroaffine metric is the first fundamental invariant of centroaffine hypersurface theory.

We sketch how to derive a second fundamental invariant. We choose a centroaffine

tangential frame {e1, . . . , en} on M such that hij = δij , i.e.,

ωn+1
i = ωi. (2.1.9)

Differentiate (2.1.9) and use (2.1.5); this implies

dωi =
∑

j

ωij ∧ ωj . (2.1.10)

(2.1.4) and (2.1.10) give

dωi =
∑

j

ωj ∧
[

1

2
(ωji − ωij)

]

. (2.1.11)

The expression 1
2 (ωji − ωij) is skew-symmetric and {ω1, . . . , ωn} is an orthonormal

coframe of h. (2.1.11) and the fundamental theorem of Riemannian geometry imply that

the Levi-Civita connection of h satisfies

ω̃ji =
1

2
(ωji − ωij), ω̃ji = −ω̃ij . (2.1.12)

Define

ωij − ω̃ij =
1

2
(ωij + ωji) =

∑

k

Aijkω
k. (2.1.13)

This gives the symmetry relation

Aijk = Ajik. (2.1.14)

Combine (2.1.10) with (2.1.11) and use (2.1.13):
∑

j,k

Aijkωj ∧ ωk = 0,

this implies the total symmetry of the form

A =
∑

i,j,k

Aijkω
iωjωk,
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namely

Aijk = Aikj = Ajik. (2.1.15)

The form A is called the centroaffine cubic form of the hypersurface. Again it is well known

that this form is independent of the choice of the frame and invariant under transforma-

tions of the group G. The vanishing of its traceless part characterizes hyperquadrics (see

[SS], section 7.1; [LLSSW], Lemma 2.1 and Remark 2.2).

The uniqueness part of the fundamental theorem of centroaffine hypersurface theory

states that the forms h and A together build a fundamental system of centroaffine in-

variants of the hypersurface, that means that they completely describe the geometry of x

which is invariant under the transformations of G. Considering integrability conditions,

one also can state an existence theorem using the forms h and A.

We need the following two important geometric invariants built from h and A:

J =
1

n(n− 1)

∑

i,j,k

A2
ijk (2.1.16)

is called the centroaffine Pick invariant. The tangent vector field

T =
∑

i

Tiei, Ti =
1

n

n
∑

j=1

Ajji (2.1.17)

is called the centroaffine Tchebychev vector field of x. For locally strongly convex hyper-

surfaces the metric is positive definite, thus the vanishing of J implies that of A and T ,

and therefore that of the traceless part of A; the hypersurface must be a quadric. In the

context of relative geometry and in terms of volume forms, the geometric meaning of T

was studied in section 4.4.8, 4.4.9 in [SS]. In the centroaffine case, there is an additional

well known relation between T , the so called centroaffine Tchebychev function ψ and the

support function ρ of the Blaschke geometry. To state this relation, we recall the following

definition from section 2 of [LSZ-II].

Definition 2.2.1. The positive function ψ, given by

ψ =
det(hij)

[e1, . . . , en, x]2
, (2.1.18)

is independent of the choice of the frame {e1, . . . , en} and is invariant under transforma-

tions of G, where [· · ·] is the determinant. We call the function ψ the Tchebychev function

of x.

Choosing i = j in (2.1.13) and summing up over i, we get
∑

i,k

Aiikω
k =

∑

i

ωii = d(log[e1, . . . , en, x]) = −1

2
d logψ. (2.1.19)

One can compare invariants from different relative geometries of a hypersurface (see

section 5 in [SS]); from (2.19) (cf. formula (2) in [LSZ-II]) it follows that the equiaffine

support function ρ (section 4.13 in [SS]), the centroaffine Tchebychev function ψ defined

above, and the Tchebychev vector field T satisfy the relation

Ti = − 1

2n
(logψ)i =

(n+ 2)

2n
(log ρ)i, (2.2.20)
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The relation

ρ = const

characterizes proper affine spheres (section 7.2 in [SS]); this is equivalent to the cen-

troaffine relation T = 0. Our foregoing remarks clarify the geometric meaning of the

invariants J and T .

For later applications we list the integrability conditions in terms of the metric and the

cubic form. In a standard local notation, by a comma we indicate covariant differentiation

in terms of the Levi-Civita connection. The sign of the Riemannian curvature tensor

Ω =
∑

Rijklω
i ⊗ ωj ⊗ ωk ⊗ ωl of h is fixed by

dω̃ij −
∑

k

ω̃ik ∧ ω̃kj = −1

2

∑

k,l

Rijklω
k ∧ ωl. (2.1.21)

In terms of the frame considered (hij = δij), the Gauss equations read

Rijkl =
∑

(AjkmAmil −AikmAmjl) + ǫ(δikδjl − δjkδil), (2.1.22)

while the cubic form satisfies Codazzi equations, that means the covariant derivative is

totally symmetric:

Aijk,l = Aijl,k. (2.1.23)

Here, as mentioned above, Aijk,l are the components of the covariant derivative of A with

respect to the Levi-Civita connection of h. Contraction of (2.1.22) gives the important

relations

Rik =
∑

AimlAmlk − n
∑

m

TmAmik + ǫ(n− 1)δik, (2.1.24)

where Rik denote the components of the Ricci tensor, and the “centroaffine theorema

egregium”

n(n− 1)κ = R = n(n− 1)(J + ǫ) − n2|T |2, |T |2 =
∑

(Ti)
2, (2.1.25)

where κ denotes the normalized scalar curvature.

Later we will need the Ricci identities

Aijk,lm −Aijk,ml =
∑

ArjkRrilm +
∑

AirkRrjlm +
∑

AijrRrklm. (2.1.26)

The Codazzi equations for A (or the relations between T and the Tchebychev function)

imply

Ti,j = Tj,i. (2.1.27)

If Ti,j = 0, we say that the Tchebychev vector field T is parallel.

As stated above, for a centroaffine hypersurface the position vector is used for a

normalization; from this a Weingarten type equation is trivial, and there is no shape

operator describing “exterior curvature” in the standard way. But studies of Wang [W]

and other authors ([LW1], [LLSSW]) show that there is another important operator in

centroaffine geometry. Wang called this operator originally shape operator, but for the

reasons just stated, later the notion was changed to Tchebychev operator. This operator

T : TM → TM of x is defined by

T (v) := ∇vT, v ∈ TM. (2.1.28)
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The foregoing relation Ti,j = Tj,i implies that T is a self-adjoint operator with respect

to the centroaffine metric h. Moreover, T ≡ 0 if and only if T is parallel.

2.2. The first and second variation of the centroaffine volume. Let x : M →
Rn+1 be a compact locally strongly convex centroaffine hypersurface with boundary ∂M .

We consider the variation f : M × R → Rn+1 such that (i) f0 = x on M ; (ii) for each

(small) t, ft := f(·, t) : M → Rn+1 is a locally strongly convex centroaffine hypersurface;

(iii) ft = x and dft(TM) = dx(TM) on ∂M for each (small) t. Such f will be called an

admitted variation of x.

Let f be an admitted variation of x. Let {Ei} be a local orthonormal basis for the

centroaffine metric ht induced by ft and {ωi} the dual basis for {Ei}. We can identify

T (M ×R) with TM ⊕ TR. Then {E1, . . . , En, ∂/∂t} is a local basis for T (M × R) with

the dual basis {ω1, . . . , ωn, dt}. We denote ei = Ei(ft), then {e1, . . . , en, f} is a moving

frame in Rn+1 along M ×R. Thus we can find 1-forms {θα, θij , θ
∗

i } on M ×R such that

df =

n
∑

i=1

θiei + θ0f, (2.2.1)

dei =
n

∑

i=1

θijej + θ∗i f. (2.2.2)

We denote the variational vector field in Rn+1 by

∂f

∂t
= φf +

∑

i

ψiei (2.2.3)

for some smooth functions φ and ψi with φ = ψi = 0 on ∂M . By (2.2.3) and the fact

dft(TM) = dx(TM) on ∂M we have φi = Ei(φ) = 0 on ∂M . From (2.1) we get

∂f

∂t
= df

(

∂

∂t

)

=
∑

i

θi

(

∂

∂t

)

ei + θ0

(

∂

∂t

)

f.

Thus (2.2.3) implies that θi(∂/∂t) = ψi and θ0(∂/∂t) = φ. Furthermore, from (2.2.1)

we have

ej = Ej(f) = df(Ej) =
∑

i

θi(Ej)ei + θ0(Ej)f,

so we get θi(Ej) = δij and θ0(Ej) = 0. Therefore

θi = ωi + ψidt, θ0 = φdt. (2.2.4)

In similar way, we can write

θ∗i = −ǫωi + aidt (2.2.5)

for some 1-forms ωi ∈ T ∗M and some smooth functions ai. Since T ∗(M × R) = T ∗M ⊕
T ∗R, we can write

θij = ωij +Bijdt (2.2.6)

for some 1-forms ωij ∈ T ∗M and some smooth functions Bij . By taking exterior differ-

entiation of (2.2.1) and (2.2.2), we obtain

dθ0 =
∑

i

θi ∧ θ∗i , (2.2.7)
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dθi =
∑

j

θj ∧ θji + θ0 ∧ θi, (2.2.8)

dθ∗i =
∑

j

θij ∧ θ∗j + θ∗i ∧ θ0, (2.2.9)

dθij =
∑

k

θik ∧ θkj + θ∗i ∧ θj . (2.2.10)

Since the exterior differential operator on T ∗(M ×R) = T ∗M ⊕ T ∗R is given by

d = dM + dt ∧ ∂

∂t
, (2.2.11)

where dM is the exterior differential operator on T ∗M , from (2.2.7), (2.2.4) and (2.2.5)

we get
(

dM + dt ∧ ∂

∂t

)

(φdt) =
∑

i

(ωi + ψidt) ∧ (−ǫωi + aidt).

Thus dMφ =
∑

i(ai + ǫψ)ωi. If we write dMφ =
∑

i φiωi, then we have

ai = φi − ǫψi. (2.2.12)

Similarly, using (2.2.8), (2.2.4) and (2.2.6), we get

∂ωi

∂t
= dMψi +

∑

j

ψjωji + φωi −
∑

j

ωjBji, (2.2.13)

and using (2.2.9), (2.2.5), (2.2.4) and (2.2.6), we get

dMai + ǫ
∂ωi

∂t
=

∑

j

ajωij + ǫ
∑

j

ωjBij − ǫφωi. (2.2.14)

We denote by ω̃ij the Levi-Civita connection for the centroaffine metric ht of ft. Like

in (2.1.13) we can define the cubic form A =
∑

i,j,k Aijkωiωjωk for ft by
∑

k Aijkωk =

ωij − ω̃ij . For any 1-form α =
∑

i αiωi on M we denote by ∇α =
∑

i,j αi,jωi ⊗ ωj the

covariant derivative of α with respect to ω̃ij , where αi,j are defined by

dMαi +
∑

j

αjω̃ji =
∑

j

αi,jωj .

Thus we can rewrite (2.2.13) and (2.2.14) as

∂ωi

∂t
=

∑

j

(ψi,j +
∑

k

ψkAijk −Bji + φδij)ωj , (2.2.15)

∂ωi

∂t
=

∑

j

(

− ǫai,j + ǫ
∑

k

akAijk +Bij − φδij

)

ωj . (2.2.16)

By adding these two equations and using (2.2.12) we obtain

∂ωi

∂t
=

1

2

∑

j

(ψi,j − ǫai,j + ǫ
∑

k

φkAijk +Bij −Bji)ωj . (2.2.17)

Thus we have
∂

∂t
(ω1 ∧ · · · ∧ ωn) =

1

2

{

∑

i

(ψi,i − ǫai,i) + nǫ
∑

k

φkTk

}

dM, (2.2.18)
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where dM := ω1 ∧ · · · ∧ωn. We note that all terms in (2.2.18) are globally defined on M .

Since ∂f/∂t = 0 on ∂M , by Green’s formula we get

V ′(t) =
∂

∂t

(∫

M

ω1 ∧ · · · ∧ ωn

)

=

∫

M

∂

∂t
(ω1 ∧ · · · ∧ ωn))

=
nǫ

2

∫

M

(

∑

k

Tkφk

)

dM = −nǫ
2

∫

M

(

∑

k

Tk,k

)

φdM. (2.2.19)

We proved

Theorem 2.2.1 (Wang [W]). The relation traceT = 0 is the Euler-Lagrange equation

for the centroaffine area functional.

As there is no general statement about the sign of the second variation, we call the

critical points of the area functional “extremal centroaffine hypersurfaces” (other authors

call them minimal centroaffine hypersurfaces).

By (1.2.20), we obtain

Theorem 2.2.2 (Wang [W]). Let x : M → Rn+1 (n ≥ 2) be a centroaffine hypersurface

with Tchebychev function ψ. Then x is an extremal centroaffine hypersurface if and only

if

∆(logψ) = 0, (2.2.20)

where ∆ is the Laplacian of the centroaffine metric h of x.

Let x : M → Rn+1 be a centroaffine extremal hypersurface. Let f : M×R→ Rn+1 be

an admitted variation with compact support which fixes the boundary ∂M . By Theorem

2.2.1, we may assume that ∂f/∂t = φf . Wang calculated the second variation of the

centroaffine area functional and proved

Theorem 2.2.3 (Wang [W]). Let x : M → Rn+1 be a centroaffine extremal hypersurface,

then

V ′′(0) = − 1

4

∫

M

{

∆φ(∆φ+ 2(n+ 1)ǫφ) − n2
(

∑

i

Tiφi

)2

+ 2n
∑

i,j,k

AijkTiφjφk

}

dM. (2.2.21)

Corollary 2.2.1 (Wang [W]). The hyperbolic equiaffine hypersurfaces in Rn+1 centered

at 0 ∈ Rn+1 are stable centroaffine extremal hypersurfaces.

Proof. For hyperbolic equiaffine hypersurfaces we have Ti = 0 and ǫ = −1. Thus

V ′′(0) = −1

4

∫

M

{∆φ(∆φ− 2(n+ 1)φ)dM

= −1

4

∫

M

{∆φ(∆φ+ 2(n+ 1)‖∇φ‖2)dM ≤ 0.

Moreover, V ′′(0) ≡ 0 if and only if φ = 0.

Corollary 2.2.2 (Wang [W]). The ellipsoid in Rn+1 centered at 0 ∈ Rn+1 is unstable.
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Proof. For the ellipsoid we have Ti = 0 and ǫ = 1. By (2.2.21) we get

V ′′(0) = −1

4

∫

M

∆φ(∆φ+ 2(n+ 1)φ)dM.

Let ψk be the k-th eigenfunction of ∆. Since (M,h) is isometric to the standard sphere

Sn, we have ∆φk = −k(k + n− 1)ψk. Thus

V ′′

k (0) = −1

4
k(k + n− 1){k(k + n− 1) − 2(n+ 1)}

∫

M

(ψk)2dM.

So V ′′

1 (0) > 0;V ′′

2 (0) = 0 and V ′′

k (0) < 0, k = 3, 4, . . ..

2.3. Examples of extremal centroaffine hypersurfaces. In this section, we recall

examples of locally strongly convex, extremal centroaffine hypersurfaces; some already

were listed in [W]. The convexity condition implies that the centroaffine metric is positive

definite for an appropriate orientation of the normalization. It is well known that the

hyperellipsoids are the only closed (compact without boundary), centroaffine extremal

hypersurfaces; this result is due to C. P. Wang.

Proposition 2.3.1 (Theorem 1 of [W]). Let x : M → Rn+1 (n ≥ 2) be a compact

centroaffine hypersurface with constant trace of the Tchebychev operator. Then x(M) is

centroaffinely equivalent to a hyperellipsoid centered at 0 ∈ Rn+1.

In this section we consider non-compact examples which satisfy at least one of the

following completeness conditions:

(i) the centroaffine metric is complete;

(ii) the hypersurface can be represented as graph over a hyperplane.

We will come back to the completeness conditions in section 4 below.

Example 2.3.1 (Proper affine spheres). According to C. P. Wang [W], any locally strong-

ly convex, proper affine hypersphere is centroaffine extremal. This is a trivial consequence

of the fact that the vanishing of the Tchebychev field characterizes proper affine spheres

in centroaffine geometry. In the Blaschke geometry, it is well known that hyperbolic affine

hyperspheres can be described in terms of solutions of some Monge-Ampère equations;

therefore there are many proper affine hyperspheres, and thus this gives a very large

class of centroaffine extremal hypersurfaces. For proper affine hyperspheres the unimod-

ular (equiaffine) theory (sometimes called Blaschke theory) and the centroaffine theory

coincide modulo a nonzero constant factor. In particular this implies that the notions of

completeness with respect to the metrics coincide in both theories. The classification of

the locally strongly convex affine hyperspheres, which are complete with respect to the

affine metric, was finished about a decade ago; see e.g. [LSZ-I], chapter 2. Considering

proper affine hyperspheres, there are two subclasses, namely the elliptic ones and the

hyperbolic ones. While there is only one type of complete elliptic affine hyperspheres,

namely the hyperellipsoid, the class of complete hyperbolic affine hyperspheres is de-

scribed by what Calabi originally stated as a conjecture (see [LSZ-I], section 2.7); all

examples in this latter class are non compact, but they satisfy both completeness con-

ditions (i) and (ii) (in fact, in this case the two completeness conditions are equivalent).
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From this, any hyperbolic affine hypersphere is an example of a noncompact, centroaffine

extremal hypersurface satisfying the two different completeness conditions (i) and (ii).

Moreover, their Ricci tensor is bounded below: Ric ≥ −(n− 1)h.

A particular example in this class is one sheet of a two-sheeted hyperboloid H(c, n):

(xn+1)
2 = c2 + (x1)

2 + · · · + (xn)2, (x1, . . . , xn) ∈ Rn, c > 0. (2.3.1)

We have (see [LSZ-I])

Aijk = 0, 1 ≤ i, j, k ≤ n.

Thus it is a centroaffine extremal hypersurface satisfying two different completeness

conditions; for a hyperboloid the Pick invariant vanishes: J ≡ 0. The Riemannian curva-

ture tensor of the centroaffine metric and its Ricci curvature tensor satisfy

Rijkl = −c−
2n+2
n+2 (hikhjl − hilhjk), (2.3.2)

Rik = −(n− 1)c−
2n+2
n+2 hik. (2.3.3)

Obviously the sectional curvature, the Ricci curvature and the scalar curvature of the

metric of H(c, n) are negative constants.

Example 2.3.2 (Centroaffine graphs with constant trace of the Tchebychev operator). Let

x : M → Rn+1 be a locally strongly convex hypersurface with transversal position vector

x at each point M . Then we have a local representation of x as graph:

xn+1 = f(x1, x2, . . . , xn). (2.3.4)

We have the centroaffine frame

ei = (0, . . . , 1, . . . , 0, fxi
), 1 ≤ i ≤ n, en+1 = (x1, x2, . . . , xn, f), (2.3.5)

where fxi
= ∂f

∂xi
. The structure equations read

dx =
∑

i

ωiei, (2.3.6)

dei =
∑

j

ωj
i ei +

∑

j

hijω
jen+1, (2.3.7)

thus we have

[e1, . . . , en, x] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0 fx1

1 1 · · · 0 fx2

...
... · · ·

...
...

0 0 · · · 1 fxn

x1 x2 · · · xn f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= f −
∑

i

xifxi
,

(hij) =

(

fxixj

f − x1fx1
− · · ·xnfxn

)

(2.3.8)

and

det(hij) =
1

(f −
∑

i xifxi
)n

· det(fxixj
). (2.3.9)
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The Tchebychev function ψ is given by

ψ =
det(hij)

[e1, . . . , en, x]2
=

1

(f −
∑

i xifxi
)n+2

· det(fxixj
). (2.3.10)

Therefore x is a centroaffine local graph with constant value a for the trace of the

Tchebychev operator if and only if the graph function f satisfies the following nonlinear

PDE of fourth order:

∆

{

log

(

det(hij)

[e1, . . . , en, x]2

)}

= ∆

{

log

(

det(fxixj
)

(f −
∑

i xifxi
)n+2

)}

= a. (2.3.11)

As above, ∆ is the Laplacian of the centroaffine metric h of x. In particular, we get a

nonlinear PDE of fourth order for centroaffine extremal hypersurfaces. This allows us to

consider a centroaffine Bernstein problem using this PDE.

Proposition 2.3.2. Let x be a locally strongly convex graph given by the function f in

(2.3.4). Then x is centroaffine extremal if and only if f satisfies the PDE

∆

{

log

(

det(fxixj
)

(f −
∑

i xifxi
)n+2

)}

= 0. (2.3.12)

Remark 2.3.1. (i) We can rewrite the PDE (2.3.12) in a simpler form using the Legendre

function. It follows from the convexity of f that the Hessian (fxixj
) is positive definite.

The Legendre transformation relative to f is defined by (see chapter 2 of [LSZ-I])

F : D → Rn, (x1, . . . , xn) → (ξ1, . . . , ξn),

where D ⊂ Rn is the Legendre transform domain, and

ξi = fxi
=

∂f

∂xi
, i = 1, . . . , n.

The Legendre function u is defined by

u(ξ1, . . . , ξn) =
∑

i

xifxi
(x1, . . . , xn) − f(x1, . . . , xn). (2.3.13)

We know that ( ∂2u
∂ξi∂ξj

) is the inverse matrix of the Hessian (fxixj
) (see [LSZ-I]). Thus the

PDE (2.3.12) of the centroaffine extremal graph can be rewritten as

∆

{

log

(

(−u)n+2 · det

(

∂2u

∂ξi∂ξj

))}

= 0. (2.3.14)

Equations (2.3.12) and (2.3.14) show the following: in terms of a graph function, the

Euler-Lagrange equation for centroaffine extremal hypersurfaces is a highly complicated

nonlinear fourth order PDE. From the global classification of locally strongly convex

hyperbolic affine spheres we know about earlier difficulties to solve the much simpler

equation (2.3.15).

(ii) We recall that the PDE of a hyperbolic hypersphere with constant affine mean

curvature L1, in terms of the Legendre function, is (see [LSZ-I], p. 132)

(−u)n+2 · det

(

∂2u

∂ξi∂ξj

)

= (−L1)
−n−2. (2.3.15)

Example 2.3.3 (Wang’s class of centroaffine extremal hypersurfaces). Li-Wang [LW] and

Wang [W] also listed the following type of hypersurfaces, and Wang proved that they are
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centroaffine extremal:

(x1)
β1(x2)

β2 · · · (xn+1)
βn+1 = c, c > 0, βi > 0, 1 ≤ i ≤ n+ 1.

It is easy to see that the above hypersurfaces also can be represented by

Q(c;α1, . . . , αn;n) : xn+1 = cx−α1
1 x−α2

2 · · ·x−αn
n , c > 0, 1 ≤ i ≤ n, (2.3.16)

where αi = βi/βn+1 > 0.

Consider the connected component

xn+1 =
c

(x1)α1(x2)α2 · · · (xn)αn
, for x1 > 0, . . . , xn > 0.

This representation of the hypersurface in terms of a graph function

f(x1, . . . , xn) = cx−α1
1 · · ·x−αn

n

admits us to apply the calculations from Example 2.3.2:

hii =
αi(1 + αi)

1 + α1 + · · · + αn
· x−2

i , 1 ≤ i ≤ n,

hij =
αiαj

1 + α1 + · · · + αn
· x−1

i x−1
j , 1 ≤ i 6= j ≤ n,

det(hij) =
α1 · · ·αn

(1 + α1 + · · · + αn)n−1
x−2

1 · · ·x−2
n ,

[e1, e2, . . . , en, x] = c(1 + α1 + · · · + αn)x−α1
1 · · ·x−αn

n .

We calculate the Tchebychev function:

ψ =
det(hij)

[e1, . . . , en, x]2
=

1

(f − ∑

i xifxi
)n+2

· det(fxixj
)

=
1

c2
· α1 · · ·αn

(1 + α1 + · · · + αn)n+1
x−2+2α1

1 · · ·x−2+2αn
n . (2.3.17)

We easily see that the Tchebychev field has constant norm for any hypersurface of

this class and that it satisfies |T | = 0 if and only if

α1 = α2 = · · · = αn = 1.

Thus there is exactly one affine hypersphere in the class Q(c;α1, . . . , αn;n). As men-

tioned, it is well known that proper affine spheres, in terms of centroaffine invariants, can

be characterized by the vanishing of the Tchebychev field. Thus Wang’s large class of

centroaffine extremal hypersurfaces contains exactly one proper affine sphere, and within

the example 2.3.3 the nonvanishing of the Tchebychev field characterizes the hypersur-

faces not belonging to the class 3.1. Again, all hypersurfaces of the class 3.3 satisfy both

completeness conditions (i) and (ii), stated at the beginning of this section.

To calculate the curvature tensor easily, we introduce new parameters u1, u2, . . . , un:

xi = eui , 1 ≤ i ≤ n.

Then Q(c;α1, . . . , αn;n) can be represented as graph in terms of u1, . . . , un by

(x1, . . . , xn, xn+1) = (eu1 , eu2 , . . . , eun , ce−α1u1−α2u2−···−αnun).
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The coefficients of the centroaffine metric

h =
∑

i,j

hijdxidxj =
∑

i,j

h̃ijduiduj

satisfy

(h̃ij) =
1

1 + α1 + · · · + αn











α1(1 + α1) α1α2 · · · α1αn

α2α1 α2(1 + α2) · · · α2αn

. . .
...

. . .
...

αnα1 αnα2 · · · αn(1 + αn)











.

Since (h̃ij) is a constant matrix, we immediately get that the metric is flat. From [LW]

we also know

Aijk,l = 0, but J = constant 6= 0.

The properties just stated characterize the class Q(c;α1, . . . , αn;n). A.-M. Li and C.

P. Wang proved

Proposition 2.3.3 (see Theorem 1.3 in [LW]). Let x : M → Rn+1 be an n-dimensional

(n ≥ 2) centroaffine hypersurface. If its centroaffine metric is flat and its centroaffine

Pick form is parallel with respect to its centroaffine metric, then x(M) is centroaffinely

equivalent to one of the following hypersurfaces in Rn+1:

xα1
1 xα2

2 · · ·xαn+1

n+1 = 1, α1 > 0, . . . , αn+1 > 0.

In particular, any hypersurface of type Q(c;α1, . . . , αn;n) is an extremal centroaffine

hypersurface with flat centroaffine metric and parallel centroaffine cubic form; contraction

gives that the Tchebychev operator vanishes and thus the square of the norm of T is

constant (and non-zero for all such hypersurfaces which are not affine spheres). Moreover,

the two completeness conditions (i) and (ii) are satisfied.

Example 2.3.4 (Generalized Calabi composition ([LLS])). We extend the well-known

Calabi composition for hyperbolic affine hypersurfaces to centroaffine extremal hypersur-

faces.

Proposition 2.3.4 ([LLS]). Given two centroaffine hyperbolic extremal hypersurfaces

x : M1 → Rp+1 and y : M2 → Rq+1, the generalized Calabi composition z : R ×M1 ×
M2 → Rp+q+2:

z = (C1e
ux,C2e

−λuy), u ∈ R, (2.3.18)

defines a centroaffine extremal hypersurface, where λ, C1, C2 are arbitrary positive real

numbers.

When x and y are two hyperbolic affine spheres, choosing λ = p+1
q+1 in Proposition

2.3.4, we recover the Calabi composition of two hyperbolic affine spheres:

Corollary 2.3.1 (see [LSZ-I]). Given two hyperbolic affine spheres x : M1 → Rp+1 and

y : M2 → Rq+1, the Calabi composition x : R ×M1 ×M2 → Rp+q+2

z = (C1e
ux,C2e

−
p+1
q+1 uy), u ∈ R, (2.3.19)

defines a hyperbolic affine sphere, where C1, C2 are any positive real numbers.
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Proof of Proposition 2.3.4. Consider the given centroaffine extremal hypersurfaces x

and y in Proposition 3.4. We construct the generalized Calabi composition z defined

by (2.3.18). Let {u1, . . . , up} and {up+1, . . . , up+q} be local coordinates for M1 and M2,

respectively. We denote u0 = u and use the following range of indices:

1 ≤ i, j, k ≤ p; p+ 1 ≤ α, β, γ ≤ p+ q; 0 ≤ A,B,C ≤ p+ q.

We mark quantities of the hypersurface z by a tilde. Then ei = ∂x
∂ui

form a basis for

x∗(TM1), eα = ∂y
∂uα

form a basis for y∗(TM2). Let ẽA = ∂z
∂uA

, i.e.,

ẽ0 = (C1e
ux,−C2λe

−λuy), ẽi = (C1e
uei, 0), ẽα = (0, C2e

−λueα). (2.3.20)

Then {ẽA} form a basis for z∗(TR⊕ TM1 ⊕ TM2). We have

[ẽ0, ẽ1, . . . , ẽp+q, z]

= (−1)pCp+1
1 Cq+1

2 (λ+ 1)e[(p+1)−(q+1)λ]u[e1, . . . , ep, x] · [ep+1, . . . , ep+q, y] 6= 0.

x and y are centroaffine hypersurfaces, thus z is also a centroaffine hypersurface.

We denote by hx, hy, hz the centroaffine metrics and ∇x, ∇y, ∇z the Levi-Civita

connections for x, y, z, respectively. Then, by a direct calculation, we have

∂2z

∂2u0
= (1 − λ)ẽ0 + λz;

∂2z

∂u0∂ui
= ẽi;

∂2z

∂u0∂uα
= −λẽα,

∂2z

∂ui∂uj
=

1

λ+ 1
(hx)ij ẽ0 +

p
∑

k=1

(∇x)k
ij ẽk +

λ

λ+ 1
(hx)ij · z,

∂2z

∂ui∂uα
=

∂2z

∂uα∂ui
= 0,

∂2z

∂uα∂uβ
= − 1

λ+ 1
(hy)αβ ẽ0 +

p+q
∑

γ=p+1

(∇y)γ
αβ ẽγ +

1

λ+ 1
(hy)αβ · z.

(2.3.21)

By definition, the centroaffine metric of z is

hz = λ(du0)
2 +

λ

λ+ 1
hx +

1

λ+ 1
hy =:

p+q
∑

A,B=0

h̃ABduAduB . (2.3.22)

If hx, hy are complete metrics, hz is a complete metric. The Tchebychev function ψ̃

of z is

ψ̃ =
det(h̃AB)

[ẽ0, ẽ1, . . . , ẽp+q, z]2

=
λ( λ

λ+1 )p( 1
λ+1 )q det(hx

ij) · det(hy
αβ)

C
2(p+1)
1 C

2(q+1)
2 (λ+ 1)2e2[(p+1)−(q+1)λ]u[e1, . . . , ep, x]2 · [ep+1, . . . , ep+q, y]2

= C
−2(p+1)
1 C

−2(q+1)
2 λp+1(λ+ 1)−2−p−q · e−2[(p+1)−(q+1)λ]uψx · ψy, (2.3.23)

where ψx and ψy are the Tchebychev functions of x and y, respectively. Thus

log ψ̃ = [(p+ 1) log λ− (2 + p+ q) log(λ+ 1) − 2(p+ 1) logC1 − (q + 1) logC2]

− 2[(p+ 1) − (q + 1)λ]u+ logψx + logψy. (2.3.24)
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The Laplacian ∆̃ of hz is given by

∆̃ =
1

λ

∂2

∂2u
⊕ λ+ 1

λ
∆x ⊕ (1 + λ)∆y, (2.3.25)

thus we have

∆̃(log ψ̃) = 0, (2.3.26)

where ∆x (resp. ∆y) is the Laplacian of hx (rep. hy). From Theorem 2.2.2 and (2.3.18),

z : R×M1×M2 → Rp+q+2 is a (p+q+1)-dimensional centroaffine extremal hypersurface.

In particular, if the Tchebychev operators of x and y vanish, then T̃ ≡ 0.

Proof of Corollary 2.3.1. If x : M1 → Rp+1 and y : M2 → Rq+1 are two hyperbolic affine

spheres, then

(logψ)x = constant, (logψ)y = constant. (2.3.27)

Choosing

λ =
p+ 1

q + 1
, (2.3.28)

from (2.3.24) we have

log ψ̃ = constant.

Thus x : R ×M1 ×M2 → Rp+q+2:

z = (C1e
ux,C2e

−
p+1
q+1 uy), u ∈ R,

is a hyperbolic affine sphere.

Example 2.3.4-A ([LLS]). Taking x(M1) = H(1, p), y(M2) = H(1, q) and C1 = C2 = 1

in Proposition 2.3.4, we obtain a family of centroaffine extremal hypersurfaces z : R ×
M1 ×M2 → Rp+q+2

[z2
p+1 − (z2

1 + · · · + z2
p)] · [z2

p+q+2 − (z2
p+2 + · · · + z2

p+q+1)]
1
λ = 1, λ > 0.

We note that z is a hyperbolic affine sphere if and only if λ = p+1
q+1 .

Example 2.3.4-B ([LLS]). Taking x(M1) = H(1, p), y(M2) = Q(1;α1, . . . , αq; q) and

C1 = C2 = 1 in Proposition 2.3.4, we obtain a family of centroaffine extremal hypersur-

faces z : R×M1 ×M2 → Rp+q+2

[z2
p+1 − (z2

1 + · · · + z2
p)]

(1+α1+···+αq)λ

2 zα1
p+2 · · · z

αq

p+q+1 · zp+q+2 = 1,

where α1 > 0, . . . , αq > 0. We note that z is a hyperbolic affine sphere if and only if

λ = p+1
q+1 and α1 = · · · = αq = 1.

2.4. Centroaffine Bernstein problems. We first give the definition of completeness.

Definition 2.4.1. (i) Euclidean completeness is the completeness of the Riemannian

metric on M induced from a Euclidean metric on An+1; this notion is independent of the

specific choice of the Euclidean metric on the affine space and thus it is a notion of affine

geometry; see [LSZ − I], p. 110;

(ii) centroaffine completeness is the completeness of the centroaffine metric h.
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In section 2.3 we studied large classes of centroaffine extremal hypersurfaces. All the

explicit examples have vanishing Tchebychev operator. Comparing the class of hyper-

bolic affine spheres and the class of examples given in 2.3.3, there is only one type of

hypersurfaces in the intersection of both classes, namely the hypersurfaces represented

by

x1x2 · · ·xn+1 = c, c > 0.

Concerning completeness conditions, the compact case is solved by Wang’s theorem.

Thus only complete, non-compact centroaffine extremal hypersurfaces are still of interest.

The classes in example 2.3.1 and 2.3.3 can be represented as graphs over Rn, that means

they are Euclidean complete. The hypersurfaces in examples 2.3.1 and 2.3.3 are also

centroaffine complete.

In the following we list several related versions of centroaffine Bernstein problems

for locally strongly convex hypersurfaces; some of the problems are stated in form of

conjectures.

Centroaffine Bernstein Problem I. Let x : M → Rn+1 (n ≥ 2) be a centroaffine

extremal hypersurface satisfying one of the completeness conditions from Definition 2.4.1.

Is T ≡ 0?

Centroaffine Bernstein Conjecture. Let x : M → Rn+1 (n ≥ 2) be a centroaffine

extremal hyperbolic hypersurface satisfying one of the completeness conditions from Def-

inition 2.4.1. If the Ricci curvature of the centroaffine metric is non-negative, then x is

centroaffinely equivalent to one of the hypersurfaces

xα1
1 xα2

2 · · ·xαn+1

n+1 = 1, α1 > 0, . . . , αn+1 > 0.

Centroaffine Bernstein Problem II. Does the class of centroaffine extremal hy-

perbolic graphs over Rn contain other examples as the ones given in examples 2.3.1 and

2.3.3?

Centroaffine Bernstein Problem III. Do there exist extremal centroaffine hyper-

surfaces with complete centroaffine metric which can not be represented as graphs over

Rn?

Centroaffine Bernstein Problem IV. Do there exist extremal centroaffine hyper-

surfaces satisfying one of the completeness conditions such that the Tchebychev field does

not have constant norm?

Centroaffine Bernstein Problem V. Do there exist extremal elliptic centroaffine

hypersurfaces satisfying one of the completeness conditions which are not hyperellipsoids?

2.5. Statement of the results

Theorem 2.5.1 ([LLS]). Let x : M → R3 be a noncompact, hyperbolic extremal cen-

troaffine surface with complete centroaffine metric. If the Gaussian curvature K of the

centroaffine metric and the length |T | of the Tchebychev vector field satisfy

(1) K ≥ 0,

(2) |T | <∞,
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then x is centroaffinely equivalent to one of the surfaces

xα1
1 xα2

2 xα3
3 = 1, α1 > 0, α2 > 0, α3 > 0. (2.5.1)

Corollary 2.5.1 (see [LSZ-I]). Let x : M → R3 be an affine complete hyperbolic affine

sphere. If the Gaussian curvature K of the centroaffine metric is nonnegative, then x is

affinely equivalent to the surface

x1x2x3 = 1. (2.5.2)

Theorem 2.5.2 ([LLS]). Let x : M → Rn+1 (n ≥ 2) be a non-compact hyperbolic ex-

tremal centroaffine hypersurface with complete centroaffine metric. If the Ricci curvature

of the centroaffine metric and the length |T | of the Tchebychev vector field satisfy

(1) Ric ≥ 0,

(2) |T | = constant,

then x is centroaffinely equivalent to one of the hypersurfaces

xα1
1 xα2

2 · · ·xαn+1

n+1 = 1, α1 > 0, . . . αn+1 > 0. (2.5.3)

Corollary 2.5.2 (see [LSZ-I]). Let x : M → Rn+1 (n ≥ 2) be a complete hyperbolic

affine hypersphere. If the Ricci curvature of the centroaffine metric is non-negative, then

x is affinely equivalent to the hypersurface

x1x2 · · ·xn+1 = 1. (2.5.4)

Theorem 2.5.3 ([LLS]). Let x : M → Rn+1 (n ≥ 2) be a metrically complete, non-

compact extremal centroaffine hypersurface. If the Ricci curvature of the centroaffine met-

ric and the length |T | of the Tchebychev vector field satisfy

(1) Ric ≥ 0,

(2) |T | ∈ Lp(M), for some p > 1,

then x is centroaffinely equivalent to the hypersurface

x1x2 · · ·xn+1 = 1.

Theorem 2.5.4 ([LLS]). Let x : M → Rn+1(n ≥ 2) be a metrically complete, non-

compact extremal centroaffine hypersurface. If the Ricci curvature of the centroaffine

metric is non-negative and logψ is bounded, then x is centroaffinely equivalent to the

hypersurface

x1x2 · · ·xn+1 = 1.

Remark 2.5.1. A hyperboloid H(c, n) satisfies (see Example 2.3.1)

1. the centroaffine metric is complete and centroaffine extremal,

2. the Tchebychev function is a constant function and the Tchebychev vector field

vanishes.

On the other hand its Ricci curvature is a negative constant (see (2.3.3)). Thus the

assumption in Theorems 2.5.1-2.5.4 that the “Ricci curvature is nonnegative” is necessary.

Remark 2.5.2. For the centroaffine hypersurfaces

xα1
1 · · ·xαn+1

n+1 = c, c > 0, (α1, . . . , αn+1) 6= (1, . . . , 1), αi > 0, 1 ≤ i ≤ n+ 1,
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using (3.17), it is easy to check that logψ is not bounded. Thus the assumption in

Theorem 2.5.4 that “logψ is bounded” is essential.

2.6. Lemmas and proofs of Theorem 2.5.1 and Theorem 2.5.2. We will apply

the following well known Bochner-Lichnerowicz formula as a tool:

1

2
∆(|T |2) =

1

2
∆

(

∑

i

(Ti)
2
)

=
∑

i,j

(Ti,j)
2 +

∑

i,j

RijTiTj +
∑

i

Ti

(

∑

k

Tk,k

)

i
. (2.6.1)

If we assume that the trace of the Tchebychev operator is constant, i.e.,
∑

k Tk,k =

constant, then (2.6.1) becomes

1

2
∆(|T |2) =

1

2
∆

(

∑

i

(Ti)
2
)

=
∑

i,j

(Ti,j)
2 +

∑

i,j

RijTiTj . (2.6.2)

Lemma 2.6.1. Let x : M → R3 be a metrically complete, noncompact centroaffine sur-

face with constant trace of the Tchebychev operator. If the Gaussian curvature K of the

centroaffine metric and the length |T | of the Tchebychev vector field satisfy

(1) K ≥ 0,

(2) |T | <∞,

then the Tchebychev vector field is parallel, i.e., Ti,j = 0.

Proof. As we assume K ≥ 0, from the Riemann mapping theorem we conclude that

either M is conformally equivalent to the Riemannian sphere S2, or M is conformally

equivalent to the Euclidean space R2. From the assumption the surface is complete, but

non-compact, we know that M is conformally equivalent to the Euclidean space R2.

We apply (2.6.2), Ric = Kh and the assumption K ≥ 0:

1

2
∆(|T |2) ≥

∑

i,j

(Ti,j)
2 ≥ 0,

that is, |T |2 is a subharmonic function on M . The assumption |T |2 < ∞ gives |T |2 =

constant (see Leon Karp [Ka]), and (2.6.2) implies Ti,j = 0, i.e., T = 0.

Lemma 2.6.2. Let x : M → Rn+1 be a complete noncompact centroaffine hypersurface

with traceT = constant. If the Ricci curvature of the centroaffine metric and the length

|T | of the Tchebychev vector field satisfy

(1) Ric ≥ 0,

(2) |T | = constant,

then T ≡ 0.

The proof follows again from (2.6.2).

We need the following generalized maximum principle:

Lemma 2.6.3 (Omori-Yau [Om], [Y1]). Let M be a complete Riemannian manifold with

Ricci curvature bounded from below. Let f be a C2-function which is bounded from below

on M . Then there is a sequence of points {pk} in M such that

lim
k→∞

f(pk) = inf(f), lim
k→∞

|grad(f)|(pk) = 0, lim
k→∞

∆f(pk) ≥ 0.
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Proposition 2.6.1 ([LLS]). Let x : M → Rn+1 be a complete, noncompact hyperbolic

centroaffine hypersurface with T ≡ 0. If the Ricci curvature of the centroaffine metric is

non-negative, then x is centroaffinely equivalent to one of the hypersurfaces

xα1
1 xα2

2 · · ·xαn+1

n+1 = 1, α1 > 0, . . . , αn+1 > 0.

For the proof we need the following lemma

Lemma 2.6.4. Let x : M → Rn+1 be a centroaffine hypersurface with Ric ≥ 0 and T ≡ 0.

Then the normalized scalar curvature satisfies

∆κ ≥ 4κ(κ− ǫ). (2.6.3)

Proof. By use of (2.1.15), (2.1.23) and (2.1.26), we have the following calculation (cf.

[LSZ-I])

∆Aijk =
∑

l

Aijk,ll =
∑

l

Aijl,kl

=
∑

l

Aijl,lk +
∑

r,l

AijrRrlkl +
∑

r,l

ArilRrjkl +
∑

r,l

ArjlRrikl

= nTi,jk +
∑

r

AijrRrk + +
∑

r,l

ArilRrjkl +
∑

r,l

ArjlRrikl

=
∑

r

AijrRrk +
∑

r,l

ArilRrjkl +
∑

r,l

ArjlRrikl, (2.6.4)

where we used T ≡ 0. (2.6.4) and (2.1.22) give

1

2
n(n− 1)∆J = ∆

(

∑

i,j,k

(Aijk)2
)

=
∑

i,j,k,l

(Aijk,l)
2 +

∑

i,j,k,l

AijkAijk,ll

=
∑

i,j,k,l

(Aijk,l)
2 +

∑

AijkAijrRrk +
∑

AijkArilRrjkl +
∑

AijkArjlRrikl

=
∑

i,j,k,l

(Aijk,l)
2 +

∑

AijkAijrRrk +
∑

(AijkAril −AijlAirk)Rrjkl

=
∑

i,j,k,l

(Aijk,l)
2 +

∑

(Rrjkl)
2 +AijkAijrRrk − 2ǫR

≥
∑

(Rrjkl)
2 − 2ǫR ≥ 2

n(n− 1)
R2 − 2ǫR, (2.6.5)

where we used Ric ≥ 0 and the well known estimate
∑

(Rrjkl)
2 ≥ 2

n− 1

∑

(Rrk)2 ≥ 2

n(n− 1)
R2. (2.6.6)

From (2.1.25), we have

n(n− 1)J = n(n− 1)(κ− ǫ) + n2|T |2. (2.6.7)

The assumption T ≡ 0 implies that |T |2 is constant; we insert (2.6.7) into (2.6.5)

1

2
n(n− 1)∆κ = ∆

(

∑

i,j,k

(Aijk)2
)

≥ 2

n(n− 1)
R2 − 2ǫR = 2n(n− 1)κ(κ− ǫ). (2.6.8)
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Proof of Proposition 2.6.1. For any given positive constant δ, define the positive smooth

function u on M by

u :=
1√
κ+ δ

. (2.6.9)

Through a direct calculation, by use of (2.6.3) and ǫ = −1, the Laplacian ∆u of u

satisfies

u∆u = 3|grad(u)|2 − 1

2(κ+ δ)2
∆κ ≤ 3|grad(u)|2 − 2

(κ+ δ)2
κ(κ+ 1). (2.6.10)

We have u ≥ 0; as we assumed that the Ricci curvature is non-negative, we can apply

the generalized maximum principle (Lemma 2.6.3) of Omori and Yau to the function u

on M . Then there is a sequence of points {pk} on M such that

lim
k→∞

u(pk) = inf(u), lim
k→∞

|grad(u)|(pk) = 0, lim
k→∞

∆u(pk) ≥ 0.

We claim that inf(u) 6= 0. Otherwise, from the definition of u, the assumption inf(u) =

0 gives sup(κ) = ∞. Considering the limit for both sides of the inequality (2.6.10), we

get

0 = inf(u) · lim
k→∞

∆u(pk) ≤ −2,

which gives a contradiction. Thus inf(u) 6= 0 and then 0 ≤ limk→∞ κ(pk) = sup(κ) <∞.

Considering again the limit for both sides of the inequality (2.6.10), we get

0 ≤ inf(u) · lim
k→∞

∆u(pk)

≤ 3 · lim
k→∞

|grad(u)|2(pk) − 2 sup(κ)

(sup(κ) + δ)2
(sup(κ) + 1)

= − 2 sup(κ)

(sup(κ) + δ)2
(sup(κ) + 1). (2.6.11)

(2.6.11) implies

sup(κ) ≤ 0,

that is

κ ≤ 0.

Thus we conclude that κ ≡ 0 (because we assumed Ric ≥ 0). From (2.6.7) and ǫ = −1,

we get J = 1 + n
n−1 |T |2 = constant and then (2.6.5) gives

Rijkl ≡ 0, Aijk,l = 0, 1 ≤ i, j, k, l ≤ n. (2.6.12)

Thus x(M) has a flat centroaffine metric and its centroaffine Pick form is parallel with

respect to its centroaffine metric. The assertion of Proposition 2.6.1 now follows from

Proposition 2.3.3.

Proofs of Theorem 2.5.1 and Theorem 2.5.2. Theorem 2.5.1 comes from Lemma 2.6.1

and Proposition 2.6.1. Theorem 2.5.2 comes from Lemma 2.6.2 and Proposition 2.6.1.

Remark 2.6.1. We also can get the following local uniqueness results, which generalize

the result of Li-Wang (see Proposition 2.3.3).

Proposition 2.6.2 ([LLS]). Let x : M → Rn+1 be a centroaffine hypersurface with

T ≡ 0. If the Ricci curvature of the centroaffine metric is non-negative (or non-positive),
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then x is locally centroaffinely equivalent to a proper affine sphere or one of the following

hypersurfaces

xα1
1 xα2

2 · · ·xαn+1

n+1 = 1, α1 > 0, . . . , αn+1 > 0.

Proof. Because we assume T ≡ 0, we have from (2.6.2)
∑

i,j

RijTiTj ≡ 0. (2.6.13)

From the assumption Rij ≥ 0 (resp. Rij ≤ 0) we have either |T | ≡ 0, or Rij ≡ 0. If

|T | ≡ 0 then x : M → Rn+1 is a proper affine sphere. If Rij ≡ 0, we get from (2.6.5)

Rijkl ≡ 0, Aijk,l = 0, 1 ≤ i, j, k, l ≤ n.

Thus x(M) has a flat centroaffine metric and its centroaffine Pick form is parallel with

respect to its centroaffine metric. Proposition 2.6.2 now follows from Proposition 2.3.3.

Corollary 2.6.1. Let x : M → Rn+1(n ≥ 2) be an n-dimensional complete elliptic

centroaffine hypersurface with T ≡ 0. If the Ricci curvature of the centroaffine metric is

non-negative (resp. non-positive), then x is centroaffinely equivalent to a hyperellipsoid

(resp. there does not exist such a hypersurface).

Proof. From Proposition 2.6.2, it follows that x is an elliptic affine sphere, thus x is cen-

troaffinely equivalent to a hyperellipsoid (resp. there does not exist such a hypersurface).

Proposition 2.6.3 ([LLS]). Let x : M → Rn+1 (n ≥ 2) be an n-dimensional hyperbolic

centroaffine extremal hypersurface. If the Ricci curvature of the centroaffine metric is

nonnegative, the scalar curvature is constant, and the length of the Tchebychev vector

field is constant, then x is centroaffinely equivalent to one of the hypersurfaces

xα1
1 xα2

2 · · ·xαn+1

n+1 = 1, α1 > 0, . . . , αn+1 > 0.

Proof. As we assume that x : M → Rn+1 is a centroaffine extremal hypersurface with

|T | = constant, we have from (2.6.2) that

Ti,j = 0.

Our assumptions imply J = constant and ǫ = −1. From (2.6.5) we get

Rijkl ≡ 0, Aijk,l = 0, 1 ≤ i, j, k, l ≤ n.

Thus x(M) has a flat centroaffine metric and its centroaffine Pick form is parallel with

respect to its centroaffine metric. Proposition 2.6.3 now follows from Proposition 2.3.3.

2.7. Proofs of Theorem 2.5.3 and Theorem 2.5.4. We need the following lemmas:

Lemma 2.7.1 ([Y1]). Let (M, g) be a complete Riemannian manifold with non-negative

Ricci curvature, then any bounded (from below or from above) harmonic function on M

must be a constant.

Lemma 2.7.2 ([Y2]). Let (M, g) be a complete noncompact Riemannian manifold with

non-negative Ricci curvature. If for some p > 1

∆u ≥ 0, u ≥ 0, u ∈ Lp(M),

then u is constant.
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Proof of Theorem 2.5.3. Under the assumptions of Theorem 2.5.3, we have from (2.6.2)

1

2
∆(|T |2) =

∑

i,j

(Ti,j)
2 +

∑

ij

RijTiTj ≥
∑

i,j

(Ti,j)
2. (2.7.1)

Noting
1

2
∆(|T |2) = |T |∆|T | +

∑

i

(|T |i)2, (2.7.2)

we have from (2.7.1) and (2.7.2),

|T |∆|T | ≥
∑

i,j

(Ti,j)
2 −

∑

i

(|T |i)2. (2.7.3)

From (2.7.3) and

|T |2
∑

i

(|T |i)2 =
∑

i

(|T ||T |i)2 =
1

2

∑

i

((|T |2)i)
2

=
∑

i

(
∑

j

TiTi,j)
2 ≤ |T |2 ·

∑

i,j

(Ti,j)
2, (2.7.4)

we conclude that ∆|T | ≥ 0, i.e. |T | is a non-negative subharmonic function. From Lemma

2.7.2, our assumption |T | ∈ Lp(M) (p > 1) implies that |T | is constant. Thus we get

Ti,j = 0 from (2.7.1). In this case, as the volume of M is infinite (see [SY1] or [SY2])

and as we assume |T | ∈ Lp(M), we necessarily have |T | = 0. Since a complete elliptic

affine hypersphere is a hyperellipsoid (compact), Theorem 2.5.3 then directly follows from

Proposition 2.6.1 and the remarks in Example 2.3.3.

Proof of Theorem 2.5.4. Let x : M → Rn+1 be an n-dimensional centroaffine extremal

hypersurface; then we have

∆(logψ) = 0,

where ψ is the Tchebychev function of x. From Lemma 2.7.1 it follows that logψ is

constant and that the Tchebychev vector field vanishes. Since a complete elliptic affine

hypersphere is a hyperellipsoid (compact), Theorem 2.5.4 follows from Proposition 2.6.1

and the remarks in Example 2.3.3.

3. VARIATIONAL PROBLEMS IN RELATIVE GEOMETRY

3.1. Introduction. In this chapter we study a graph defined by a convex function

xn+1 = f(x1, . . . , xn). There is a natural metric G =
∑

i,j
∂2f

∂xi∂xj
dxidxj , which is called

Calabi metric. We calculate the first variation of the volume of this metric. The Euler-

Lagrange equation for the area functional is

∆ log(det(fij)) = 0,

where fij = ∂2f
∂xi∂xj

, and ∆ is the Laplacian with respect to the metric G. This is a 4-th

order PDE. Solutions of the PDE are called affine extremal graphs of this variational

problem. It is easy to see that all parabolic equiaffine spheres are affine extremal graphs.

We would like to raise the following conjectures:
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Conjecture 3.1.1. Let f(x1, . . . , xn) be a convex function defined on a convex domain

Ω ⊂ An and M be the graph determined by f . If M is an affine extremal graph and if M

is complete with respect to the metric G, then M must be an elliptic paraboloid.

Conjecture 3.1.2. Let f(x1, . . . , xn) be a convex function defined on all of An. Let

M be the graph determined by f . If M is an affine extremal graph, then M must be an

elliptic paraboloid.

In this chapter we give a partial answer to the first conjecture. Precisely, we prove the

following result:

Theorem 3.1.1. Let f(x1, . . . , xn) be a convex function defined on a convex domain

Ω ⊂ An and M be the graph determined by f . Suppose that M is an affine extremal graph

and M is complete with respect to the metric G. If the Ricci curvature is nonnegative, and

if there is a constant N > 0 such that the so called Tchebychev function (see Definition

2.1 below) satisfies the inequality ψ ≤ N everywhere on M , then M must be an elliptic

paraboloid.

3.2. Preliminaries. We summarize basic formulas of affine graphs with relative nor-

malization en+1 = (0, . . . , 0, 1) in terms of Cartan’s moving frames. The setup is similar

to the centroaffine case. Let f(x1, . . . , xn) be a convex function defined on a convex do-

main Ω ⊂ An. We choose the relative normalization en+1 = (0, . . . , 0, 1) and study the

relative geometry of the graph M = {x1, . . . , xn, f(x1, . . . , xn)}. We choose an affine

frame field {e1, . . . , en, en+1} with en+1 = (0, . . . , 0, 1) and e1, . . . , en ∈ TxM ; we denote

by {ω1, . . . , ωn} the dual frame field of the tangential frame field. We can write

dx =
∑

i

ωiei, ωn+1 = 0, (3.2.1)

dei =
∑

j

ωj
i ej + ωn+1

i en+1, den+1 = 0. (3.2.2)

Differentiation of (2.1) − (2.2) gives the integrability conditions:

dωi =
∑

j

ωj ∧ ωi
j ,

∑

i

ωi ∧ ωn+1
i = 0, (3.2.3)

dωj
i =

∑

k

ωk
i ∧ ωj

k − ǫωn+1
i ∧ ωj , dωn+1

i =
∑

j

ωj
i ∧ ωn+1

j . (3.2.4)

From the second equation in (2.3), we have

ωn+1
i =

∑

i,j

hijω
j , hij = hji. (3.2.5)

As f is a convex function, the quadratic form

G =
∑

i,j

hijω
iωj (3.2.6)

is positive definite; h is called the relative affine metric of the graph. It is well known

that h is independent of the choice of the frame {e1, . . . , en} and that h is invariant

under transformations of the group GL(R, n+ 1). We choose an affine tangential frame
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{e1, . . . , en} on M such that hij = δij , i.e.,

ωn+1
i = ωi. (3.2.7)

Differentiate (3.2.7) and use (3.2.4); this implies

dωi =
∑

j

ωij ∧ ωj . (3.2.8)

(3.2.3) and (3.2.8) give

dωi =
∑

j

ωj ∧
[

1

2
(ωji − ωij)

]

. (3.2.9)

The expression 1
2 (ωji − ωij) is skew-symmetric and {ω1, . . . , ωn} is an orthonormal

coframe of the relative metric G. (3.2.9) and the fundamental theorem of Riemannian

geometry imply that the Levi-Civita connection of G satisfies

ω̃ji =
1

2
(ωji − ωij), ω̃ji = −ω̃ij . (3.2.10)

Define

ωij − ω̃ij =
1

2
(ωij + ωji) =

∑

k

Aijkω
k. (3.2.11)

This gives the symmetry relation

Aijk = Ajik. (3.2.12)

Combine (3.2.8) with (3.2.9) and use (3.2.11):
∑

j,k

Aijkωj ∧ ωk = 0,

this implies the total symmetry of the form

A =
∑

i,j,k

Aijkω
iωjωk,

namely

Aijk = Aikj = Ajik. (3.2.13)

The form A is called the relative cubic form of the graph M with the given relative

normalization. Again it is well known that this form is independent of the choice of

the frame and invariant under transformations of the group GL(R, n+ 1). We need the

following two important geometric invariants built from G and A:

J =
1

n(n− 1)

∑

i,j,k

A2
ijk (3.2.14)

is called the Pick invariant. The tangent vector field

T =
∑

i

Tiei, Ti =
1

n

∑

j

Ajji (3.2.15)

is called the Tchebychev vector field of M . There is an additional well known relation

between T and the so called affine Tchebychev function ψ of x. To state this relation, we

recall the following definition.
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Definition 3.2.1. The positive function ψ, given by

ψ =
det(hij)

[e1, . . . , en, x]2
, (3.2.16)

is independent of the choice of the frame {e1, . . . , en} and is invariant under transforma-

tions of GL(R, n+ 1), where [· · ·] denotes the determinant.

Choosing i = j in (3.2.11) and summing up over i, we get
∑

i,k

Aiikω
k =

∑

i

ωii = d(log[e1, . . . , en, x]) = −1

2
d logψ. (3.2.17)

The Tchebychev vector field T satisfies the relation

Ti = − 1

2n
(logψ)i =

(n+ 2)

2n
(log ρ)i. (3.2.18)

For later applications we list the integrability conditions in terms of the metric and the

cubic form. In a standard local notation, by a comma we indicate covariant differentiation

in terms of the Levi-Civita connection. As in (2.1.21) the sign of the Riemannian curvature

tensor Ω =
∑

Rijklω
i ⊗ ωj ⊗ ωk ⊗ ωl of h is fixed by

dω̃ij −
∑

k

ω̃ik ∧ ω̃kj = −1

2

∑

k,l

Rijklω
k ∧ ωl. (3.2.19)

In terms of the frame considered (hij = δij), the Gauss equations read

Rijkl =
∑

m

(AjkmAmil −AikmAmjl); (3.2.20)

this formula differs from the centroaffine formula (2.1.22). The cubic form satisfies Codazzi

equations, that means the covariant derivative is totally symmetric:

Aijk,l = Aijl,k. (3.2.21)

Here, as mentioned above, Aijk,l are the components of the covariant derivative of A

with respect to the Levi-Civita connection of h. Contraction of (2.20) gives the important

relation
Rik =

∑

m,l

AimlAmlk − n
∑

m

TmAmik, (3.2.22)

where Rik denote the components of the Ricci tensor, and the “relative theorema egre-

gium” for a graph

n(n− 1)κ = R = n(n− 1)J − n2|T |2, |T |2 =
∑

i

(Ti)
2, (3.2.23)

where κ denotes the normalized scalar curvature.

Later we will need the Ricci identities

Aijk,lm −Aijk,ml =
∑

r

ArjkRrilm +
∑

r

AirkRrjlm +
∑

r

AijrRrklm. (3.2.24)

The Codazzi equations for A (or the relations between T and the Tchebychev function)

imply

Ti,j = Tj,i. (3.2.25)

If Ti,j = 0, we say that the Tchebychev vector field T is parallel.
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In the following we choose the following affine frame field:

e1 =

(

1, 0, . . . , 0,
∂f

∂x1

)

. . . . . . . . .

en =

(

0, 0, . . . , 1,
∂f

∂xn

)

en+1 = (0, 0, . . . , 0, 1).

Then the relative metric is given by

G =
∑

i,j

fijdxidxj ;

here and later we write fij = ∂2f
∂xi∂xj

. It is easy to check that, with respect to this frame,

we have

ωj
i = 0, Aijk = fijk, ψ = det(fij),

J =
1

n(n− 1)

∑

i,j,k,m,n

f ilf jmfknfijkflmn, Tk = − 1

2n
(logψ)k.

3.3. The first variational formula. As in section 2.2 we study admitted variations

of the hypersurface. Consider the one parameter variation: f(t, x), x = (x1, . . . , xn) ∈ Ω.

The volume element is given by

dV =
√

det(fij)dx1 ∧ . . . ∧ dxn. (3.3.1)

We have
∂

∂t

√

det(fij) =
1

2

√

det(fij)
∑

i,j

f ijHij , (3.3.2)

where we denote

H(t, x) =
∂f

∂t
.

H(0, x) is the variational vector field. Stokes’ formula gives

∂V

∂t
|t=0 =

1

2

∫

∑

i,j

(
√

det(fkl)f
ij)ijHdx1 ∧ . . . ∧ dxn. (3.3.3)

Now we express
∑

i,j(
√

det(fkl)f
ij)ij in terms of the Tchebychev function. First we have

∑

i,j

(
√

det(fkl)f
ij)ij =

∑

i,j

(

1

2

√

det(fkl)(logψ)if
ij +

√

det(fkl)f
ij
i

)

j

. (3.3.4)

Differentiating the equality
∑

k

f ikfkj = δi
j

we get
∑

i

f ij
i = −

∑

f ij(logψ)i. (3.3.5)
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Inserting (3.3.5) into (3.3.4) we have
∑

i,j

(
√

det(fkl)f
ij)ij = −1

2

∑

i,j

(
√

det(fkl)f
ji(logψ)i)j = −1

2

√

det(fkl)∆(logψ). (3.3.6)

Putting (3.3.6) into (3.3.3) we get the first variational formula:

∂V

∂t
|t=0 = −1

4

∫

∆(logψ)HdV. (3.3.7)

A hypersurface M defined by a convex function xn+1 = f(x1, . . . , xn) is called an

affine extremal graph if ∂V
∂t |t=0 = 0.

We immediately obtain

Theorem 3.3.1. Let f(x1, . . . , xn) be a convex function defined on a convex domain

Ω ⊂ An. Let M be the graph determined by f . Then M is an affine extremal graph if and

only if

∆(logψ) = 0. (3.3.8)

Proof. By assumption (M,G) is a complete Riemannian manifold with Ric ≥ 0, and logψ

is a bounded harmonic function. Therefore ψ = const., this means M is a parabolic affine

hypersphere. By Pogorelov’s theorem (see [LSZ-I]), M must be an elliptic paraboloid.

References

[Bla] W. Blaschke, Vorlesungen über Differentialgeometrie, II, Berlin, 1923.

[Ca-I] E. Calabi, Convex affine maximal surfaces, Results in Mathematics 13 (1988), 209–

223.

[Ca-II] E. Calabi, Hypersurfaces with maximal affinely invariant area, Amer. J. Math. 104

(1984), 91–126.

[Ch] S. S. Chern, Affine minimal hypersurfaces, in: Minimal Submanifolds and Geodesics,

Kagai Publ. Ltd., Tokyo 1978, 17–30.

[Ka] L. Karp, Subharmonic functions, harmonic mappings and isometric immersions, in:

Seminar on Differential Geometry, edited by S.-T. Yau, 1982, 133–142.

[LLS] A.-M. Li, H. Li and U. Simon, Centroaffine Bernstein problems, Differential Geom-

etry Appl. 20 (2004), 331–356.

[LLSSW] A.-M. Li, H. L. Liu, A. Schwenk-Schellschmidt, U. Simon and C. P. Wang, Cubic form

methods and relative Tchebychev hypersurfaces, Geometriae Dedicata 66 (1997), 203–

221.

[LSZ-I] A.-M. Li, U. Simon and G. Zhao, Global Affine Differential Geometry of Hypersur-

faces, W. de Gruyter, Berlin, New York, 1993.

[LSZ-II] A.-M. Li, U. Simon, G. Zhao, Hypersurfaces with prescribed affine Gauss-Kronecker

curvature, Geometriae Dedicata 81 (2000), 141–166.

[LW] A.-M. Li and C. P. Wang, Canonical centroaffine hypersurfaces in R
n+1, Results in

Mathematics 20 (1991), 660–681.

[LW1] H. Liu and C. P. Wang, The centroaffine Tchebychev operator, Results in Mathe-

matics 27 (1995), 77–92.

[LW2] H. Liu and C. P. Wang, Centroaffine surfaces with parallel traceless cubic form, Bull.

Belg. Math. Soc. 4 (1997), 493–499.



VARIATIONAL PROBLEMS AND PDES 41

[O-S] V. Oliker and U. Simon, Affine geometry and polar hypersurfaces, in: Analysis

and Geometry (B. Fuchssteiner, W. A. Luxemburg; Eds.), BI Mannheim etc. 1992,

87–112.

[Om] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19

(1967), 205–214.

[Sal] E. Salkowski, Affine Differentialgeometrie, W. de Gruyter, Berlin, Leipzig, 1934.

[SSY] R. Schoen, L. Simon and S.-T. Yau, Curvature estimates for minimal hypersurfaces,

Acta Math. 134 (1975), 275–288.

[SY1] R. Schoen and S.-T. Yau, Harmonic maps and the topology of stable hypersurfaces

and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976),

33–341.

[SY2] R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press,

Cambridge, MA, 1994.

[SS] U. Simon, A. Schwenk-Schellschmidt and H. Viesel, Introduction to the Affine Dif-

ferential Geometry of Hypersurfaces, Lecture Notes, Science University Tokyo, ISBN

3-7983-1529-9, 1991.

[W] C. P. Wang, Centroaffine minimal hypersurfaces in R
n+1, Geometriae Dedicata 51

(1994), 63–74.

[Y1] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure.

Appl. Math. 28 (1975), 201–228.

[Y2] S.-T. Yau, Some function-theoretic properties of complete Riemannian manifold and

their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659–670.


