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Abstract. This paper is a survey of results on topological structures and curvature structures

of complete submanifolds in a Euclidean space.

1. Introduction. Let M be an n-dimensional submanifold in an n + p-dimensional

Euclidean space E
n+p. We denote by M(n) the set of n-dimensional submanifolds in

Euclidean spaces. From a theorem of Nash, we know that every finite dimensional Rie-

mannian manifold possesses an isometric embedding into a Euclidean space of sufficiently

high dimension. Hence, M(n) is too large. If we do not assume any condition, it is impos-

sible to investigate the topology and geometry of such submanifolds. Therefore, we want

to find a criterion under which we can study the topology and geometry of submanifolds

in E
n+p.

The paper is organized as follows. In section 2, we discuss the topology of complete

submanifolds in E
n+p. In section 3, we consider the geometry of complete submanifolds

with constant mean curvature in E
n+p. In section 4, we investigate the geometry of

complete submanifolds with constant scalar curvature in E
n+p. In section 5, the geometry

of complete hypersurfaces with constant mean curvature and constant scalar curvature

in E
n+1 is mentioned.

For the reader’s convenience, we will review several basic facts on submanifolds. Let M

an n-dimensional connected submanifold in E
n+p. We choose a local field of orthonormal

frames {e1, . . . , en+p} and the dual coframes {ω1, . . . , ωn+p} in such a way that, restricted
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to M , {e1, . . . , en} are tangent to M . Let {ωAB} denote the connection forms of E
n+p.

The canonical forms {ωA} and connection forms {ωAB} restricted to M are also denoted

by the same symbols. We then have

ωα = 0, α = n + 1, . . . , n + p.

We see that e1, . . . , en is a local field of orthonormal frames adapted to the induced

Riemannian metric on M and ω1, . . . , ωn is a local field of its dual coframes on M . It

follows from Cartan’s Lemma that

ωαi =

n
∑

j=1

hα
ijωj , hα

ij = hα
ji.

The second fundamental form ~α and the mean curvature vector h of M are defined by

~α =

n+p
∑

α=n+1

n
∑

i,j=1

hα
ijωiωjeα, h =

1

n

n+p
∑

α=n+1

(

n
∑

i=1

hα
ii

)

eα.

The mean curvature H of M is defined by

H =
1

n

√

√

√

√

n+p
∑

α=n+1

(

n
∑

i=1

hα
ii

)2

.

Let S =
∑n+p

α=n+1

∑n
i,j=1(h

α
ij)

2 denote the squared norm of the second fundamental form

of M . It is obvious that S ≥ nH2 holds. From the structure equations of M , we have the

Gauss equation

Rijkl =

n+p
∑

α=n+1

(hα
ikhα

jl − hα
ilh

α
jk)

where Rijkl are the components of the curvature tensor of M . Letting Rij and r denote

components of the Ricci curvature and the scalar curvature of M , respectively, we have

Rjk =

n+p
∑

α=n+1

(

n
∑

i=1

hα
iih

α
jk −

n
∑

i=1

hα
ikhα

ji

)

, r = n2H2 − S.

2. Topology of complete submanifolds. It is well known that the investigation of

sphere theorems on Riemannian manifolds is very important in the study of differential

geometry. It is our purpose in this section to consider differentiable sphere theorems of

compact submanifolds in Euclidean spaces.

A classical theorem of Hadamard states that

Theorem 2.1. An n-dimensional compact connected orientable hypersurface M in E
n+1

with positive sectional curvature is diffeomorphic to a standard sphere.

Let N be Gauss map of M . We know that N is a diffeomorphism from M onto the

unit sphere Sn(1).

This above result of Hadamard was generalized by Van Heijenoort [38] and Sacksteder

[35], who proved the following:
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Theorem 2.2. An n-dimensional locally convex (that is, the second fundamental form is

semi-definite) compact connected orientable hypersurface M in E
n+1 is diffeomorphic to

a standard sphere.

Remark 2.1. Since every finite dimensional Riemannian manifold possesses an isometric

embedding into a Euclidean space of sufficiently high dimension, we cannot expect to

extend these results of Hadamard, Van Heijenoort, and Sacksteder to higher codimensions

because there exist many compact manifolds with positive sectional curvature, which are

not diffeomorphic to a standard sphere. Hence, in order to obtain a differentiable sphere

theorem on compact submanifolds in Euclidean spaces, the condition of positive sectional

curvatures is not strong enough.

Chern and Lashof [13] and [14] studied the total curvature c(M) of an n-dimensional

compact connected orientable submanifolds in E
n+p. The total curvature c(M) is defined

by

c(M) =

∫

M

K∗(x)dM,

where K∗(x) =
∫

Bν(x)
|G(x, ν)|dσp−1 is the total curvature of M at point x, Bν(x) and

G(x, ν) denote the bundle of unit normal vectors at x and the Lipschitz-Killing curvature

at ν(x), respectively. They proved

Theorem 2.3. Let M be an n-dimensional compact connected orientable submanifold in

E
n+p. Its total curvature satisfies the inequality

c(M) ≥ 2cn+p−1

and if c(M) = 2cn+p−1 holds, then M is diffeomorphic to a standard sphere, where cn+p−1

is the volume of the n + p − 1-dimensional unit sphere Sn+p−1(1).

Further, Shiohama and Xu [37] and Zhang [45] studied the topological sphere theorem

of compact connected orientable submanifolds in E
n+p. They proved

Theorem 2.4. Let M be an n-dimensional complete connected orientable submanifold

in E
n+p. If supM (S − n2H2

n−1 ) < 0, then M is homeomorphic to a standard sphere when

n > 3, where S and H denote the squared norm of the second fundamental form and the

mean curvature, respectively.

Remark 2.2. From supM (S − n2H2

n−1 ) < 0, we know that the mean curvature H 6= 0 and

it is also easy to prove the Ricci curvature Ric(M) is bounded from below by a positive

constant (see [37] and [45]). From the Myers theorem, we have that M is compact.

In order to prove Theorem 2.4, the following theorem of Lawson and Simons [27] and

Xin [41] will be used:

Theorem 2.5. Let M be an n-dimensional compact submanifold in a space form

Mn+p(c) (c ≥ 0). For 0 < q < n, any point x ∈ M and any orthonormal frame {ei} in

TxM , if
q

∑

i=1

n
∑

k=q+1

2‖~α(ei, ek)‖2 − 〈~α(ei, ei), ~α(ek, ek)〉 < q(n − q)c,
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is satisfied, then Hq(M, Z) = Hn−q(M, Z) = 0, where ~α denotes the second fundamental

form of M and Hi(M, Z) is the i-th homology group of M with integer coefficients.

Proof of Theorem 2.4. (1) From supM (S− n2H2

n−1 ) < 0, we have that, for any 2 ≤ q ≤ n−2,

q
∑

i=1

n
∑

k=q+1

2‖~α(ei, ek)‖2 − 〈~α(ei, ei), ~α(ek, ek)〉 < q(n − q)c,

is satisfied. From Theorem 2.5 of Lawson and Simons and Xin, we have H2(M, Z) =

H3(M, Z) = · · · = Hn−2(M, Z) = 0.

(2) From supM (S − n2H2

n−1 ) < 0, we have that M is compact and the first fundamental

group is finite. Hence, we obtain H1(M, Z) = Hn−1(M, Z) = 0.

(3) Let M̃ be universal covering of M . Then M̃ is homotopy sphere. From the Poincaré

conjecture, M̃ is homeomorphic to a standard sphere. Hence, M is homotopy sphere.

By making use of the Poincaré conjecture again, we get that M is homeomorphic to a

standard sphere if n > 3.

Remark 2.3. From this proof, we can only infer that M is homeomorphic to a standard

sphere. We do not know whether M is diffeomorphic to a standard sphere.

It is natural to ask under what condition M is diffeomorphic to a standard sphere. In

[7], Cheng proved:

Theorem 2.6. An n-dimensional (n ≥ 3) compact connected orientable submanifold M

with nonzero mean curvature H in E
n+p is diffeomorphic to a standard sphere if S ≤ n2H2

n−1

is satisfied and the normalized mean curvature vector is parallel, where S denotes the

squared norm of the second fundamental form of M .

Remark 2.4. It is obvious that the condition S ≤ n2H2

n−1 is weaker than supM (S−n2H2

n−1 ) <

0 and our result is stronger than the one of Shiohama and Xu and Zhang. In particular,

when M is a hypersurface, the condition that the normalized mean curvature vector is

parallel is not necessary. Further, we need to remark that, in general, from the condition

that the normalized mean curvature vector is parallel, we cannot obtain that the mean

curvature is constant. Hence, it is weaker than the condition that the mean curvature

vector is parallel. On the other hand, notice that in the main theorems 1 and 2 of Cheng

[7], the condition that the normalized mean curvature vector is parallel was not assumed,

although it is necessary. In the proof of Theorem 2.7, we shall explain why.

Next, we present a general result.

Theorem 2.7. Let M be an n-dimensional complete connected orientable submanifold

with bounded nonzero mean curvature H in E
n+p. If the normalized mean curvature

vector is parallel and the following inequality holds:

S ≤ n2H2

n − 1
,

then M lies in a totally geodesic submanifold E
n+1 of E

n+p.

In order to prove Theorem 2.7, we need the following Generalized Maximum Principle

of Omori [31] and Yau [44]:
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Theorem 2.8 (Generalized Maximum Principle, Omori [31] and Yau [44]). Let M be an

n-dimensional complete Riemannian manifold whose sectional curvature is bounded from

below. If F is a C2-function bounded from above on M , then there exists a sequence {pm}
of points in M such that

lim
m→∞

F (pm) = supF, lim
m→∞

|gradF (pm)| = 0, lim
m→∞

sup∇k∇kF (pm) ≤ 0,

for k = 1, 2, . . . , n.

Proof of Theorem 2.7. Since the mean curvature of M is not zero, we know that en+1 = h

H

is a normal vector field defined globally on M . We choose an orthonormal frame field

{e1, . . . , en, en+1, . . . , en+p}

in E
n+p such that {e1, . . . , en} are tangent to M . We define S1 and S2 by

S1 :=
n

∑

i,j=1

(hn+1
ij − Hδij)

2, S2 :=

n+p
∑

α=n+2

n
∑

i,j=1

(hα
ij)

2,

respectively, where hα
ij denote components of the second fundamental form of M . Then,

S1 and S2 are functions defined on M globally, which do not depend on the choice of the

orthonormal frame {e1, . . . , en}. And

S − nH2 = S1 + S2.

Let hα
ijk and hα

ijkl denote components of the covariant differentiation and components of

the second covariant differentiation of the second fundamental form of M , respectively.

Then, we have (see [6] for details)

1

2
∆S2 =

n+p
∑

α=n+2

n
∑

i,j,k=1

hα
ijh

α
kkij +

n+p
∑

α=n+2

n
∑

i,j,k=1

(hα
ijk)2

+ nH

n+p
∑

α=n+2

trace(Hn+1H
2
α) −

n+p
∑

α=n+2

[trace(Hn+1Hα)]2

−
n+p
∑

α,β=n+2

N(HαHβ − HβHα) −
n+p
∑

α,β=n+2

[trace(HαHβ)]2

+

n+p
∑

α=n+2

trace(Hn+1Hα)2 −
n+p
∑

α=n+2

trace(H2
n+1H

2
α).

Since the normalized mean curvature en+1 is parallel, we have
∑

i hα
iik = 0 for any

α 6= n + 1. Thus, we can infer
∑n+p

α=n+2

∑

i,j,k hα
ijh

α
kkij = 0.

Here, we need to mention that in [6] and [7],
∑n+p

α=n+2

∑

i,j,k hα
ijh

α
kkij = 0 was used

without the assumption that the normalized mean curvature vector is parallel. But, in

general, we cannot have this result if we do not have any assumption, which was pointed

out by the referees of this paper. We would like to thank them for pointing out this

mistake.
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From the calculations in [6], we can infer

1

2
∆S2 ≥

n+p
∑

α=n+2

n
∑

i,j,k=1

(hα
ijk)2 +

{

(n − 3)

2
S2

}

S2 ≥ 0.

Since the mean curvature is bounded, from the condition S ≤ n2H2

n−1 and the Gauss

equation, we know that the Ricci curvature of M is bounded from below. By applying

Theorem 2.8 to the function S2, we have that there exists a sequence {pk} ⊂ M such

that

lim
k→∞

S2(pk) = supS2, lim
k→∞

sup ∆S2(pk) ≤ 0.

Hence, sup S2 = 0, that is, S2 = 0 on M . Thus, we have
n+p
∑

α=n+2

n
∑

i,j,k=1

(hα
ijk)2 = 0

on M .

Since en+1 is parallel in the normal bundle T⊥(M) of M , if we denote by N1 the

normal subbundle spanned by en+2, en+3, . . . , en+p of the normal bundle of M , then M

is totally geodesic with respect to N1. Since en+1 is parallel in the normal bundle, we

know that the normal subbundle N1 is invariant under parallel translation with respect

to the normal connection of M . Then from Theorem 1 in [37], we conclude that M lies

in a totally geodesic submanifold E
n+1 of E

n+p. This finishes our proof.

Now, we can deduce our Theorem 2.6 from Theorem 2.7.

Proof of Theorem 2.6. Since M is compact, we know that the mean curvature is bounded.

From the condition S ≤ n2H2

n−1 , we know that Theorem 2.7 is true. Therefore, M lies in

a totally geodesic submanifold E
n+1 of E

n+p. We denote by H ′ the mean curvature of

M in E
n+1. Since E

n+1 is totally geodesic in E
n+p, we have H = H ′, that is, the mean

curvature H ′ of M in E
n+1 is the same as in E

n+p. We can also obtain that the squared

norm S′ of the second fundamental form of M in E
n+1 is the same as in E

n+p. Thus, we

can conclude S′ ≤ n2(H′)2

n−1 and H ′ 6= 0. From this condition and the Gauss equation, we

can prove that the sectional curvatures of M are nonnegative (see p. 483 in [7] in details).

Since H ′ 6= 0, we can prove that M is a locally convex hypersurface. From the result of

Van Heijenoort and Sacksteder, we infer that M is diffeomorphic to a standard sphere.

3. Geometry of complete submanifolds with constant mean curvature. In this

section, we shall study the geometry of complete connected orientable submanifolds with

constant mean curvature in E
n+p.

In 1900, Liebmann proved that a strictly convex, compact surface of constant mean

curvature in E
3 is isometric to a standard sphere. As a generalization of the above result,

in 1951, Hopf [20] proved that the only possible differentiable immersions of a sphere into

E
3 with constant mean curvature are exactly those standard spheres.

Further, he proposed the following conjecture:

Conjecture 3.1 (Hopf’s conjecture). An n-dimensional compact connected orientable

hypersurface with constant mean curvature in E
n+1 is isometric to a standard sphere.
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For Hopf’s conjecture, Alexandrov [2] obtained an important contribution. He proved

the following:

Theorem 3.1. If M is an n-dimensional embedded compact connected orientable hyper-

surface in E
n+1 with constant mean curvature, then M is isometric to a standard sphere.

Next, we shall give a proof of Theorem 3.1 of Alexandrov by making use of the

so-called Reilly formula in [33].

Reilly’s formula. Let Ω be a bounded domain in E
n+1 with boundary M = ∂Ω. Given

a function f ∈ C∞(Ω̄), we put g = f|M and u = ∂f/∂N . Then
∫

Ω

{(∆̄f)2 − |Hess f |2}dv =

∫

M

{−2(∆g)u + nHu2 + ~α(grad g, grad g)}dM,

where ∆̄f and Hess f denote the Laplacian and the Hessian of f in E
n+1, respectively,

and N denotes the inner normal vector field on M = ∂Ω.

Proof of Theorem 3.1. (1) Since M is an embedding, we know that there exists a domain

Ω ⊂ E
n+1 such that M = ∂Ω.

(2) From Reilly’s formula, by taking ∆̄f = 1 in Ω and g = f|M = 0, we have
∫

M

1

H
dM ≥ (n + 1)volΩ

and the equality holds if and only if M is isometric to a sphere.

(3) Let φ denote the position vector field of E
n+1 with respect to the origin. From the

so-called Minkowski formula (see [22] and [23])
∫

M

(1 + H〈φ, N〉)dM = 0

and

−
∫

M

〈φ, N〉dM = (n + 1)volΩ,

we obtain
∫

M

1

H
dM = (n + 1)volΩ.

(4) From (2) and (3), we have that M is isometric to a standard sphere.

The basic problem whether there exist any other oriented compact immersed hyper-

surfaces in E
n+1 with constant mean curvature was open until W. Y. Hsiang [21] and

Wente [39] discovered examples which are not isometric to a standard sphere. In both

cases, there exist infinitely many examples of compact immersed hypersurfaces in E
n+1

(n ≥ 2) with constant mean curvature, which are not isometric to a standard sphere. Of

course, they are not embeddings.

Wente’s examples

(1) They are compact surfaces with constant mean curvature in E
3.

(2) They have genus =1.

Furthermore, Kapouleas [20] constructed new examples of compact surfaces immersed

into E
3 with constant mean curvature and higher genus.
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Hsiang’s examples

(1) They are compact hypersurfaces with constant mean curvature in E
n+1 (n ≥ 3).

(2) They are not isometric to a standard sphere.

(3) They are diffeomorphic to a standard sphere.

From the examples of Hsiang, we know that although they are not isometric to a

standard sphere, they are diffeomorphic to a sphere. That is, in the topological sense,

they are a standard sphere. Hence, we can ask the following:

Problem 3.1. Is it true that an n-dimensional compact connected orientable hypersur-

face with constant mean curvature in E
n+1 (n ≥ 3) is diffeomorphic to a standard sphere?

Next, we consider complete connected orientable submanifolds in E
n+p.

It is well known that Klotz and Osserman [25] proved the following:

Theorem 3.2. A complete connected orientable surface M2 with constant mean curva-

ture H in E
3 is isometric to a totally umbilical sphere S2(c), a totally geodesic plane E

2

or a cylinder E
1 × S1(c) if its Gaussian curvature is nonnegative.

Remark 3.1. It is well known that the Gaussian curvature is nonnegative if and only if

S ≤ n2H2

n−1 holds in the case of n = 2, where S denotes the squared norm of the second

fundamental form.

It is a natural problem to generalize the result of Klotz and Osserman to higher

dimensions and higher codimensions. In [11], S.Y. Cheng and Yau proved

Theorem 3.3. Let M be an n-dimensional complete connected orientable hypersurface

with constant mean curvature in E
n+1. If the sectional curvature of M is nonnegative,

then M is isometric to a standard sphere, a hyperplane E
n or a Riemannian product

E
k × Sn−k(c), 1 ≤ k ≤ n − 1.

Proof. (1) When M is compact, from

1

2
∆S =

n
∑

i,j,k=1

h2
ijk +

n
∑

i<j=1

(λi − λj)
2Kij .

and Stokes formula, we know that M is isometric to a standard sphere.

Next, we assume that M is complete and noncompact.

(2) Since the sectional curvatures of M are nonnegative, there exists a unit vector ~a

in E
n+1 such that 〈N,~a〉 ≥ 0.

(3) If H = 0, then M is isometric to a hyperplane because the sectional curvatures of

M are nonnegative.

(4) In the case H 6= 0, since the sectional curvatures of M are nonnegative, we can

prove that the lower bound λ1(M) of the spectrum of Laplacian on M satisfies

0 = λ1(M) ≥ inf(−∆f/f)

for any positive smooth function f . From ∆〈N,~a〉 = −S〈N,~a〉 and the maximum princi-

ple, we have 〈N,~a〉 = 0.

(5) From 〈N,~a〉 = 0, we infer that M is isometric to a Riemannian product E
k ×

Sn−k(c), 1 ≤ k ≤ n − 1.
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In [8], Cheng and Nonaka proved

Theorem 3.4. Let M be an n-dimensional (n > 2) complete connected orientable sub-

manifold with parallel mean curvature vector in E
n+p. If S ≤ n2H2

n−1 is satisfied, then M

is isometric to a totally umbilical sphere Sn(c), a totally geodesic hyperplane E
n or a

generalized cylinder E
1×Sn−1(c), where S and H denote the squared norm of the second

fundamental form and the mean curvature of M .

Remark 3.2. In 1985, Y. B. Shen [36] tried to prove Theorem 3.4. But his proof is not

correct because he used a wrong result of Motomiya [29] which plays an essential role in

his proof. In fact, Motomiya [29] wanted to extend the generalized maximum principle of

Yau [44]. But his result is wrong. The counterexamples were constructed in [10] (see [8]

and [10] for details).

Proof of Theorem 3.4. From S ≤ n2H2

n−1 and H = constant, we know that M is isometric

to a hyperplane if H = 0. When H 6= 0, from Theorem 2.7 and the proof of Theorem

2.6, we know that M is a complete hypersurface with nonnegative sectional curvatures.

From Theorem 3.3 of S. Y. Cheng and Yau, we know that Theorem 3.4 is true.

4. Geometry of complete submanifolds with constant scalar curvature. In this

section, we shall discuss complete connected orientable submanifolds with constant scalar

curvature in E
n+p. It is well known that in 1982, Yau proposed the following conjecture

in [42]:

Conjecture 4.1 (Yau’s conjecture). An n-dimensional compact connected orientable

hypersurface with constant scalar curvature in E
n+1 is isometric to a standard sphere.

We should compare Yau’s conjecture with Hopf’s conjecture. Although Hopf’s con-

jecture was solved negatively, Yau’s conjecture is still open.

For Hopf’s conjecture, Alexandrov proved that Hopf’s conjecture is true if the hyper-

surface is an embedding. Concerning Yau’s conjecture, by making use of Reilly’s formula,

Ros [34] also gave an affirmative answer if the hypersurface is an embedding.

Theorem 4.1. If M is an n-dimensional embedded compact connected orientable hyper-

surface in E
n+1 with constant scalar curvature, then M is isometric to a standard sphere.

Proof. (1) Since M is an embedding, we know that there exists a domain Ω ⊂ E
n+1 such

that M = ∂Ω.

(2) Since M is compact and the scalar curvature is constant, we have H 6= 0. We can

assume H > 0 on M . From the Gauss equation and S ≥ nH2, we have r ≤ n(n − 1)H2

and equality holds if and only if M is isometric to a standard sphere.

(3) Let φ denote the position vector field of E
n+1 with respect to the origin. From

Minkowski’s formula
∫

M

(n(n − 1)H + r〈φ, N〉)dM = 0,

we have
∫

M

HdM =
n + 1

n(n − 1)
rvolΩ.
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(4) From (2) and (3), we can infer
√

n(n − 1)volM ≤ (n + 1)
√

rvolΩ

and equality holds if and only if M is isometric to a standard sphere.

(5) Let f satisfy ∆̄f = 1 in Ω and f = 0 on ∂Ω. From Reilly’s formula, we have

volΩ

n + 1
≥

∫

M

Hu2dM,

where u = ∂f/∂N .

(6) From Schwarz inequality and (5), we can obtain
√

n(n − 1)volM ≥ (n + 1)
√

rvolΩ.

(7) From (4) and (6), we infer that M is isometric to a standard sphere.

When we do not assume that M is an embedding, Cheng [5] proved

Theorem 4.2. An n-dimensional (n > 3) compact connected orientable locally confor-

mally flat hypersurface with constant scalar curvature in E
n+1 is isometric to a standard

sphere.

Proof. (1) From a result of Cartan and Schouten (see [16]), we have that M has at most

two distinct principal curvatures.

(2) We can prove that there exist no compact locally conformally flat hypersurfaces

with constant scalar curvature and with two distinct principal curvatures.

(3) If M has two distinct principal curvatures at some point, then M has two distinct

principal curvatures on M .

(4) From (2) and (3), we conclude that M is isometric to a standard sphere.

Next, we consider complete connected orientable submanifolds in E
n+p.

By a classical result and a theorem of Hartman and Nirenberg [18], we know that

a complete connected orientable surface with constant curvature in E
3 is isometric to a

totally umbilical sphere S2(c), a totally geodesic plane E
2 or a cylinder E

1 × S1(c).

In this case, we know that the Gaussian curvature is nonnegative. As a generalization

of this result, S. Y. Cheng and Yau [10] proved

Theorem 4.3. Let M be an n-dimensional complete connected orientable hypersurface

with constant scalar curvature in E
n+1. If the sectional curvature of M is nonnegative,

then M is isometric to a standard sphere, a hyperplane E
n or a Riemannian product

E
k × Sn−k(c), 1 ≤ k ≤ n − 1.

Proof. (1) When M is compact, a differential operator � acting on functions f is defined

by

�f =

n
∑

i,j=1

(nHδij − hn+1
ij )fij ,
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where df =
∑n

i=1 fiωi,
∑n

ij=1 fijωj = dfi +
∑n

j=1 fjωji. Since the scalar curvature is

constant, we have

�(nH) =

n
∑

i,j,k=1

h2
ijk − | grad(nH)|2 +

n
∑

i<j=1

(λi − λj)
2Kij .

From this formula and Stokes formula, we know that M is isometric to a standard sphere.

Next, we assume that M is complete and noncompact.

(2) Since the sectional curvatures of M are nonnegative, there exists a unit vector ~a

in E
n+1 such that 〈N,~a〉 ≥ 0.

(3) If the scalar curvature is zero, then M is flat because the sectional curvatures of

M are nonnegative. From a result of Hartman and Nirenberg [18], the assertion is true.

(4) In the case r > 0, since the sectional curvatures of M are nonnegative, by making

use of

�〈N,~a〉 = −
∑

k,l

(nHδkl − hkl)
∑

i

hkihil〈N,~a〉,

we know that 〈N,~a〉 = 0.

(5) From 〈N,~a〉 = 0, we infer that M is isometric to a Riemannian product E
k ×

Sn−k(c), 1 ≤ k ≤ n − 1.

In [6] Cheng proved

Theorem 4.4. Let M be an n-dimensional (n > 2) complete connected orientable sub-

manifold with constant scalar curvature r in E
n+p. Assume that at points where the mean

curvature is not zero, the normalized mean curvature vector is parallel. If S ≤ r
n−2 is

satisfied, then M is isometric to a totally umbilical sphere Sn(c), a totally geodesic hy-

perplane E
n or a generalized cylinder E

1 × Sn−1(c), where S denotes the squared norm

of the second fundamental form of M .

Remark 4.1. Notice that in Theorems 1.1 and 1.3 of Cheng [6], the condition that the

normalized mean curvature vector is parallel is not assumed. As we remarked in Remark

2.4, this condition is necessary.

Proof of Theorem 4.4. For any n ≥ 3, from the Gauss equation, we know r = n2H2 − S.

Hence, S ≤ r
n−2 holds if and only if S ≤ n2H2

n−1 is satisfied. If H = 0 holds at some point,

we have r = 0 on M . Hence, M is flat. From a result of Hartman and Nirenberg [18],

we know that Theorem 4.4 is true. When H 6= 0, from Theorem 2.7 and the proof of

Theorem 2.6, we know that M is a complete hypersurface with nonnegative sectional

curvatures. From Theorem 4.3, we know that Theorem 4.4 is true.

5. Geometry of complete hypersurfaces. In this section, we only consider hyper-

surfaces with constant mean curvature and constant scalar curvature in E
n+1. It is well

known that an n-dimensional compact hypersurface M in E
n+1 with constant mean cur-

vature and constant scalar curvature is isometric to a standard sphere (see [28] for finding

a proof).

On the other hand, for complete and noncompact hypersurfaces, it is well known

that the Riemannian products E
k × Sn−k(c) for k = 1, 2, . . . , n − 1 are n-dimensional
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complete hypersurfaces with constant mean curvature and constant scalar curvature in

E
n+1, which are called generalized cylinders. From Theorem 5.1, it is natural to ask the

following:

Problem 5.1. Let M be an n-dimensional complete hypersurface in E
n+1 with constant

mean curvature and constant scalar curvature. Is it true that then M is isometric to

a standard sphere, a hyperplane E
n or a Riemannian product E

k × Sn−k(c) for k =

1, 2, . . . , n − 1?

Remark 5.1. When n = 2, it is obvious that the statement in problem 5.1 holds. When

n = 3, the author and Wan [9] gave an affirmative answer for it (see Theorem 5.1). For

n > 3, it is still open.

Theorem 5.1. Let M be a 3-dimensional complete hypersurface in E
4 with constant

mean curvature. If the scalar curvature is constant, then M is isometric to a standard

sphere, a hyperplane E
3 or a Riemannian product E

k × S3−k(c) for k = 1, 2.

Proof. (1) Since M is a hypersurface with constant mean curvature and with constant

scalar curvature, we have the following:
∑

i,j,k

h2
ijk = S2 − 3Hf3,

where f3 =
∑

i λ3
i , and

∑

i,j,k,l

h2
ijkl = −5

3

∑

i,j,k

(µi + µj + µk)2h2
ijk − 24H

∑

µih
2
ijk

+
3

2
(S − 6H2)

∑

h2
ijk +

3

2
(S − 3H2)(S − 9

2
H2)(S − 9H2),

where µi = λi − H.

(2) If there exists a point x ∈ M such that, at x, M has at most two distinct prin-

cipal curvatures, then by estimating
∑

h2
ijkl, we conclude that M is an isoparametric

hypersurface with at most two distinct principal curvatures.

(3) If M has three distinct principal curvatures at every point in M , by making use

of the formulas in (1) and applying the Generalized Maximum Principle of Omori [31]

and Yau [44] to the function f3 =
∑3

i=1(λi)
3, we infer that this is impossible.

(4) From a result of Cartan [3], we conclude that Theorem 5.1 is true.

Acknowledgements. We like to express our gratitude to the referees for pointing

out a mistake in our paper [6] and for other valuable suggestions and comments.
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