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Abstract. In his book on convex polytopes [2] A. D. Aleksandrov raised a general question

of finding variational formulations and solutions to geometric problems of existence of convex

polytopes in R
n+1, n ≥ 2, with prescribed geometric data. Examples of such problems for closed

convex polytopes for which variational solutions are known are the celebrated Minkowski prob-

lem [2] and the Gauss curvature problem [20]. In this paper we give a simple variational proof of

existence for the A. D. Aleksandrov problem [1, 2] in which the hypersurface in question is a poly-

hedral convex graph over the entire R
n, has a prescribed asymptotic cone at infinity, and whose

integral Gauss-Kronecker curvature has prescribed values at the vertices. The functional that we

use is motivated by the functional arising in the dual problem in the Monge-Kantorovich optimal

mass transfer theory considered by W. Gangbo [13] and L. Caffarelli [11]. The presented treat-

ment of the Aleksandrov problem is self-contained and independent of the Monge-Kantorovich

theory.

1. Introduction. We recall first the original problem of A. D. Aleksandrov [1, 2]. Let

Sn be the unit sphere in R
n+1, n ≥ 2, with the center O at the origin of a Cartesian

coordinate system (x, z) ≡ (x1, . . . , xn, z). Denote by α the hyperplane z = 0. Let F be

a noncompact, complete and convex (not necessarily smooth) hypersurface in R
n+1. It

will be convenient to assume that the direction of the axis z is such that a ray parallel

to the z-axis is contained inside the convex body bounded by F . This can always be

achieved by performing (if necessary) a rotation of coordinate axes. For a point x ∈ α,

which is a projection of some point X ∈ F , we let N(x) denote the set of outward
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normals to all supporting hyperplanes to F at X. Thus, we have a generalized Gauss

map x → X(x) → N(x) ∈ Sn. For a set ω ⊂ α let ω̃ be the subset of ω each point of

which is a projection of some point of F . Put νF (ω) =
⋃

x∈ω̃ N(x). If ω is such that ω̃ = ∅

then we put νF (ω) = ∅. The set νF (ω) is Lebesgue measurable for any Borel ω ⊂ α (see,

for example, [5], ch 1). Let |νF (ω)| be the n-volume of νF (ω) on Sn. The function |νF |

on Borel subsets of α is a nonnegative and completely additive measure. It is called the

integral Gauss (≡ Gauss-Kronecker) curvature.

Let BF be the solid convex body bounded by F . Pick a point Q ∈ BF and consider

all rays emanating from Q and contained in BF . The closure of this set of rays forms a

closed convex cone. Its boundary KF is called the asymptotic cone of F . For a noncompact

complete convex F such KF always exists and is unique up to a translation in R
n+1. It

is well known (and not difficult to see) that νKF
(α) = νF (α).

In 1942 A. D. Aleksandrov proved the following

Theorem 1.1. Let K be a convex cone in R
n+1 such that any straight line parallel to the

z-axis either does not intersect K or its intersection with the convex body bounded by K is

a complete ray. Then, a given function µ on Borel subsets of α is the integral Gauss curva-

ture of a complete convex hypersurface F in R
n+1 with the asymptotic cone K if and only

if: (1) µ is a nonnegative and completely additive measure on Borel subsets of α, (2) for

any point x ∈ α, µ(x) < σn/2, where σn is the n-volume of Sn, (3) µ(α) = |νK(α)|. Fur-

thermore, such µ and K define F uniquely up to a translation in the direction of the z-axis.

Aleksandrov’s proof of this theorem is divided into two steps. In step one he solves the

problem in the “discrete” case when the measure µ is a finite sum of Dirac masses, and

the cone K is a polyhedral convex cone with a one-to-one projection on the hyperplane

α. In this case the solution is a complete convex polytope, whose existence is proved

with the use of the so-called “mapping lemma” of Aleksandrov; see, for instance, [2]

or [22], §2. Step two is an approximation procedure. First, the originally given measure

µ is approximated by a sequence of finite sums of Dirac masses and the cone K is

approximated by convex polyhedral cones. This gives a sequence of convex polytopes

Pk solving the corresponding discrete problems. Then it is shown that the set of convex

piece-wise linear functions whose graphs are Pk is compact in C(α) and therefore one

can extract a subsequence convergent to a complete convex hypersurface F . The integral

Gauss curvatures of Pk are weakly continuous and, consequently, |νPk
| ⇀ |νF | = µ.

In [2], p. 296, after describing a variational solution to the Minkowski problem for

polytopes, A. D. Aleksandrov raises the general question of finding variational proofs

of other existence theorems for convex polytopes. The purpose of this note is to give

such a variational proof of Aleksandrov’s theorem in the case of convex polytopes with

nondegenerate convex asymptotic cones1. In fact, we prove a more general result in which

the integral Gauss curvature is constructed with an arbitrary given nonnegative integrable

weight function. By a different method the Aleksandrov problem, in such generalized

form, was considered previously by I. J. Bakelman [4], [5], ch. 5, and A. V. Pogorelov [21].

1An asymptotic cone of a complete convex hypersurface is nondegenerate if it projects uni-

valently onto the entire hyperplane α.
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Our main result, Theorem 2.3, is presented in section 2 where we construct and

investigate a minimization problem for a functional very naturally connected with this

geometric problem. Our functional is similar to the one arising in the dual problem

associated with the Monge-Kantorovich optimal mass transfer problem; see, especially,

L. Caffarelli [11] and W. Gangbo [13] and related papers by Y. Brenier [6, 7], W. Gangbo

and R. J. McCann [14, 15], L. Caffarelli [9, 8, 10] as well as our recent papers [17, 16]

and the paper by X.-J. Wang [24] dealing with problems in geometrical optics. However,

the variational treatment of Aleksandrov’s problem presented here is self-contained and

does not depend on the Monge-Kantorovich theory.

In section 3 we collect several remarks complementing our main result, including a

remark showing the connection between the problem of Aleksandrov and the problem of

G. Monge from Monge-Kantorovich optimal mass transfer theory.

Finally, we note that in [19], R. J. McCann proved a result which implies, in particular,

Aleksandrov’s theorem in the case when the measure µ vanishes on Borel subsets of

Hausdorff dimension n−1. Thus, formally, it does not cover the case of convex polytopes

considered in this paper. However, in essence, the proof for this case can be extracted

from the proof in [19]. Still, the treatment below is more direct and elementary and it

is carried out in a geometric setting. Our approach should be useful in other geometric

problems.

2. The variational problem. Let W+ denote the set of convex2 functions defined on

the entire hyperplane α. For a function u ∈ W+ we denote by Fu the graph of u. At any

point X0 = (x0, u(x0)) ∈ Fu there exists at least one hyperplane supporting to Fu at X0.

Let

z − u(x0) =
n

∑

i=1

p0
i (xi − x0

i ) (1)

be the equation of a supporting hyperplane at X0 with normal (p0,−1) = ((p0
1, . . . , p

0
n),

−1). Clearly,

u(x) ≥ 〈p0, x〉 − 〈p0, x0〉 + u(x0) ∀x ∈ α. (2)

Let χu(x0) =
⋃

{p0}, where p0 are vectors in R
n (≡ α) defined by hyperplanes (1)

supporting Fu at X0 and the union is taken over all supporting hyperplanes at X0. The

set χu(x0) is called the normal image of x0. For any subset ω ⊂ α we put

χu(ω) =
⋃

x∈ω

χu(x)

and call it the normal image of ω. It is known (see, for instance, Bakelman [5], p. 116) that

for any Borel set ω ⊂ α the set χu(ω) is Lebesgue measurable. For a function u ∈ W+(α)

a point (x, u(x)) on its graph Fu is called a true vertex if |χFu
(x)| > 0, where | · | denotes

the n-dimensional volume on α.

For a given finite set of points A = {a1, . . . , ak} ⊂ α, k ≥ 1, we denote by W+(A) the

subset of W+ consisting of piece-wise linear functions whose graphs may have vertices only

2We deal here only with convex functions but all of our considerations apply also, almost

verbatim, to concave functions.
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on straight lines perpendicular to α and passing through the points a1, . . . , ak. Denote

by Ω̄ the convex hull of the points a1, . . . , ak.

Lemma 2.1. Let u ∈ W+(A), F ′

u = {(x, u(x)), x ∈ ∂Ω} and x̄ an arbitrary point in α\Ω̄.

For any supporting hyperplane P to Fu at X̄ = (x̄, u(x̄)) the contact set Pcon = P ∩Fu has

a non-empty intersection with F ′

u. Moreover, the point X̄ can be connected by a straight

line segment lying in Pcon with at least one of the vertices (ai, u(ai)).

Proof. Obviously, if Pcon = {X̄} then the vector p defined by the normal (p,−1) to

supporting hyperplane P is an interior point of χu(x̄). Then X̄ is a true vertex of Fu,

which contradicts our choice of X̄. Since Pcon is convex, there exists a straight line

segment connecting X̄ with any boundary point in ∂Pcon.

On the other hand, if ∂Pcon ∩ F ′

u = ∅ then there must exist a true vertex in ∂Pcon

which is, again, impossible. Hence, X̄ can be connected to some point on F ′

u by a linear

segment. In fact, by convexity of Pcon X̄ can be connected by a linear segment to at least

one of the vertices (ai, u(ai)).

This lemma and the fact that u is defined over the entire α imply that Fu cannot

have vertical supporting hyperplanes. Furthermore, it also implies that the normal image

T̄u ≡ χu(α) is compact on α. Moreover, it is not difficult to see that the asymptotic cone

Ku of Fu is convex and χKu
(α) = T̄u. Hence, T̄u is also convex.

The epigraph of u is an infinite complete convex body in R
n+1 whose boundary is the

convex polytope Fu. For each p ∈ T̄u there is a supporting hyperplane to Fu with the

equation z = 〈x, p〉− v(p). Then, since the epigraph of u is the intersection of half-spaces

defined by its supporting hyperplanes, we have

u(x) = sup
p∈T̄u

[〈x, p〉 − v(p)] ∀x ∈ α (3)

and for each p ∈ T̄u there exists at least one ai ∈ A such that

u(ai) = 〈ai, p〉 − v(p).

By (3) we have
v(p) ≥ 〈x, p〉 − u(x) ∀p ∈ T̄u and ∀x ∈ α (4)

and the equality is achieved at x where the hyperplane z = 〈x, p〉 − v(p) is supporting to

Fu. In other words,
v(p) = sup

x∈α
[〈x, p〉 − u(x)], p ∈ T̄u, (5)

which also means that v is a convex function on T̄u. The function v is the Legendre-

Fenchel (LF) transform of u which is the generalization of the usual Legendre transform

to non-smooth convex functions. We will also use the notation u∗ to denote the LF

transform of u. Note that (u∗)∗ = u; see, for example, R. Schneider [23], p. 36.

Let T̄ be a compact convex set on α with interior points (in topology of α). Let p ∈ T̄

and
L+(p) = {(x, z) ∈ R

n+1 | z ≥ 〈x, p〉}

a half-space defined by the hyperplane z = 〈x, p〉 with the normal (p,−1). Put

K = ∂
(

⋂

p∈T̄

L+(p)
)

. (6)
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Obviously, K is a convex cone with vertex at O defined over the entire hyperplane α. If

the boundary ∂T̄ is a convex polytope then K is an infinite convex polytope.

For the rest of this section we consider only the case when the boundary of T̄ is a

convex polytope.

Denote by W+(A, K) the subset of functions in W+(A) whose asymptotic cone is a

parallel translate of K. This set is not empty as, in particular, the cone K translated to

any of the points ai is the graph of a function in W+(A, K). The set of functions which

are LF transforms of functions from W+(A, K) we denote by W ∗

+(A, K). Finally, put

Adm(α, T̄ ) = {(ξ, τ) ∈ W+(A, K)×W ∗

+(A, K) | ξ(x)+τ (p) ≥ 〈x, p〉 ∀(x, p) ∈ α×T̄}. (7)

It follows from (3) (or (5)) that Adm(α, T̄ ) is not empty.

Lemma 2.2. Let (ξ, τ) ∈ Adm(α, T̄ ). Then ξ and τ are both uniformly Lipschitz contin-

uous on α and T̄ , respectively.

Proof. Since any ξ ∈ W+(A, K) has an asymptotic cone which is a translate of K, it is

clear that ξ is uniformly Lipschitz with a Lipschitz constant not exceeding maxT̄ |p|.

An alternative analytic proof can be given as follows. Let x1, x2 ∈ α. Denote by ξ∗

the LF of ξ. We have for some p̄ ∈ T̄ ξ(x2) = 〈x2, p̄〉 − ξ∗(p̄) and ξ(x1) ≥ 〈x1, p̄〉 − ξ∗(p̄).

Then

ξ(x2) − ξ(x1) ≤ 〈x2, p̄〉 − ξ∗(p̄) − 〈x1, p̄〉 + ξ∗(p̄) ≤ max
T̄

|p||x2 − x1|.

Similarly, we obtain the inequality

ξ(x2) − ξ(x1) ≥ −max
T̄

|p||x2 − x1|.

The uniform Lipschitz continuity of τ is shown in the same way, and, in fact, for any

p1, p2 ∈ T̄ we have
|τ (p2) − τ (p1)| ≤ max

i=1,...,k
|ai||p2 − p1|.

Theorem 2.3. Let T̄ be a compact convex set on α with interior points and boundary ∂T̄

which is a convex polytope. Let L be a nonnegative integrable function on T and g1, . . . , gk

nonnegative numbers such that
k

∑

i=1

gi =

∫

T

L(p)dp 6= 0. (8)

Put

F(ξ, τ) =
k

∑

i=1

giξ(a
i) +

∫

T

τ (p)L(p)dp, (ξ, τ) ∈ Adm(α, T̄ ). (9)

Then there exists a convex polytope which is the graph of a function u ∈ W+(A, K),

where K is the convex cone defined by T̄ as in (6), such that for u and its LF transform

v ∈ W ∗

+(A, K) we have
F(u, v) = inf

Adm(α,T̄ )
F(ξ, τ). (10)

For any u satisfying (10) we have
∫

χu(ai)

L(p)dp = gi, i = 1, 2, . . . , k. (11)

Furthermore, if L > 0 in T then u is unique up to an additive constant.
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Proof. First note that for any constant C the function ξ + C remains in W+(A, K) and

for its LF transform we have (ξ + C)∗ = ξ∗ − C. By (8) F(ξ + C, τ − C) = F(ξ, τ) and

we may restrict the search for minimizers to ξ in W+(A, K) such that ξ(a1) = 0. Let

W+,0(A, K) be the subset of functions in W+(A, K) satisfying this additional condition.

By lemma 2.2 the set Adm0(α, T ) constructed with the use of W+,0(A, K) is compact in

C(α) × C(T̄ ). Since the functional F is continuous on C(α) × C(T̄ ), there exists a pair

(u, v) ∈ Adm0(α, T ) satisfying (10).

Next we observe that the function v in (10) can be assumed to be the LF transform

of u. Indeed, by definition of Adm(α, T ) v(p) ≥ 〈x, p〉 − u(x) ∀x ∈ α and then v(p) ≥

supα [〈x, p〉 − u(x)] = u∗(p). But then F(u, v) ≥ F(u, u∗). This also implies that when

minimizing F it suffices to look for minimizers among pairs which are LF transforms of

each other; cf. Gangbo-McCann [14].

Now we prove (11). First we prove it under the following assumption.

(A) The function u in the minimizing pair (u, v) is such that |χu(a1)| > 0.

Consider the following variation of u. Pick γ > 0 and consider the convex polytope Fuγ

defined by vertices (a1, uγ(a1) = u(a1)+γ), (ai, u(ai)), i > 1, and the cone K translated

so that its vertex is positioned at any one of the points (ai, u(ai)), i > 1. Such a polytope

is the boundary of the convex hull of the (translated) cone K, vertices (ai, u(ai)), i > 1,

and vertex (a1, uγ(a1)). Denote this polytope by Fuγ
. Since |χu(a1)| > 0, we can pick

γ so that |χuγ
(a1)| > 0. The vertices (ai, u(ai)) on Fz can only be of the following two

types: (a) |χu(ai)| > 0 and (b) |χu(ai)| = 0. We can choose γ sufficiently small so that

the vertices of type (a) will remain of the same type on Fuγ
. The vertices of type (b) may

become of type (a) on Fuγ
.

It is easy to see that χuγ
(a1) ⊂ χu(a1), while χu(ai) ⊆ χuγ

(ai) for i > 1. Put

κij = χuγ
(ai) ∩ χu(aj). Then

χuγ
(a1) = χu(a1) \

(

⋃

i>1

κi1

)

,

χuγ
(ai) = χu(ai) ∪ κi1, for i 6= 1.

Next, we note that for i 6= 1 and p ∈ χu(ai) the LT transform of uγ is

vγ(p) = sup
x∈α

[〈x, p〉−uγ(x)] = 〈ai, p〉−uγ(ai) = 〈ai, p〉−u(ai) = sup
x∈α

[〈x, p〉−u(x)] = v(p).

Therefore,
∫

T

[vγ(p) − v(p)]L(p)dp =

∫

χu(a1)

[vγ(p) − v(p)]L(p)dp +
∑

i>1

∫

χu(ai)

[vγ(p) − v(p)]L(p)dp

=

∫

χuγ (a1)

[vγ(p) − v(p)]L(p)dp +
∑

i>1

∫

κi1

[vγ(p) − v(p)]L(p)dp

≤ −γ

∫

χuγ (a1)

L(p)dp, (12)

where we made use of the inequalities:
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vγ(p) − v(p) = 〈a1, p〉 − uγ(a1) − sup
x∈α

[〈x, p〉 − u(x)] ≤ −γ ∀p ∈ χu(a1),

vγ(p) − v(p) = 〈ai, p〉 − uγ(ai) − sup
x∈α

[〈x, p〉 − u(x)] ≤ 0 ∀p ∈ κi1, i > 1. (13)

Next, we note that for i > 1
∫

κi1

L(p)dp = O(γ). (14)

This can be seen as follows. Denote by C the polyhedral cone formed by facets of Fu

adjacent to (a1, u(a1)). Let C∗ be the polyhedral cone dual to C with vertex (a1, u(a1)).

Translate the coordinate system in R
n+1 so that the vertex (a1, u(a1)) becomes the origin.

Then, χu(a1) is a compact convex set on the hyperplane z = −1 whose boundary is a

convex polytope. Using the duality between C and C∗, it can be seen that when the

vertex (a1, u(a1)) is moved in the z-direction by a distance γ the (n − 1)-dimensional

faces of χu(a1) move parallel to themselves by a distance proportional to γ.

Thus, (12), (14) and (10) imply

0 ≤ F(uγ , vγ) −F(u, v) ≤ γ

[

g1 −

∫

χu(a1)

L(p)dp

]

+ o(γ). (15)

Replacing γ by −γ and using the same arguments we obtain the reverse inequality. This

proves (11).

Now we remove the assumption (A) made at the beginning of this proof. First, we

note that if |χu(a1)| = 0 then the same arguments that were used to establish (12) and

(14) show that
∫

T

[vγ(p) − v(p)]L(p)dp = o(γ),

which implies that

g1 =

∫

χu(a1)

L(p)dp = 0.

Finally, we note that an arbitrary variation of u is a linear superposition of displacements

of vertices (a1, u(a1)), . . . , (ak, u(ak)) by sufficiently small numbers γ1, . . . , γk, and this

implies (11) in the general case.

Uniqueness of a solution up to an additive constant is well known; see, [2], ch. IX, or

[5], p. 211.

3. Remarks

Remark 1. Using Theorem 2.3 one can obtain a similar result for general convex hy-

persurfaces.

Theorem 3.1. Let T̄ be a compact convex set in α with interior points (in the topology

of α) and L a nonnegative integrable function on T such that
∫

T

L(p)dp 6= 0.

Let µ be a nonnegative and completely additive function on Borel subsets of α such that

µ(α) =

∫

T

L(p)dp. (16)

Then there exists a complete convex hypersurface F defined over α such that its asymptotic
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cone is the cone K defined by the set T̄ as in (6) and for each Borel set ω ⊂ α

µ(ω) =

∫

χF (ω)

L(p)dp, (17)

where χF (ω) is the normal image of ω. Such F is unique up to a parallel translation in

the direction of the z-axis.

The proof of this theorem is obtained by the same approximation procedure as the

proof of Aleksandrov’s theorem described in the introduction, except that instead of

the mapping lemma one can use Theorem 2.3 to construct polyhedral solutions to the

corresponding discrete problems. The details of this procedure are well known and we

refer the reader to the books [2, 5] and further references there.

Remark 2. The sufficiency part in Aleksandrov’s theorem in case when the cone K is

nondegenerate is obtained if one takes in the previous remark

L(p) =
1

(1 + p2)(n+1)/2
.

Indeed, the generalized Gauss image of the cone K is contained in a hemi-sphere Sn
−

of

Sn with the pole corresponding to the negative direction of the z-axis. Parametrize Sn
−

by the points (p,−1), p ∈ α, on the hyperplane H : z = −1 using radial projection from

O of Sn
−

onto H. Then the volume element of Sn
−

is given by (1 + p2)−(n+1)/2dp. Thus,

the right-hand side of (17) in this case is the integral Gauss curvature.

Furthermore, note that the condition (2) in Aleksandrov’s theorem is automatically

satisfied in our case because the cone K is assumed to be nondegenerate and condition

(16) holds. Indeed, the convex cone K determines the set T̄ ⊂ α uniquely and since K

is nondegenerate, it does not have vertical supporting hyperplanes. Hence T̄ is compact

(and convex). Then (16) implies the condition (2).

Remark 3 (Connection between the Aleksandrov and Monge problems). The problem

discussed in the previous section can also be considered from a different point of view.

Let A, g1, . . . , gk, T̄ and L be as in Theorem 2.3. Consider the class of maps Θ, possibly

multivalued, such that each θ ∈ Θ has the following properties:

1. θ : α → T̄ and the image of any Borel set on α is Lebesgue measurable on α,

2. The set E ⊂ T̄ where θ−1 is multivalued has measure zero,

3. For any function h ∈ C(α)

∫

T

h(θ−1(p))L(p)dp =

k
∑

i=1

h(ai)gi. (18)

Note that because θ−1 may be multivalued the integrand on the left of (18) may not

be defined at all p ∈ T̄ . However, because of property 2 this may happen only on a set of

measure zero. Hence, the left hand side of (18) is well defined. The property 3 is referred

to as the “measure preserving” property of θ.

The set Θ 6= ∅. For example, if the condition (8) is satisfied then the normal map

χu : α → T̄ , where (u, v) is a minimizing pair in Theorem 2.3, is in Θ. More generally,

assuming again that (8) holds we partition T̄ into closed subsets Ē1, . . . , Ēk such that
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|∂Ei| = 0, Ei

⋂

Ej = ∅ when i 6= j, T̄ =
⋃k

i=1 Ēi and
∫

Ei

L(p)dp = gi, i = 1, . . . , k.

Consider now a map θ : α → T̄ such that for each i θ(ai) = Ei and for any x ∈ α, x 6= ai,

θ(x) ∈
⋃k

i=1 ∂Ei. Clearly, θ ∈ Θ.

Here we show that the variational solution in Theorem 2.3 is tightly connected with

the Monge problem in the Monge-Kantorovich optimal transport theory; see, for instance,

L. V. Kantorovich and G. P. Akilov [18], Y. Brenier [7], C. Evans [12], L. Ambrosio [3] and

other references there. In our setting the Monge prbolem can be formulated as follows.

Let A, g1, . . . , gk, T̄ and L be as in Theorem 2.3 and Θ the set of maps as above. The

problem consists in finding a map θ0 ∈ Θ such that

sup
θ∈Θ

∫

T

〈θ−1(p), p〉L(p)dp =

∫

T

〈θ−1
0 (p), p〉L(p)dp. (19)

The solution to this problem follows essentially from Theorem 2.3. The arguments

below are motivated by the arguments in W. Gangbo [13].

Consider the set Adm0(α, T̄ ) as in the proof of Theorem 2.3. For a pair (ξ, τ) ∈

Adm0(α, T̄ ) we have

ξ(x) + τ (p) ≥ 〈x, p〉 ∀x ∈ α, ∀p ∈ T̄ . (20)

Then, for any θ ∈ Θ we have
∫

T

ξ(θ−1(p))L(p)dp +

∫

T

τ (p)L(p)dp ≥

∫

T

〈θ−1(p), p〉L(p)dp (21)

and using the measure-preserving property of θ we get

k
∑

i=1

ξ(ai)gi +

∫

T

τ (p)L(p)dp ≥

∫

T

〈θ−1(p), p〉L(p)dp =

k
∑

i=1

〈ai,

∫

θ(ai)

pL(p)dp〉. (22)

Let (u, v) be the minimizing pair of the functional on the left of (22) whose existence

is guaranteed by Theorem 2.3, and let χu be the corresponding normal map. Then for

each i = 1, . . . , k we have

u(ai) + v(p) = 〈ai, p〉 ∀p ∈ χu(ai).

Multiplying this equation for each i by L, integrating over χu(ai), and taking into account

(11), we obtain

k
∑

i=1

u(ai)gi +

∫

T

v(p)L(p)dp =

k
∑

i=1

〈ai,

∫

χu(ai)

pL(p)dp〉. (23)

Thus, in (22) we have equality when ξ = u, τ = v and θ = χu with θ0 = χu being the

solution of the Monge problem.
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