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Abstract. We obtain inequalities between the eigenvalues of the Schrodinger operator on a
compact domain € of a submanifold M in RY with boundary 69, which generalize many existing
inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar
inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve
Yang-Yau’s result.

1. Introduction. Let  : M — RY be an m-dimensional submanifold in N-dimensional
Euclidean space with the mean curvature vector H. Let 2 C M be a compact domain on
M with boundary 992. We consider the Schréodinger operator

(1.1) L=A-YV,

where V is a nonnegative smooth function on 2. We shall consider the following Dirichlet
eigenvalue problem of the Schrédinger operator L on €:

{Lu —Au  on €,

1.2
( ) 7.L|3Q = 0.

As is well-known, the eigenvalues {A;} of (1.2) are nonnegative, and can be arranged
in nondecreasing order as follows:

O<AM <SS <
Assume we know the first n eigenfunctions of L
UL, U2,y - -+, Up
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i.e., Lu; = —\;u;, having the properties
(1.3) u; =0 on 09,
1, when 1=
1.4 iu; =9 o
(1.4) /Quuj {0, when @ # j.

To obtain information about the next eigenvalue, we shall need some appropriate “trial
functions”. In fact, following [5], we can use the following trial functions

105, ..., dn.
Any one of these trial functions, say ¢, must satisfy two conditions:
(1.5) @7 =0 on 01,
(1.6) JRTE

Q

where 4,7 = 1,2,...,n. We choose (following [5])
(1.7) qﬁf‘:xauifz:af‘juj, a=1,...,N,

j=1
where

(1.8) ag; = / Tauiu; = aj;,  z(p) = (21(p),..., 2N (p)) € RN, VpeqQ.
Q

It is easy to see that the functions ¢¢ satisfy (1.5) and (1.6), i.e., ¢ are all orthogonal
to uq,...,u, and vanish at the boundary. We also have, by use of (1.7) and (1.6),

(1.9) [ = [ orwan = [ aut - S ),

Jj=1

(1.10) — A¢F = —uiAzy — 2Vu; - Vg + NiZau; — Z agiAjuj — Vi,

j=1

) = [ornen = [ or-a0m+ [ Vi
:—/Q¢?Axa-ui—2/Q¢?Vui-an+Ai/(z(¢f‘)2.

Hence by the variational principle for A1, we have
M |60 <= [ ornien = [ oA ui—2 [ 67Vur Ve [ (@600,
Q Q Q Q Q
that is,
(1.12) 0< (Ans1 f)\i)/(<z)§")2 < f/ P Az - u; — 2/ ¢ Vu; - Vg,
Q Q Q

From (1.12), by use of (1.6) we get

(1.13)  (Aps1— M) /Q((;S?)Q . [—/Qqﬁf‘Axa Sy — Z/Q(b?Vui . an}
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2 2
< {—/ P Az - u; —2/ d)f‘Vui-Vma} = {/ P (Azg - u; + 2Vu,; - Va,)
Q Q Q
n 2
= U qu‘(A:cmuiJrQVUyV:caQZb%uj)] .
Q =
Define
(1.14) LM:/ Vo |*u?,
Q
1
(1.15) bf‘j = / u; Vs - Vu; + 5/ Azq - uiug,
Q Q

By use of the Stokes formula and (1.3), it is easy to check

b%:—ba a:172,...N

jio 5 25.7:1527"'5’”"

)

We have

(1.16) —2/ PIVzo - Vu;, = 7/ o Ve - V(u?) + 2Za§‘j/ u; Ve - Vi,
Q Q - Q
J=1

n
:IM«JF/uf:canaJrQZaf‘j/uija.Vui,
Q Q

j=1
(1.17) 7/ U T AT, — 2/ IV - Vo = I + 22(1%1}%.
Q Q ,
j=1

From the definition of af},

Aiag; :/(—Lui)xauj = /(—Aui)xauj—i—/ Vuujza
Q Q Q

:/uiA(—xauj)—i—/ Vuujza
Q Q

= —/ UU; AT — 2/ U Vo - Vu, + )\j/ UU; Ty
Q Q Q

= —2()?2- + )\ja% = 2b% + )\ja%,

that is,
(1.18) 2b3; = (A — Aj)ag,

17"

Putting (1.17) and (1.18) into (1.13), we obtain for any real number € > 0

(119) (gt — M) /Q (69 - Uai + D0 = Aj)(a)?

n 2
< {/Q(b? (A:va ~u; + 2V, - Vo, — 2Zb‘fjuj)}

j=1

n 2
§ \/Q(Qslzl)z . /Q |:Af£a s Uq —+ 2V’LL1 . VICQ -2 Zb%uj}

j=1
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- [ { [ (o +2Vu - Vo) - 4i<”%)2]

j=1

< [y [<1+1/e> [ @aaput w4040 [ 9o ao P —4]2:@%)2],

where we used the Schwarz inequality in the last step.
Dividing by fQ #%)?, we have for any real number € > 0

(1.20)  (Ans1 — Xi) Lo + zn: 4]

<(1+1/0 / (Ao +4(1+0) [ [Vus- D =43 (05"
j=1

Inequality (1.20) holds even in the case that ¢ = 0, since in that case the left-hand side
vanishes from (1.17) and (1.18), while the right-hand side is nonnegative (it is not less
than the integral of the norm square of Az u; + 2Vu; - Vg — ZJ b Uj).

Putting (1.18) into (1.20), we have

(1.21)  (Ausr = A ai + 3 (N Ans1 = Aj)(agh)?

Jj=
hfill < (1+1/e)/(Axa)2u§+4(1+e)/ |V, - Vo |?.
Q Q

By making summation of the terms of (A,+1 — A;) x (1.21), we get

n

(1.22) > (Ang1 = Ai)*Lai
i=1

hfill < (1+1/€)> (Ang1 — )/(A:ca) uf +4(14€) > (Ang1 — /|Vuz Vol
=1 =1
By use of the identities

N N
—mH, ZIM- = Z/ Vo |*u? :m/u? =m,
Q Q
Z/ [Vu,; - an\z /|Vul\2 /ulAulz/ui()\iuifVui):)\if/Vu?,
Q Q

and by making summation of (1.22) over « from 1 to N, we obtain

(1.23)  m> (Anp1—A
=1

n n

<A+1/m* > (Angr — )\i)/Q|H|2u? +4(14+ 6> (Any1 — M)(Ai /Qvuf).

i=1 i=1
Writing
(1.24) |H|%, = sup [H|?, Vo = inf V,
Q Q
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we have from (1.23) and (1.24) for any real number € > 0

n

(124) > (Angr = Ni)?

1=1
n
< (1+1/e)m?H% Z nr1 = A) F 41+ €)Y (Ang1 — —Th).
=1

Thus we have proved the followmg main result of this section:

THEOREM 1.1. Let 2 : M — RN be an m-dimensional submanifold in N -dimensional
Fuclidean space. Let Q C M be a bounded domain. Then the spectrum of the Schrédinger
operator L = A — 'V satisfies the following inequality, for any real number € > 0, and for
anyn=1,2,...:

(1.26) mZ(x\nH —\i)?

i=1
< (14 1/eym?[H[Z Z w1 = M) A4+ 6) > (Angr — M) (A — Vo).
i=1

Writing

A1 =241 — Vo, Ni=XN—-Vo, 1=1,2,...,n,

we have

~ - - - v 2 V 2 v 2
>\n2)\n7122)\22)\1 Vo—f| U1| +f ul—VO>f|7U1‘>0,

Jui o Jud AT
Then (1.26) can be rewritten as

n n

(126)/ mzn:(j\n+1—;\i)2 < (1+1/€)m2‘H|ZO Z(;\n+1—5\i)+4(1+6) Z(S\n+1_5\z)/\z

i=1 i=1
It is easy to see that (1.26)" is equivalent to

. 1 1.2 5
. -1 2 L il
(1.27) Ani1 < 2m(1+1/6)‘H|oo+n(1+m(1+6));Az

+ %{ {(1 + 1/e)mn[H|% + (2 - %(1 - e)) zn:x»r

1

—4n<1 + %(1 +e)> i&? — 4mn(1 + 1/6)|H§0i5\i}2.

i=1 i=1
Noting (321", Mi)? <n Y27 A2, we have from (1.27)

(1.28) A1 <m(1+1/e)|H|% + ! (1 1+e ) ZH:X

Thus we have proved the following weak, but simpler version of Theorem 1.1:

THEOREM 1.2. Let 2 : M — RN be an m-dimensional submanifold in N -dimensional
FEuclidean space. Let Q C M be a bounded domain. Then the spectrum of the Schrédinger
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operator L = A —V satisfies the following inequality, for any real number € > 0:

1 4 -
(128) Augr = Vo Sm(l+1/0HE + —(1+ —(1+¢) dAi-W), n=12...
i=1
Now we prove that Theorem 1.2 implies the following conclusion:

THEOREM 1.3. Let 2 : M — RN be an m-dimensional submanifold in N -dimensional
Euclidean space. Let Q C M be a bounded domain. Then the spectrum of the Schrddinger
operator L = A — 'V satisfies the following inequality, for any real number € > 0, and for
any n € N satisfying Apt1 > An:

"L 4(1 A — 1+1 2 H
(1.29) 3 (1+e) ;/0);_(; O M o n—12,

i=1

and equivalently

= 4(1 1+1/e)m?H
(1.29) Z T o)A = + (Lt 1/gm*HI5, >mn, n=12...

i=1 )\n+1 A
Proof. (1.28) or (1.28)" can be rewritten as

1 ~ - 1 <. -
(1.30) — [4(1 +e) Z A+ min(L+ OHE] > X =~ 3K,
i=1 =

that is,

A1+e) S XN+ mPn(l+1/e )|H\2
)\n+1 717,21_1 )\
From (1.29) and (1.30)’, we only need to prove

4+ Ni+m n(1+1/e)|H\2 Z4(1+6)5\i+(1+1/e)m2|H@O.

(1.30) mn <

(1.31) L - 2

At = 5 X A i=1 Ant1 = Ai
We consider the function

41+ )z + (1 + 1/e)m?|H|%
Fo) = (1 +ez+ (1+1/e)m[H]
)\7z+1 -
1+1 2H)2 +4(1 \
_—4(1+e)+( +1/gm*HIS + 40 + At

)\7z+1 -
It is convex when z < 5\n+1- Thus

f(j\1+5\2+---+5\n) < 1

(1.32) " ~[fA0) + FQ2) + -+ F ()]

n

It is easy to check that (1.32) is equivalent to (1.31). Thus we have completed the proof
of Theorem 1.3.

Theorem 1.3 has the following corollary:

THEOREM 1.4. Let x : M — RN be an m-dimensional submanifold in N -dimensional
Fuclidean space. Let Q C M be a bounded domain. Then the spectrum of the Schrédinger
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operator L = A — V satisfies the following inequality, for any real number € > 0:

41 n
(133 A= de < DS O V) (1 1/gmEE, n= L2,

mn ‘
=1

and equivalently
n

. T
(133)  Aer — ) Z F (41 mHER, n=12,...

Proof. Replacing the A; in the denommator of the left-hand side of (1.29) by A, we
obtain (1.33).

REMARK 1.1. If z : M — RY is an m-dimensional minimal submanifold and V = 0,
letting € — 0 in Theorem 1.4, we recover S. Y. Cheng’s result [2].

When M = R™ and V = 0, in this case z : M — R" is an m-dimensional totally
geodesic submanifold, we have H = 0. We have, from Theorems 1.1 to 1.4 by letting

e —0:

COROLLARY 1.1 (Yang [8]). Let Q C R™ be a bounded domain. Then the spectrum of
the Laplacian A satisfies the inequality

n n
mZ()\nJrl Z n+1 — z Ai, n=1,2,...
i=1 i=1

COROLLARY 1.2 (Ashbaugh [1], Yang [8]). Let & C R™ be a bounded domain. Then the
spectrum. of the Laplacian A satzsﬁes the mequalzty

)\n-s-1< Z)‘“ n=12,...

COROLLARY 1.3 (Hile-Protter [3]). LetQ C Rm be a bounded domain. Then the spectrum
of the Laplacian A satisfies the inequality

42)\n+1 >mn, n=12...

COROLLARY 1.4 (PaynefPolyafWelnberger [5], Thompson [7]). Let§2 C R™ be a bounded
domain. Then the spectrum of the Laplacian A satisfies the inequality

4 n
Mt =A< —> N, n=12,...
+ *mn; "

2. Minimal submanifold in the unit sphere. In this section, let z : M — SV=1(1)
be an m-dimensional closed (i.e., compact without boundary) minimal submanifold in the
Euclidean unit sphere. As in the previous section, we consider the Schrodinger operator
(2.1) L=A-Y,

where V' is a nonnegative smooth function on M. We shall consider the following Dirichlet

eigenvalue problem for the Schrédinger operator L on M:

(2.2) Lu=—-Xu on M.
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As is well-known, the eigenvalues {A;} of (2.2) are nonnegative, and can be arranged
in nondecreasing order as follows:
0<AM <A< <A, <

Let # = (z1,...,2n5) : M — S¥=1(1) ¢ RN be the minimal immersion. Let
{(ws, N\i) }i=1,... n be the normalized first n eigenfunctions and their corresponding eigen-
values. Then

N
(2.3) Azy = —maq, Z z2 =

(24) Lui = —Aﬂth 1= 1,...,71

Noting that all formulas from preceding section still hold, we have from (1.13) and (1.17)
by use of (2.3)

23 Oua=A) [ @07 [+ éw - M)y

S/ (¢5)? - /(AmauiJrQVui-an)?42(1);’3)2]

M LJ M =

:/ (65)*- /(A:ca) +4/ |Vu; - Vo |* — Qm/ wVuy - Va? — 43 (5 }
M LJ M =

:/ ((;5?)2. /mQxiu?Jrll/ |Vu, - Vﬂ?a|2*2m/ u; Vu, - V:C 742 ]
M LJ M ~

thus we get

(26)  (nir = i) [T _Z ag))?]
/m2x2u2+4/ |Vu,; - an|2—2m/ u; Vu, - Vx —4i

Putting (1.18) into (2.6), we have

(2.7)  (Angr — LM+Z (A = A) g1 — Aj)(ah)?

/ m2a? u§—|—4/ |V, - Vg |? —Qm/ u;Vu; - V2.
M M
)

By making summation of the terms of (A,+1 — A;) X (2.7), we get

n

(2.8) Z()‘n—H — i) Lo
i=1
< Z(/\n_;,_l — )\z)/ mQxiu? + 42()\”"—1 — )\1)/ ‘Vul . Vl'a|2
; M i=1 M

—2m Z()\n+1 — )\1) /M uqul . in
i=1
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By use of the identities

N N
Vo = infgV, E Iy = g / |V, [2u? = m/ u? =m,
a=1 a=1"M M

N
Z/ |V, - Vg |? :/ |V, |2 = —/ u; A
M M M

M M

and by making summation of (2.8) over « from 1 to N and using (2.3), we get

n

mZ()\n+l - )\i)z < m2 Z( n+1 — + 42 n+1 — )\ - ‘/0)
i=1

i=1
Thus we have proved the following
THEOREM 2.1 Let x : M — SN=1(1) be an m-dimensional closed minimal submanifold

in an (N — 1)-dimensional Euclidean sphere. Let V' be a nonnegative function on M.
Then the spectrum of the Schridinger operator L = A —V on M satisfies the inequality

(2.9) mz 1= A <m22 . +4Z i1 —A)Ni—Vo), n=1,2,...

Writing
5\n+1:)\n+1_‘/b7 S\’L:)\Z_‘/b7 i:1727"'7n7
we have
Angt > A > 00> A > 0.

Then (2.9) can be rewritten as

n

(2.9) Z(S\nJrl — )% <m? Z(j\nJrl — i)+ 4Z(S\n+1 —
i=1 i=1

=1

It is easy to see that (2.9)’ is equivalent to

- 1
(2.10) Ay < 2m—|— (14 2/m) Z)\

n

+%{[mn+ (24 4/m) Z 1}24n(1+4/m)§5\?4mn§5\i}%~

=1

Noting (321", Mi)? <n 327 A2, we have from (2.10)
n
(2.11) Ani1 <m + (144/m) Z

Thus we proved the following weak, but simpler version of Theorem 2.1:

THEOREM 2.2. Let x: M — SN=1(1) be an m-dimensional closed minimal submanifold
in an (N — 1)-dimensional Euclidean sphere. Let V' be a nonnegative function on M.
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Then the spectrum of the Schridinger operator L = A —V on M satisfies the inequality
1 n
(2.11) Ant1 —Vo<m+ —(14+4/m) E N —Vo), n=12,...
n
i=1

Now we prove that Theorem 2.2 implies the following conclusion:

THEOREM 2.3. Let z: M — SN=1(1) be an m-dimensional closed minimal submanifold
in an (N — 1)-dimensional Euclidean sphere. Let V' be a nonnegative function on M.
Then the spectrum of the Schridinger operator L = A —V on M satisfies the following
inequality, for any n € N satisfying Apy1 > Ap:

no_ 9
(2.12) —————~>mn, n=12,...
; )\n+1 - )\7,

and equivalently

(2.12)' Z /1\” >mm, n=12 ...

’L

Proof. (2.11) or (2.11)" can be rewritten as
1 S 5\n+1* LS N\

mn T om2n 4430 N

that is,

(2.13) mn < =

From (2.12)" and (2.13), we only need to prove
m?n+4% " A <

n+1 1 Zz 1 i=1

(2.14)

Consider the function
m? + 4z m?2 + 4\
)\n+1 - )\n+1 -
It is convex when z < 5\n+1. Thus

(2.15) f(Al“””'“") < LG+ £00) + -+ SO

n n

It is easy to check that (2.15) is equivalent to (2.14). Therefore the proof of Theorem 2.3
is complete.

Theorem 2.3 has the following corollary:

THEOREM 2.4. Let x: M — SN=1(1) be an m-dimensional closed minimal submanifold
in an (N — 1)-dimensional Euclidean sphere. Let V' be a nonnegative function on M.
Then the spectrum of the Schridinger operator L = A —V on M satisfies the inequality

n

4
(2.16) )\nﬂ—)\ngm—i—%Z(Ai—Vo), n=12...

i=1
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and equivalently
- - 4 -
(2.16)’ )\n+1—)\n<m—|——z>\i, n=12,...

Proof. Replacing the A; by A, in the denominator of the left-hand side of (2.12), we
obtain (2.16).

In the case V = 0 the first eigenvalue is zero, and it is traditional to reindex so that
A1 is the first nonzero eigenvalue. We indicate this by denoting the eigenvalues by )\;-,
that is,
Ay = A1 =0,)] :)\2,...,)\;— =Xjb1y s Ay = Apgr
In this case, from Theorems 2.1 to 2.4, we have

COROLLARY 2.1. Let z: M — SN=Y(1) be an m-dimensional closed minimal submani-
fold in an (N — 1)-dimensional Euclidean sphere. Then the spectrum of the Laplacian A
on M satisfies the inequality

n—1 n—1
mY (A, = M)? <m? > (N, = X)) +4Z — XN, n=2.3,...
j=0 =0

COROLLARY 2.2. Let z: M — SN=1(1) be an m-dimensional closed minimal submani-
fold in an (N — 1)-dimensional Euclidean sphere. Then the spectrum of the Laplacian A
on M satisfies the inequality

A <m+ (1+4/m) Z)\ n=23,...
7=0

COROLLARY 2.3. Let z: M — SN=1(1) be an m-dimensional closed minimal submani-
fold in an (N — 1)-dimensional Euclidean sphere. Then the spectrum of the Laplacian A
on M satisfies the following inequality, for any n € N satisfying X, > X, _;:

am? 44N,
ﬁ>mn n:2,3,...

j=0 "7
COROLLARY 2.4. Let x : M — SN=1(1) be an m-dimensional closed minimal submani-
fold in an (N — 1)-dimensional Euclidean sphere. Then the spectrum of the Laplacian A
on M satisfies the inequality

X, - ;lsmfzx no23,...

Noting A{, = 0, we immediately get the followmg Yang-Yau’s result from Corollary 2.4.

COROLLARY 2.5 (Leung [4], Yang-Yau [9]). Let x: M — SN=1(1) be an m-dimensional
closed minimal submanifold in an (N — 1)-dimensional Euclidean sphere. Then the spec-
trum of the Laplacian A on M satisfies the inequality

n—1 n—1 n—1
2 2
A;_A;1<m+—mn(zA;+ (%) +mznzxg).
j=1 j=1 =1




102 H.Z. LI AND L. L. SU

Acknowledgements. The first author began this research during his stay at the
Institute of Mathematics of TU Berlin as an AVH fellow in 2002. He would like to express
his thanks to Prof. Dr. Udo Simon and Dr. Martin Wiehe for their help. We would also
like to thank the referee for some helpful comments.

References

[1] M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in: Spectral The-
ory and Geometry, E. B. Davies and Yu. Safarov (eds.), London Math. Soc. Lecture Note
Series 273, Cambridge University Press, 1999, 95-139.

[2] S. Y. Cheng, Eigenfunctions and eigenvalues of Laplacian, Differential Geometry, S. S.
Chern and R. Osserman (eds.), Proc. Symp. Pure Math. 27, Part 2, Amer. Math. Soc.,
Providence, Rhode Island, 1975, 185-193.

[3] G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ.
Math. J. 29 (1980), 523-538.

[4] P. F. Leung, On the consecutive eigenvalues of the Laplacian of a compact minimal sub-
manifold in a sphere, J. Austral. Math. Soc. (Series A) 50 (1991), 409-416.

[5] L. E. Payne, G. Pélya and H. F. Weinberger, On the ratio of consecutive eigenvalues, J.
Math. Physics 35 (1956), 289-298.

[6] R. Scheon and S.-T. Yau, Lectures on Differential Geometry, Conference Proceedings and
Lecture Notes in Geometry and Topology, Vol. 1, International Press, Cambridge, MA,
1994.

[7] C. J. Thompson, On the ratio of consecutive eigenvalues in n-dimensions, Stud. Appl.
Math. 48 (1969), 281-283.

[8] H. C. Yang, Estimates of the difference between consecutive eigenvalues, preprint, 1995
(revision of Internat. Center for Theoretical Physics Preprint IC/91/60, Trieste, Italy, April,
1991).

[9] P.C. Yang and S.-T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and
minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 55-63.



