
PDES, SUBMANIFOLDS AND

AFFINE DIFFERENTIAL GEOMETRY

BANACH CENTER PUBLICATIONS, VOLUME 69

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2005

FAMILIES OF CONGRUENT SUBMANIFOLDS

SEBASTIAN KLEIN and HELMUT RECKZIEGEL

Mathematisches Institut der Universität zu Köln
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Among the families of congruent totally geodesic submanifolds that occur in an m-

dimensional projective complex quadric Q, there are two types which are of particular

interest: the family of k-dimensional projective subspaces (k ≤ m/2) contained in Q (that

such subspaces exist is well-known from algebraic geometry, see for example [GH], Propo-

sition 6.1, p. 735), and the family of k-dimensional complex quadrics (k < m) which are

totally geodesic in Q. The primary subject of this article is to give these families the

structure of a Riemannian manifold and to study them, in particular as submanifolds of

the families of all k-dimensional projective subspaces resp. complex quadrics contained

in the ambient projective space P
m+1. A large part of this study is focused on questions

from the theory of reductive homogeneous spaces and of symmetric spaces. In particu-

lar, we show in a general setting that a family of congruent manifolds can be seen as a

naturally reductive homogeneous space. In the specific cases mentioned above, we investi-

gate whether the reductive structure of the families is induced by a symmetric structure,

and whether the families in Q are naturally reductive homogeneous subspaces of the

corresponding families in P
m+1.

In Section 1, we present fundamental facts on families of congruent homogeneous

subspaces in Riemannian homogeneous spaces in general. Section 2 is concerned with

results on congruence families of projective subspaces and of quadrics in a projective

space, and Section 3 finally discusses the corresponding families of projective subspaces

and of quadrics which are contained in a fixed quadric Q.
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1. Families of congruent submanifolds

1.1. Families of submanifolds and their differentiable structure. Let M be a Riemannian

homogeneous space, G := I(M) the isometry group of M , and N0 a connected, closed

homogeneous subspace of M , i.e. the group K := { f ∈ G | f(N0) = N0 } acts transitively

on N0. In this situation, K is closed in G, and therefore a Lie subgroup of G, and N0 is

a regular1 submanifold of M .

Then we call the set F(N0, M) := { f(N0) | f ∈ G } of submanifolds of M the con-

gruence family of submanifolds induced by N0. For a fixed p ∈ M , we also consider the

subfamily Fp(N0, M) := {N ∈ F(N0, M) | p ∈ N }.

Proposition 1. (a) There is a unique differentiable structure on F(N0, M), such that

the transitive action ϕ : G × F(N0, M) → F(N0, M), (f, N) 7→ f(N) is differentiable.

(b) For every p ∈ M , Fp(N0, M) is a compact, regular submanifold and a homogeneous

subspace of F(N0, M) with respect to the action of the isotropy group Gp of M at p on

Fp(N0, M).

(c) For every p ∈ M and f ∈ G, the map Σ : Gp → Gf(p), g 7→ f ◦ g ◦ f−1 is an

isomorphism of Lie groups. The map σ : Fp(N0, M) → Ff(p)(N0, M), N 7→ f(N) is a

diffeomorphism and the pair (σ, Σ) is an isomorphism of homogeneous spaces, meaning

that the diagram

Gp × Fp(N0, M)
ϕ

//

Σ×σ

��

Fp(N0, M)

σ

��

Gf(p) × Ff(p)(N0, M)
ϕ

// Ff(p)(N0, M)

commutes.2

Proof. Because K is closed in G, the quotient G/K carries the structure of a differ-

entiable manifold ([V], Theorem 2.9.4, p. 77), which we transfer onto F(N0, M) by the

G-equivariant bijection G/K → F(N0, M), f · K 7→ f(N0). The uniqueness statement is

also proved in [V], Theorem 2.9.4.

Because N0 is a homogeneous subspace of M , Gp acts transitively on Fp(N0, M) and

is compact (see [K], Theorem II.1.2, p. 39). Therefore, Fp(N0, M) is a regular submanifold

and a homogeneous subspace of F(N0, M). Statement (c) is obvious.

1.2. The relation between the dimensions of Fp(N0, M) and F(N0, M)

Proposition 2. In the situation of the previous section we fix some p0 ∈ N0.

1We call a submanifold N of a manifold M regular if the intrinsic topology of M coincides

with the topology inherited from M ; see [V], p. 18.
2If, in this setting, Σ only is a homomorphism of Lie groups and σ a differentiable map,

we call the pair (σ,Σ) a homomorphism of homogeneous spaces. If (σ, id) is a homomorphism of

homogeneous spaces, we also call σ simply a homomorphism of homogeneous spaces. If the homo-

geneous spaces involved are equipped with reductive structures, and Σ respects these structures,

we call (σ, Σ) a homomorphism (isomorphism) of reductive homogeneous spaces.
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(a) dimFp0
(N0, M) = dimGp0

− dim(Gp0
∩ K).

(b) If N0 is a complete, totally geodesic submanifold of M , we have Gp0
∩ K = { f ∈

Gp0
| f∗Tp0

N0 = Tp0
N0 }.

Proof. (a) follows directly from the fact that Gp0
acts transitively on Fp0

(N0, M) and its

isotropy group at N0 is Gp0
∩ K. In the situation of (b), we have to show

Gp0
∩ K = H := { f ∈ Gp0

| f∗Tp0
N0 = Tp0

N0 }. Here, Gp0
∩ K ⊂ H is in fact true

without the hypothesis that N0 is totally geodesic in M , because N0 is a regular sub-

manifold of M . Gp0
∩K ⊃ H follows from the rigidity of totally geodesic submanifolds.

Theorem 3. The codimension of Fp0
(N0, M) in F(N0, M) is equal to the codimension

of N0 in M .

Proof. Consider P := M × F(N0, M). The incidence set X := { (p, N) ∈ P | p ∈ N } is

the orbit through (p0, N0) of the action

G × P → P, (f, (p, N)) 7→ (f(p), f(N))

and therefore a submanifold of P . The canonical projections

ϕ1 : X → M resp. ϕ2 : X → F(N0, M)

describe fibre bundles with typical fibre

Fp0
(N0, M) resp. N0

associated to the principal fibre bundles

σ1 : G → M, f 7→ f(p0) resp. σ2 : G → F(N0, M), f 7→ f(N0)

with structure group Gp0
resp. K via the association maps

̺1 : G × Fp0
(N0, M) → X, (f, N) 7→ (f(p0), f(N)) resp.

̺2 : G × N0 → X, (f, p) 7→ (f(p), f(N0)) ;

see [B], §6.5. Thus, we have two ways to calculate dim X:

dim X = dim M + dimFp0
(N0, M)

= dim F(N0, M) + dim N0 .

Therefore, the theorem is proved.

1.3. A naturally reductive structure on F(N0, M). In the previous situation we denote

the Lie algebras of G and K by g and k, respectively, but suppose that M is a Riemannian

symmetric space of compact type, meaning in particular that the Killing form β of g is

negative definite.

Proposition 4. In this situation, −β induces a G-invariant Riemannian metric on

F(N0, M), and the subspace m := {X ∈ g | ∀Y ∈ k : β(X, Y ) = 0 } defines a naturally

reductive structure on F(N0, M) (see Remark 3 below).

Proof. As β is Ad(G)-invariant, and k, m are Ad(K)-invariant subspaces of g satisfying

g = k ⊕ m, it follows that m defines a reductive structure on F(N0, M), see [KN], p. 190.

Furthermore, −β|(m×m) induces a G-invariant metric on F(N0, M), whereby F(N0, M)

becomes a Riemannian homogeneous G-space.
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Because k and m are orthogonal with respect to β, we have

∀X, Y, Z ∈ m : β([Z, X]m, Y ) + β(X, [Z, Y ]m) = 0 ,

where Xm denotes the projection of X ∈ g onto m along k. Therefore F(N0, M) is naturally

reductive; see [KN], Theorem X.3.3(2), p. 201.

Remark 1. In general, F(N0, M) does not become a symmetric space in this way, as the

examples of Sections 2.2 and 3.2 will show.

Remark 2. For the studies of specific examples of congruence manifolds in the following

sections, it is more convenient to replace in the constructions of the present section the

group G = I(M) acting on F(N0, M) by a linear group G̃ which is a covering group of

an open subgroup G′ of G that still acts transitively on F(N0, M). In fact, with only

one exception (see Theorem 8(c)), the families we study are connected; then G̃ will be

chosen as a covering group of the neutral component G0. Because the covering map

τ : G̃ → G′ gives rise to an isomorphism between the Lie algebras of G̃ and G, we obtain

an isomorphic naturally reductive structure in this way.

We now describe the construction with respect to G̃ more formally: The map Ψ :=

(G′ →֒ G)◦ τ : G̃ → G is a homomorphism of Lie groups, and its linearization ΨL : g̃ → g

is an isomorphism of Lie algebras; here g̃ is the Lie algebra of G̃. Therefore the Killing

form β̃ of g̃ is connected to β by β̃(X̃, Ỹ ) = β(ΨL(X̃), ΨL(Ỹ )).

Of course, G̃ still acts transitively on F(N0, M) via the action (g̃, N) 7→

(Ψ(g̃))(N), and its isotropy group at N0 is K̃ := Ψ−1(K ∩ G′); so F(N0, M) is iso-

morphic to the homogeneous space G̃/K̃. Moreover, denoting the Lie algebra of K̃ by k̃,

we have g̃ = k̃ ⊕ m̃ with m̃ := Ψ−1
L (m) = { X̃ ∈ g̃ | ∀Ỹ ∈ k̃ : β̃(X̃, Ỹ ) = 0 }; and because

we have ΨL ◦ Ad
G̃

(g̃) = AdG(Ψ(g̃)) ◦ ΨL for every g̃ ∈ G̃, m̃ is Ad(K̃)-invariant and

therefore defines a naturally reductive structure on the homogeneous G̃-space F(N0, M)

and β̃ induces the G̃-invariant Riemannian metric on F(N0, M) also defined by β. Thus,

this naturally reductive homogeneous G̃-space structure on F(N0, M) is isomorphic to the

naturally reductive homogeneous G-space structure constructed in Proposition 4, and all

results of the present section remain true if we replace G by G̃, and the actions of G on

M and on F(N0, M) by the actions of G̃ on these spaces.

Remark 3 (On reductive homogeneous spaces). Suppose M is a reductive homogeneous

G-space; we fix some p ∈ M and denote the action of G on M by ϕ : G×M → M and the

reductive structure of M (at p) by m; we interpret the elements of m as left-invariant vector

fields on G and define ϕp : G → M, g 7→ ϕ(g, p). According to Nomizu, m induces two

covariant derivatives on M of particular importance: the torsion-free canonical derivative

of the first kind ∇ (see [No], Theorem 10.1), characterized by

∀X, Y ∈ m : ∇Xϕp
∗Y = 1

2 · ϕp
∗[X, Y ]

and the canonical derivative of the second kind ∇0 (see [No], Theorem 10.2), characterized

by

∀X, Y ∈ m : ∇0
Xϕp

∗Y ≡ 0 .

For every X ∈ m we denote by γX : R → G the 1-parameter-subgroup of G induced

by X. Then ϕp ◦ γX : R → M is a geodesic with respect to ∇0, and every ∇0-geodesic γ
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of M with γ(0) = p can be obtained in this way (see [KN], Corollary X.2.5, p. 192). As

the difference tensor ∇−∇0 is skew-symmetric, the ∇0-geodesics and the ∇-geodesics in

M coincide.

If, in this setting, M is equipped with a Riemannian metric such that G acts by

isometries on M , M is called naturally reductive if ∇ coincides with the Levi-Civita

derivative induced by the Riemannian metric on M .

A further reductive homogeneous space M ′ (with group action ϕ′ : G′ × M ′ → M ′

and reductive structure m′) is called a reductive homogeneous subspace of M if M ′ is

a submanifold of M , G′ is a subgroup of G, ϕ′ = ϕ|(G′ × M ′) and m′ ⊂ m. In this

situation, M ′ necessarily is a totally geodesic submanifold of M (with respect to either

of the canonical derivatives of M resp. M ′), as the following argument shows: If γ is a

geodesic of M ′ with γ(0) = p ∈ M ′, we have γ = (ϕ′)p ◦ γX with X ∈ m′; because of

m′ ⊂ m, γ also is a geodesic of M .

Finally, we mention that if M is a naturally reductive homogeneous space, we call

a reductive homogeneous subspace M ′ of M which carries the structure of a naturally

reductive homogeneous space a naturally reductive homogeneous subspace if the inclusion

map M ′ →֒ M is a homothetic immersion, i.e. if there is a constant c ∈ R+ so that

for every p ∈ M ′, v, w ∈ TpM
′ we have 〈v, w〉M ′ = c · 〈v, w〉M . (Such a factor occurs

necessarily in Theorem 7.)

2. Congruence families in the complex projective space. From the standpoint

of algebraic geometry, the simplest submanifolds of the complex projective space are

those defined by linear equations, namely the projective subspaces, and those defined

by quadratic equations, namely the complex quadrics. In this section, we investigate the

congruence families induced in a complex projective space by these submanifolds.

We fix some notations: Let V be a unitary vector space of complex dimension

n + 1 ≥ 2. We denote the complex structure v 7→ i · v of V by J , and the complex

inner product of V by 〈·, ·〉C. The latter induces the real inner product 〈·, ·〉 := Re〈·, ·〉C
and thereby the norm ‖v‖. For every k ∈ {1, . . . , n}, let Gk(V) denote the Grassmann-

ian manifold of k-dimensional complex subspaces of V, which is known to be a Hermi-

tian symmetric space of type AIII (see [H], p. 518), and for every V ∈ Gk(V), we put

S(V ) := { v ∈ V | ‖v‖ = 1 }. By P(V) we denote the complex projective space G1(V) and

by π : S(V) → P(V), v 7→ [v] the Hopf fibration. We always view P(V) as a Kähler man-

ifold, so that π becomes a Hermitian submersion (see [KN], Example XI.10.5, p. 273f.).

For every V ∈ Gk+1(V), we put [V ] := {π(v) | v ∈ S(V ) }, this being a k-dimensional pro-

jective subspace in P(V). If, on the other hand, Λ is a k-dimensional projective subspace

of P(V), then Λ̂ := {λ · v |λ ∈ R, v ∈ π−1(Λ) } is an element of Gk+1(V).

For any unitary transformation B ∈ U(V), there is exactly one holomorphic isometry

B : P(V) → P(V) such that B ◦ π = π ◦ B|S(V), and any holomorphic isometry of P(V)

is obtained in this way. If G is a subgroup of U(V), we put G := {B |B ∈ G }; this is a

subgroup of the group Ih(P(V)) of all holomorphic isometries of P(V). In fact, we have

Ih(P(V)) = I(P(V))0 = SU(V). For the following considerations of congruence families

F(N0, P(V)) we will use the (n+1)-fold covering τ : SU(V) → Ih(P(V)), B 7→ B, applying
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Remark 2. This means, we consider these families as naturally reductive homogeneous

SU(V)-spaces.

2.1. Projective subspaces in P(V). We fix some k ≤ n. The set of k-dimensional projec-

tive subspaces of P(V) forms a congruence family in P(V), which we denote by F(Pk, P(V)).

Because SU(V) acts transitively on F(Pk, P(V)) via the action (B, Λ) 7→ B(Λ), we may

consider F(Pk, P(V)) as a naturally reductive homogeneous SU(V)-space as explained

above.

Theorem 5. F(Pk, P(V)) may be equipped with the structure of a Hermitian symmetric

space isomorphic to Gk+1(V), and this structure is compatible with the naturally reduc-

tive structure of F(Pk, P(V)) introduced before. Then, for any p ∈ P(V), Fp(P
k, P(V)) is

a Hermitian symmetric subspace (in particular a complex submanifold) of F(Pk, P(V))

isomorphic to the Grassmannian Gk(p⊥).

Proof. The first part of the theorem follows from the fact that

(1) θ : Gk+1(V) → F(Pk, P(V)), V 7→ [V ]

is an isomorphism of naturally reductive SU(V)-spaces.

For the second part, we consider the embedding f : Gk(p⊥) → Gk+1(V), W 7→

W ⊖ p and the injective Lie group homomorphism F : SU(p⊥) → SU(V) character-

ized by F (B)|p = idp and F (B)|p⊥ = B for all B ∈ SU(p⊥). Then the pair (f, F ) is

a homomorphism of Hermitian symmetric spaces3, and we have F (SU(p⊥)) = {B ∈

SU(V) |B|p = idp } =: SU(V)p. As f(Gk(p⊥)) is mapped onto Fp(P
k, P(V)) by θ, we see

that Fp(P
k, P(V)) is a Hermitian symmetric SU(V)p-subspace of the Hermitian symmetric

SU(V)-space F(Pk, P(V)).

2.2. Complex quadrics in P(V). In algebraic geometry, a complex quadric in P(V) simply

is a subvariety of P(V) defined by a non-degenerate quadratic form on some linear sub-

space of V. However, the set of such quadrics forms an infinite multitude of congruence

families. For this reason, we require a binding to the Riemannian geometry of P(V) and

consider only those quadrics which are extrinsically symmetric submanifolds of P(V); see

[NT], p. 171.

To describe them explicitly, we need the concept of a conjugation: We call an anti-

linear4, self-adjoint map A : V → V a partial conjugation if A|A(V) is an orthogonal

map on A(V). The (real) rank of a partial conjugation is necessarily even, and we denote

the set of partial conjugations on V which are of rank 2ℓ by Conℓ(V). The elements of

Conn+1(V) are called full conjugations.

3If M = G/K, M ′ = G′/K ′ are symmetric spaces and σ : G → G and σ′ : G′
→ G′ the

involutive automorphisms that define them, we call a homomorphism (isomorphism) of reductive

homogeneous spaces (f, F ) between M and M ′ a homomorphism (isomorphism) of symmetric

spaces if F ◦σ = σ′
◦F . If M and M ′ are Hermitian symmetric and f is holomorphic, we speak of

a homomorphism (isomorphism) of Hermitian symmetric spaces. In the case G = G′, F = idG,

we call f simply a homomorphism (isomorphism) of symmetric spaces.
4We call an R-linear map L : V → W between the complex vector spaces V and W anti-

linear, if ∀λ ∈ C, v ∈ V : L(λv) = λ · Lv holds.
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Every A ∈ Conℓ(V) is real diagonalizable; the only possible eigenvalues of A are

−1, 0, 1, and the eigenvalue 0 occurs if and only if A is not full. The eigenspaces Eig(A, λ)

(λ ∈ {−1, 0, 1}) are pairwise orthogonal, kerA = Eig(A, 0) is a complex linear subspace

of V, V (A) := Eig(A, 1) is a totally real subspace of V, and JV (A) = Eig(A,−1). Thus,

we have the decomposition V = V (A) ⊖ JV (A) ⊖ kerA.

We now fix k ≤ n − 1 and obtain for each A ∈ Conk+2(V) the quadric

Q(A, V) := {π(v) | v ∈ S(A(V)), 〈v, Av〉C = 0 } ,

a k-dimensional complex submanifold of P(V) lying in the projective subspace [A(V)].

The set of these quadrics forms a congruence family F(Qk, P(V)), and it can be shown

that they are exactly the extrinsically symmetric submanifolds mentioned above. We will

call these quadrics simply complex quadrics in the sequel. If A is full, Q(A, V) is a complex

hypersurface in P(V).

The ordinary example is the quadric {π(z) | z ∈ S(Cn+1),
∑n+1

ν=1 z2
ν = 0 } of P(Cn+1)

defined by the full conjugation A0 : Cn+1 → Cn+1, z 7→ z.

Theorem 6. For k ≤ n − 1 we have:

(a) F(Qk, P(V)) is a naturally reductive homogeneous SU(V)-space (in the way de-

scribed in Proposition 4 and Remark 2) of dimension 2n(k + 2) − 1
2 · (3k + 4)(k + 1).

Fp(Q
k, P(V)) is a homogeneous subspace of F(Qk, P(V)) by Proposition 1(b); its codi-

mension in F(Qk, P(V)) is 2(n − k).

(b) (i) In the case k < n− 1, the naturally reductive structure on F(Qk, P(V)) is not

induced by a symmetric structure.

(ii) In the case k = n − 1, the naturally reductive structure on F(Qn−1, P(V))

is induced by a symmetric structure, and in this way F(Qn−1, P(V)) is an irreducible

Riemannian symmetric space of type AI; this means that its universal cover is isomorphic

to SU(n + 1)/SO(n + 1), see also [H], p. 518.

Proof. (a) For any A ∈ Conk+2(V) and B ∈ U(V), we have BAB−1 ∈ Conk+2(V) and

B(Q(A, V)) = Q(BAB−1, V); thus U(V) acts transitively on the space F(Qk, P(V)) via

the action (B, Q) 7→ B(Q). For any λ ∈ S1, we have λB = B, and therefore already SU(V)

acts transitively on F(Qk, P(V)). Hence, we may consider F(Qk, P(V)) as a naturally

reductive homogeneous SU(V)-space via Proposition 4 and Remark 2.

To calculate the isotropy group K of the action of SU(V) on F(Qk, P(V)) at Q(A, V)

(for some A ∈ Conk+2(V)), one has to notice that, for any A, A′ ∈ Conk+2(V), we have

Q(A, V) = Q(A′, V) if and only if there exists λ ∈ S1 so that A′ = λA. It follows that

(2) K = {B ∈ SU(V) | ∃λ ∈ S1 : λB(V (A)) = V (A) } .

From λB(V (A))=V (A) one derives (λB)|V (A)∈O(V (A)) and (λB)|(kerA)∈U(kerA),

and these conditions permit one to calculate dimK = dim O(V (A))+dimU(kerA); note

that λ can attain only discrete values. Now dim F(Qk, P(V)) = dimSU(V) − dimK can

be calculated easily, and the codimension of Fp(Q
k, P(V)) is derived from Theorem 3.

(b)(i) We denote the reductive structure of F(Qk, P(V)) ∼= SU(V)/K by m, and the

Lie algebra of K by k.
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In block matrix notation with respect to the decomposition V = C ·V (A)⊖ ker A, we

have

(3) k =

{(
X + αJ 0

0 Y + αJ

)∣∣∣∣
X ∈ o(V (A)), Y ∈ u(kerA)

α = − 1
i(n+1) trC Y

}
⊂ su(V) .

Note that any endomorphism B : V (A) → V (A) may be extended by the definition

B(x + Jy) := Bx + J(By) for x, y ∈ V (A) to an endomorphism on C · V (A) (we will call

this process complexification in the sequel), and if B is skew-adjoint, its complexification

is skew-Hermitian; in the previous equation, we interpreted the elements of o(V (A)) in

this way. Further, we have m = m1 ⊕ m2, where

m1 =

{(
0 −Z∗

Z 0

)∣∣∣∣ Z : C · V (A) → ker A complex-linear

}

and m2 =

{(
JX 0

0 0

)∣∣∣∣ X ∈ Endself-adjoint(V (A)), trX = 0

}
.

Now, choose an orthonormal basis (a1, . . . , ak+2) of V (A). Then, (a1, . . . , ak+2) also

is a unitary basis of C · V (A), which we expand to a unitary basis (a1, . . . , an+1) of V.

Consider the endomorphisms D, E : V → V given by

Da1 = ia1, Da2 = −ia2, Daj = 0 for j ≥ 3

and

Ea1 = ak+3, Eak+3 = −a1, Eaj = 0 for j ∈ {2, . . . , n + 1} \ {k + 3} ,

respectively. We have D ∈ m2 ⊂ m and E ∈ m1 ⊂ m. However, a simple calculation shows

[D, E]a1 = −iak+3 and therefore [D, E] 6∈ k. Thus, we have [m, m] 6⊂ k, showing that m

cannot be induced by a symmetric structure on F(Qk, P(V)).

(b)(ii) In the case k = n− 1, we have kerA = {0} and therefore we see from equation

(2)

(4) K = {λB ∈ SU(V) |B ∈ SO(V (A)), λ ∈ S1, λn+1 = 1 } .

But now we consider F(Qk, P(V)) as an Ih(P(V))-space. Ih(P(V)) also acts transitively

on F(Qk, P(V)) and we see from (4) that the isotropy group of this action at the “point”

Q(A, V) is SO(V (A)). Because A is a full conjugation on V, A is an anti-holomorphic

isometry of P(V) and σ : Ih(P(V)) → Ih(P(V)), f 7→ A ◦ f ◦ A−1 is an involutive auto-

morphism of Lie groups with Fix(σ) = SO(V (A)). Therefore, (Ih(P(V)), SO(V (A)), σ) is

a symmetric datum5 for F(Qk, P(V)) ∼= Ih(P(V))/SO(V (A)).

The (n + 1)-fold covering τ : SU(V) → Ih(P(V)), B 7→ B induces the covering

SU(V)/SO(V (A)) → F(Qk, P(V)), B · SO(V (A)) 7→ Q(BAB−1, V).

If we identify the Lie algebra of Ih(P(V)) with su(V) via the isomorphism τL, σ induces

also on the SU(V)-space F(Qk, P(V)) a reductive structure mσ := {X ∈ su(V) |σL(X) =

−X }. It remains to show that mσ is equal to the original naturally reductive structure

m on F(Qk, P(V)). For this we note that the Killing form of su(V) is invariant under the

automorphism σL of su(V). A simple calculation now shows mσ = m; see [KN], Lemma

p. 233.

5A symmetric space in the terminology of [KN], p. 225.
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3. Congruence families in a complex quadric. Continuing to use the notations

of Section 2, we fix some full conjugation A0 ∈ Conn+1(V) and consider the complex

hypersurface Q := Q(A0, V) in P(V). Q now plays the role of the ambient space, in which

we will study congruence families induced by projective subspaces or complex quadrics

contained in Q. These families will turn out to be nice submanifolds of F(Pk, P(V)) and

F(Qk, P(V)), respectively. We put m := dimC Q = n − 1.

Any B ∈ O(V (A0)) may be interpreted via complexification as an element of U(V),

and an easy calculation shows that in this situation, the holomorphic isometry B leaves

Q invariant, and therefore B|Q is a holomorphic isometry of Q. Similarly, A0 ◦ B|Q is an

anti-holomorphic6 isometry of Q. It is, however, a non-trivial fact that every holomorphic

resp. anti-holomorphic isometry of Q is obtained in this manner, and that for m ≥ 3, any

isometry of Q is either holomorphic or anti-holomorphic; see [Re], Corollary 2. It follows

that Q is a Hermitian symmetric space ∼= SO(m + 2)/(SO(2)× SO(m)). It can be shown

that Q is of rank 2 for m ≥ 2 and irreducible for m 6= 2.

The map τ : O(V (A0)) → Ih(Q), B 7→ B|Q is a two-fold group covering with kernel

{±id}; here Ih(Q) denotes the group of holomorphic isometries on Q. Therefore, Ih(Q) is

connected if m is odd, and has exactly two connected components if m is even. Further,

we have I(Q)0 = {B|Q |B ∈ SO(V (A0)) }. In the sequel, we will apply Remark 2 using

either τ or τ |SO(V (A0)) to view the congruence families F(N0, Q) as naturally reductive

homogeneous O(V (A0))-spaces or SO(V (A0))-spaces.

As we already mentioned in the proof of Theorem 6(a), A′, A′′ ∈ Conk+2(V) describe

the same quadric if and only if we have A′′ = λ ·A′ for some λ ∈ S1. Therefore, there is a

one-to-one-correspondence between k-dimensional complex quadrics in P(V) and circles

{λA′ |λ ∈ S1 } ⊂ Conk+2(V).

3.1. Complex quadrics in Q. Suppose m ≥ 3;7 fix some integer k < m. In this section,

we study k-dimensional complex quadrics contained in Q. As it should be emphasized, it

is not true that the set of all such quadrics forms a single congruence family, at least for

k ≤ m
2 − 1, as the following example shows:

Choose a (k + 2)-dimensional subspace W ⊂ V (A0) and put V := W ⊕ JW . Then

A0|V is a full conjugation on V , and therefore Q′ := Q(A0|V, V ) is a k-dimensional

complex quadric contained in Q. It is easy to see that Q′ is totally geodesic in Q. On

the other hand, Q contains a (k + 1)-dimensional projective subspace Λ, as we will see

in Section 3.2, and Λ in turn contains a k-dimensional quadric Q′′. However, Q′′ is not

totally geodesic in Q, because otherwise it would also be totally geodesic in Λ. Therefore,

Q′ and Q′′ cannot be congruent in Q.

However, the set of k-dimensional complex quadrics which are totally geodesic sub-

manifolds of Q forms a congruence family:

6Suppose M ,N are Hermitian manifolds. Then we call a diffeomorphism f : M → N anti-

holomorphic if its differential is anti-linear.
7We exclude the case m = 2 because the two-dimensional quadric Q2 is holomorphically

homothetic to P
1
× P

1, and therefore there are isometries on Q2 which do not come from an

isometry of P
3.
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Theorem 7. (a) A quadric Q′ ∈ F(Qk, P(V)) is a totally geodesic submanifold of Q if

and only if there exists an A ∈ Conk+2(V) such that Q′ = Q(A, V) and V (A) ⊂ V (A0).

(b) The set of k-dimensional complex quadrics which are totally geodesic submani-

folds of Q forms a congruence family, which we denote by F(Qk
tg, Q). Already SO(V (A0))

acts transitively on F(Qk
tg, Q) via the action (B, Q′) 7→ B(Q′), and therefore we con-

sider F(Qk
tg, Q) as a naturally reductive homogeneous SO(V (A0))-space via Remark 2.

As such, F(Qk
tg, Q) is isomorphic to the real Grassmannian Gk+2(V (A0)). In particu-

lar, the reductive structure of F(Qk
tg, Q) is induced by a symmetric structure. We have

dimF(Qk
tg, Q) = (k + 2)(m − k).

(c) F(Qk
tg, Q) is a compact, connected submanifold of F(Qk, P(V)). As a naturally

reductive homogeneous space, it is a subspace of F(Qk, P(V)), and therefore, it is a totally

geodesic submanifold of F(Qk, P(V)).

Proof. (a) This fact is a consequence of the first author’s study of totally geodesic sub-

manifolds of Q; for the case k = m − 1 also see [Re], Proposition 5. This study, which

will be published in his dissertation, is based on the geometric description of the root

spaces of the symmetric space Q given in [Re], Theorem 3. Another discussion of totally

geodesic submanifolds of Q is found in [CN].

(b) Three spaces are of importance now, namely F(Qk
tg, Q), Gk+2(V (A0)) and the set

Conk+2(V, A0) := {A ∈ Conk+2(V) |V (A) ⊂ V (A0) }. The latter provides a connection

between the first two spaces, namely by the maps

f1 : Conk+2(V, A0) → F(Qk
tg, Q), A 7→ Q(A, V)

and f2 : Conk+2(V, A0) → Gk+2(V (A0)), A 7→ V (A) .

These maps turn out to be bijections. On the other hand, G′ := SO(V (A0)) acts on

each of these spaces: on F(Qk
tg, Q) as described in (b), on Gk+2(V (A0)) as usual, and

on Conk+2(V, A0) by (B, A) 7→ BAB−1. With respect to these actions f1 and f2 are

equivariant, therefore f := f1 ◦ f−1
2 is an equivariant bijection from the Riemannian

symmetric G′-space Gk+2(V (A0)) onto the G′-space F(Qk
tg, Q). In particular, G′ acts

transitively on F(Qk
tg, Q); moreover the symmetric space structure of Gk+2(V (A0)) can

be pushed forward via f onto F(Qk
tg, Q), which in particular gives the formula for the

dimension.

By the same argument as in the proof of Theorem 6(b)(ii), we see that the symmetric

space structure on F(Qk
tg, Q) induces the same naturally reductive structure as the one

constructed via Section 1.3.

(c) Via complexification we consider G′ as a subgroup of G := SU(V). Then the inclu-

sion F(Qk
tg, Q) →֒ F(Qk, P(V)) is equivariant and therefore F(Qk

tg, Q) can be considered as

a homogeneous G′-subspace of the homogeneous G-space F(Qk, P(V)). As Gk+2(V (A0))

is compact, F(Qk
tg, Q) is a compact, regular submanifold of F(Qk, P(V)).

Now, we fix A ∈ Conk+2(V, A0). From the isomorphism F(Qk
tg, Q) ∼= Gk+2(V (A0))

we know the “symmetric space splitting” g′ = k′ ⊕ m′ of the Lie algebra g′ = o(V (A0))

with respect to Q(A, V). In block matrix notation with respect to the decomposition

V (A0) = V (A) ⊖ kerA, we have
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m′ =

{(
0 −Z∗

Z 0

)∣∣∣∣ Z : V (A) → kerA linear

}
.

Thus we see m′ ⊂ m1 ⊂ m (where m is the reductive structure of F(Qk, P(V)) and m1 is as

in the proof of Theorem 6(b)(i)). Moreover, the Killing forms of o(V (A0)) and of su(V) are

given by (X, Y ) 7→ −m·〈〈X, Y 〉〉 resp. (X, Y ) 7→ −2(m+2)·〈〈X, Y 〉〉; here 〈〈·, ·〉〉 denotes the

usual scalar product of endomorphisms (see [IT], p. 60). Hence F(Qk
tg, Q) is a naturally

reductive homogeneous subspace of F(Qk, P(V)); more precisely, the Riemannian metric

of F(Qk
tg, Q) is the m

2(m+2) -fold of the Riemannian metric induced by F(Qk, P(V)).

3.2. Projective subspaces in Q. We continue to use the notations of the previous section.

To study the family of k-dimensional projective subspaces contained in Q (such a subspace

is automatically a totally geodesic submanifold of Q), we need to characterize the position

of these spaces.

For this purpose, we introduce the quadratic cone

C := C(A0, V) := { v ∈ V | 〈v, A0v〉C = 0 }

corresponding to Q and call a complex linear subspace W ⊂ V isotropic, if W ⊂ C. We

denote the set of ℓ-dimensional complex isotropic subspaces of V by Gℓ(V, C). Note that

Q = G1(V, C).

For W ∈ Gℓ(V, C), we even have 〈w1, A0w2〉C = 0 for every w1, w2 ∈ W . It can also

be shown that there is a partial complex structure j on V (A0) (i.e. j is skew-adjoint

with j3 = −j) of rank 2ℓ so that W = {x + Jjx |x ∈ j(V (A0)) }. Conversely, any

space {x + Jjx |x ∈ j(V (A0)) }, where j is some partial complex structure on V (A0),

is isotropic. Thus, isotropic spaces may be interpreted geometrically as vector subspaces

lying in a diagonal position with respect to the splitting V = V (A0)⊖ JV (A0). For such

a space, we necessarily have dimC W ≤ 1
2 dimC V.

Theorem 8. (a) For Λ ∈ F(Pk, P(V)), we have Λ ⊂ Q if and only if Λ̂ ∈

Gk+1(V, C). This is possible only for 2k ≤ m, and therefore we consider only this case

in the sequel. I(Q) acts transitively on the set of k-dimensional projective subspaces

contained in Q, and therefore this set forms a congruence family, which we denote by

F(Pk, Q).8 In fact, already O(V (A0)) acts transitively on F(Pk, Q) via (B, Λ) 7→ B(Λ).

(b) F(Pk, Q) is a complex, compact submanifold of F(Pk, P(V)) of complex codimension
1
2 · (k + 1)(k + 2).

(c) If 2k < m, the manifold F(Pk, Q) is connected; if 2k = m, it consists of exactly

two connected components. In either case, SO(V (A0)) acts transitively on the connected

components of F(Pk, Q), and they will therefore be considered as naturally reductive ho-

mogeneous SO(V (A0))-spaces in the way described in Section 1.3, see Remark 2. Con-

sidered as homogeneous spaces only, they are subspaces of the homogeneous SU(V)-space

F(Pk, P(V)) (but see (ii)). Furthermore:

8F(Pk, Q) is isomorphic to the typical fibre of a twistor bundle, see [Ra], Proposition 2.1

(p. 88) and p. 102.
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(i) If 2k = m, the reductive structures of the connected components of F(Pk, Q) are

induced by symmetric structures, and in this regard they are isomorphic to the irreducible

Riemannian symmetric space SO(m+2)/U(k+1) of type DIII, see [H], p. 518. Moreover,

they are symmetric subspaces and therefore totally geodesic submanifolds of the symmetric

space F(Pk, P(V)).

(ii) If 1 ≤ 2k < m, the reductive structure of F(Pk, Q) is not induced by a sym-

metric structure. Therefore, F(Pk, Q) (equipped with the reductive structure mentioned

above) is also not a reductive homogeneous subspace of F(Pk, P(V)).

Proof. (a) The given characterization of k-dimensional projective subspaces contained in

Q follows from the fact that Q = G1(V, C). Using the representation of isotropic vector

spaces by a partial complex structure and the description of I(Q) given above, one sees

that I(Q) acts transitively on the set of k-dimensional projective subspaces contained in

Q. Similarly, one sees that already O(V (A0)) acts transitively on F(Pk, Q).

(b) Since O(V (A0)) acts transitively on F(Pk, Q), this family is compact. We now show

that it is a complex submanifold of F(Pk, P(V)). Because of (a), the biholomorphic map

θ−1 : F(Pk, P(V)) → Gk+1(V) maps F(Pk, Q) onto Gk+1(V, C). Therefore, it is sufficient

to show that Gk+1(V, C) is a complex submanifold of Gk+1(V). We abbreviate r := k+1.

Consider the Stiefel manifold Str(V) of complex r-frames in V and the canonical

projection σ : Str(V) → Gr(V), (a1, . . . , ar) 7→ span{a1, . . . , ar}. Str(V) is an open subset

of V
r and therefore a complex manifold, and σ is a holomorphic fibre bundle. If α(v, w) :=

〈v, A0w〉C is the bilinear form defined by A0, and

g : Str(V) → Msymm(r × r, C), (a1, . . . , ar) 7→
(
α(aj , aℓ)

)
j,ℓ=1,...,r

(here, Msymm(r × r, C) is the space of symmetric (r × r)-matrices over C), we have

σ−1(Gr(V, C)) = g−1({0}). Because g is a holomorphic submersion, it follows that

σ−1(Gr(V, C)) is a complex submanifold of Str(V) (see [Na], Corollary 2.5.5, p. 81). We

now see by considering local sections of the holomorphic fibre bundle σ that Gr(V, C) is

a complex submanifold of Gr(V); therefrom we also deduce the dimension formula.

(c) We consider an arbitrary subspace Λ0 ∈ F(Pk, Q), and denote by j0 the partial

complex structure on V (A0) of rank 2(k + 1) such that W0 := Λ̂0 = {x + Jj0x |x ∈

j0(V (A0)) }.

Because O(V (A0)) has exactly two connected components, F(Pk, Q) has at most two

connected components, and G := SO(V (A0)) acts transitively on each of them, so they

are homogeneous G-spaces, and become naturally reductive homogeneous G-spaces by

the construction described in Proposition 4 and Remark 2. F(Pk, Q) is connected if and

only if the isotropy group K of the action of O(V (A0)) on F(Pk, Q) at Λ0, which can

also be described as K = {B ∈ O(V (A0)) |Bj0 = j0B }, is not contained in the neutral

component G of O(V (A0)). In the case 2k < m, if B ∈ O(V (A0)) is the reflection in a 1-

codimensional subspace of V (A0) containing j0(V (A0)), we have B ∈ K and det B = −1,

so K is not contained in G. On the other hand, in the case 2k = m, K is the unitary

group U(V (A0), j0) and hence connected, therefore K is contained in G.

Via complexification, G may be considered as a subgroup of SU(V), so the connected

components of F(Pk, Q) are homogeneous subspaces of the SU(V)-space F(Pk, P(V)).
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(c)(i) By Theorem 5, the space F(Pk, P(V)) is isomorphic to the complex Grassmann-

ian Gk+1(V). Therefore, (SU(V), K̂, σ̂) is a symmetric datum for F(Pk, P(V)), where σ̂ is

the involutive group automorphism SU(V) → SU(V), B 7→ SBS−1 defined by using the

reflection S : V → V in W0, and K̂ = S(U(W0) × U(W⊥
0 )) is exactly the group of fixed

points of σ̂.

One can show that for any B ∈ G, we have σ̂(B) = j−1
0 Bj0 ∈ G (here and in the

sequel, we once again interpret the elements of G as elements of SU(V) via complexifi-

cation), so σ := σ̂|G is an involutive automorphism of G. The above description of σ̂|G

also implies that for any B ∈ G we have: B ∈ K̂ = Fix(σ̂) if and only if j0B = Bj0;

and therefore K̂ ∩G = K. Thus, (G, K, σ) is a symmetric datum for the connected com-

ponent of F(Pk, Q) containing Λ0, which thereby becomes a symmetric subspace of the

symmetric space F(Pk, P(V)).

It remains to show that the reductive structure mσ := {X ∈ g |σL(X) = −X } thus

induced on the connected component of F(Pk, Q) is in fact equal to the naturally reductive

structure m from Section 1.3, and this follows by the same argument as in the proof of

Theorem 6(b)(ii).

(c)(ii) Once again, we abbreviate r := k + 1; then we have 4 ≤ 2r < m + 2.

First, we determine the reductive structure m of F(Pk, Q) at Λ0 ∈ F(Pk, Q): Now, the

isotropy group of G at Λ0 is K ∩ G = {B ∈ G |Bj0 = j0B }; hence its Lie algebra is

k := {X ∈ g |Xj0 = j0X } = ker ad(j0), note that j0 ∈ g. Because ad(j0) is skew-adjoint

with respect to the Killing form of g, therefore the reductive structure of F(Pk, Q) is given

by m = ad(j0)(g).

We now apply the foregoing results to a specific choice of Λ0 resp. j0: Fixing an

orthonormal basis (a1, . . . , am+2) of V (A0), we define a partial complex structure j0 of

rank 2r by

∀ν ∈ {1, . . . , m + 2} : j0aν =





aν+r for 1 ≤ ν ≤ r

−aν−r for r + 1 ≤ ν ≤ 2r

0 for 2r + 1 ≤ ν ≤ m + 2

and consider the corresponding element Λ0 = [W0] ∈ F(Pk, Q). Further, we define endo-

morphisms X, Y ∈ g by

Xa1 = ar, Xar = −a1, Xaν = 0 otherwise

and Y a2r = −a2r+1, Y a2r+1 = a2r, Y aν = 0 otherwise.

Then we have X ′ := ad(j0)X, Y ′ := ad(j0)Y ∈ m. We further put Z := [X ′, Y ′].

Then, a simple calculation shows (ad(j0)Z)a1 = a2r+1, and therefore Z 6∈ ker ad(j0) = k.

Thus we have [m, m] 6⊂ k, and therefore, the reductive structure of F(Pk, Q) cannot come

from a symmetric structure. Furthermore, because F(Pk, P(V)) is a symmetric space, the

submanifold F(Pk, Q) cannot be a reductive homogeneous subspace.
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