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Abstra
t. We investigate hypersurfa
es M in spa
es of 
onstant 
urvature with some spe
ialminimal polynomial of the se
ond fundamental tensor H of third degree. We present a 
urvature
hara
terization of pseudosymmetry type for su
h hypersurfa
es. We also prove that if su
h ahypersurfa
e is a manifold with pseudosymmetri
 Weyl tensor then it must be pseudosymmetri
.1. Introdu
tion. Let M , n = dimM ≥ 3, be a 
onne
ted hypersurfa
e in a semi-Riemannian manifold (N, gN ). We denote by g the metri
 tensor indu
ed on M from gN .Further, let H, resp. A, be the se
ond fundamental tensor, resp. the shape operator, of
(M, g) in (N, gN ). It is well known that H(X,Y ) = g(AX,Y ), for any ve
tor �elds Xand Y tangent to M . We de�ne the (0, 2)-tensor Hk, k ≥ 1, by Hk(X,Y ) = g(AkX,Y ),where H1 = H and A1 = A. In Se
tions 3 and 4 we present further basi
 fa
ts relatingto hypersurfa
es.A hypersurfa
e M , n ≥ 3, in (N, gN ) is said to be quasi-umbili
al at x ∈M if at thispoint we have

H = αg + βu⊗ u, u ∈ T ∗

xM, α, β ∈ R.(1)If α = 0 (resp., β = 0 or α = β = 0) at x then M is 
alled 
ylindri
al (resp., umbili
alor geodesi
) at x. If (1) is ful�lled at every point of M then it is 
alled a quasi-umbili
alhypersurfa
e. A hypersurfa
e M , n ≥ 4, in (N, gN ) is said to be 2-quasi-umbili
al at
x ∈M (see [16℄ and referen
es therein) if at this point we have

H = αg + βu⊗ u+ γv ⊗ v, u, v ∈ T ∗

xM, α, β, γ ∈ R,(2) 2000 Mathemati
s Subje
t Classi�
ation: Primary 53B20, 53B25; Se
ondary 53C25.Key words and phrases: pseudosymmetri
 manifold, manifold with pseudosymmetri
 Weyltensor, hypersurfa
e, 2-quasi-umbili
al hypersurfa
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146 K. SAWICZwhere U , V are ve
tors at x su
h that g(U, V ) = 0, u(X) = g(U,X) and v(X) = g(V,X)for every ve
tor X at x. If (2) is ful�lled at every point of M then it is 
alled a 2-quasi-umbili
al hypersurfa
e. If α = 0 at x then M is 
alled 2-
ylindri
al at x. It is 
learthat if (N, gN ) is a Riemannian manifold then the above de�nition of a 2-quasi-umbili
alhypersurfa
e M at x ∈M is equivalent to the following: the hypersurfa
e M , n ≥ 4, in aRiemannian manifold (N, gN ) is said to be 2-quasi-umbili
al at x ∈M when at x it has aprin
ipal 
urvature with multipli
ity ≥ n− 2, i.e. when the prin
ipal 
urvatures at x are
µ, ν, λ,. . . , λ, where λ o

urs (n − 2)-times. Evidently, 2-quasi-umbili
al hypersurfa
esform a natural extension of the 
lass of quasi-umbili
al hypersurfa
es.Every 2-quasi-umbili
al hypersurfa
e in 
onformally �at spa
e is a manifold withpseudosymmetri
 Weyl tensor (see Theorem 3.1(ii)). A semi-Riemannian manifold (M, g),
n ≥ 4, is said to be a manifold with pseudosymmetri
 Weyl tensor ([5℄, Se
tion 12.6) if, atevery point ofM , the tensors C ·C and Q(g, C) are linearly dependent. This is equivalenton UC = {x ∈M |C 6= 0 at x} to

C · C = LCQ(g, C),(3)where LC is some fun
tion on UC . For pre
ise de�nitions of the symbols used we refer toSe
tions 2 and 3 of this paper and [3℄ and [10℄.Now let M be a hypersurfa
e in a semi-Riemannian spa
e Nn+1
s (c) of 
onstant 
ur-vature with signature (s, n + 1 − s), n ≥ 4, where c = κ̃

n(n+1) and κ̃ denotes the s
alar
urvature of the ambient spa
e. We denote by UH the set of all points of M at whi
h thetensor H2 of M is not a linear 
ombination of the metri
 tensor g and H. It is knownthat UH ⊂ UC ∩ US , where US ⊂ M is de�ned by US = {x ∈ M |S − κ
n
g 6= 0 at x} (seee.g. [10℄, Se
tion 2). Theorem 4.3 of [17℄ and Lemma 4.1 and Theorem 4.1 of [4℄ implyTheorem 1.1. If M is a hypersurfa
e with pseudosymmetri
 Weyl tensor in Nn+1

s (c),
n ≥ 4, satisfying on UH ⊂M the equation

H3 = tr(H)H2 + ψH,(4)where ψ is some fun
tion on UH , then on this set we have
R ·R =

κ̃

n(n+ 1)
Q(g,R).(5) Theorem 5.2 of this paper shows that the above theorem remains true if on UH werepla
e (4) by

H3 = tr(H)H2 + ψH + ρg,(6)where ψ and ρ are some fun
tions on UH . Thus in parti
ular, from Theorem 5.2 it followsthat if M is a hypersurfa
e with pseudosymmetri
 Weyl tensor in a Riemannian spa
e of
onstant 
urvature satisfying (6) on UH ⊂ M then (5) holds on UH . Further, Theorem5.3 shows that every hypersurfa
e M in Nn+1
s (c), n ≥ 4, satisfying (6) on UH ⊂ M is2-
ylindri
al on this set.We remark that if (6) holds on the subset UH of a hypersurfa
e M in a Riemannianspa
e of 
onstant 
urvature then at every point of this set M has three three distin
tprin
ipal 
urvatures.



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 147A semi-Riemannian manifold (M, g), n ≥ 4, is said to be pseudosymmetri
 ([5℄, Se
tion3.1) if, at every point of M , the tensors R · R and Q(g,R) are linearly dependent. Thisis equivalent on UR = {x ∈M |R− κ
(n−1)nG 6= 0 at x} to
R ·R = LRQ(g,R),(7)where LR is some fun
tion on UR.Hypersurfa
es satisfying (3), resp., (7), were investigated e.g. in: [15℄, [16℄ and [17℄,resp., in: [2℄, [4℄, [6℄, [7℄, [11℄, and [18℄. We say that (3) and (7) are 
ertain 
onditionsof pseudosymmetry type. For a re
ent survey of results on manifolds satisfying su
h
onditions we refer to [3℄.Hypersurfa
es in semi-Eu
lidean spa
es in E

n+1
s , n ≥ 4, satisfying (6) were investi-gated in [1℄. Examples of su
h hypersurfa
es in E

n+1
s , with ρ 6= 0, will be presented in[19℄ (see also [13℄).We note that on the set M \ UH of a hypersurfa
e M in Nn+1

s (c), n ≥ 4, (3) and(7) are always satis�ed (see e.g. [17℄, Theorem 3.1). Thus in parti
ular, (3) and (7) aresatis�ed at all points at whi
h M has only two distin
t prin
ipal 
urvatures. We presentnow some results of [2℄, [4℄ and [7℄.Theorem 1.2. Let M be a hypersurfa
e in Nn+1
s (c), n ≥ 4, and let UH ⊂M .(i) ([2℄, Theorem 3.1) The 
onditions (7) and R · C = LRQ(g, C) are equivalent on

UC ⊂M .(ii) ([4℄, Lemma 4.1 and Theorem 4.1) If M is pseudosymmetri
 then (5) holds on UH .(iii) ([7℄, Theorems 3.1 and 5.1) The equation rankH = 2 is satis�ed on UH if and onlyif (5) holds on this set.(iv) ([4℄, Proposition 3.2, Proposition 3.1(ii)) (4) holds on UH if and only if on this setwe have
R · S =

κ̃

n(n+ 1)
Q(g, S).(8) In 
onne
tion with the results presented above, we 
onsider in Se
tion 4 the questionof �nding a 
ondition of pseudosymmetry type equivalent to (6) on the set UH of ahypersurfa
e M in Nn+1

s (c), n ≥ 4. Propositions 5.1 and 5.2 solve this question. Namelywe have: (6) holds on UH ⊂M if and only if on this set we have
C ·R = L1Q(S,R) + L2Q(g,R) + L3Q(S,G)(9)for some fun
tions L1, L2 and L3. Further, let M be a hypersurfa
e in a Riemannianspa
e of 
onstant 
urvature Nn+1(c), n ≥ 4, and let V ⊂ UH ⊂M be the set of all pointsat whi
h the tensor R · S − κ̃

n(n+1)Q(g, S) is nonzero. Our main result is the following(see Theorem 5.1)Theorem 1.3. Let M be a hypersurfa
e in Nn+1
s (c), n ≥ 4, and let V be the set de�nedabove. Then on V the 
ondition (6) is equivalent to (33) and (36).We note that from Theorem 1.2(iv) it follows that if M is a hypersurfa
e of a Rie-mannian spa
e of 
onstant 
urvature and (6) holds on V , then at every point of this setthere are exa
tly three distin
t nonzero prin
ipal 
urvatures. Now Theorem 1.3 implies



148 K. SAWICZCorollary 1.1. Let M be a hypersurfa
e in a Riemannian spa
e of 
onstant 
urvature
Nn+1(c), n ≥ 4, and let V be the set de�ned above. Then on V the 
ondition (6) isequivalent to (33) and (36).The author would like to express her thanks to the referee for his hints, remarks and
omments.2. Preliminaries. Throughout this paper all manifolds are assumed to be 
onne
tedpara
ompa
t manifolds of 
lass C∞. Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian manifold and let ∇ be its Levi-Civita 
onne
tion and Ξ(M) the Lie algebraof ve
tor �elds onM . We de�ne onM the endomorphisms X∧AY and R(X,Y ) of Ξ(M)by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,respe
tively, where A is a symmetri
 (0, 2)-tensor on M and X,Y, Z ∈ Ξ(M). The Ri

itensor S, the Ri

i operator S and the s
alar 
urvature κ of (M, g) are de�ned by
S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = trS,respe
tively. The endomorphism C(X,Y ) is de�ned by

C(X,Y )Z = R(X,Y )Z −
1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.Now the (0, 4)-tensor G, the Riemann-Christo�el 
urvature tensor R and the Weyl 
on-formal 
urvature tensor C of (M, g) are de�ned by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),respe
tively, where X1, X2, . . . ∈ Ξ(M). Let B(X,Y ) be a skew-symmetri
 endomorphismof Ξ(M) and let B be a (0, 4)-tensor asso
iated with B(X,Y ) by
B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).(10)The tensor B is said to be a generalized 
urvature tensor if

B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2).Let B(X,Y ) be a skew-symmetri
 endomorphism of Ξ(M) and let B be the tensor de�nedby (10). We extend the endomorphism B(X,Y ) to derivation B(X,Y )· of the algebra oftensor �elds on M , assuming that it 
ommutes with 
ontra
tions and B(X,Y ) · f = 0for any smooth fun
tion f on M . Now for a (0, k)-tensor �eld T , k ≥ 1, we de�ne the
(0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk;X,Y )

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 149If A is a symmetri
 (0, 2)-tensor then we de�ne the (0, k + 2)-tensor Q(A, T ) by
Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk;X,Y )

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Setting in the aboveformulas B = R or B = C, T = R or T = C or T = S, A = g or A = S, we get thetensors R ·R, R · C, C ·R, R · S, Q(g,R), Q(S,R), Q(g, C) and Q(g, S). For symmetri

(0, 2)-tensors E and F , we denote their Kulkarni-Nomizu produ
t by

(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

−E(X1, X3)F (X2, X4) − E(X2, X4)F (X1, X3).Clearly, the tensors R, C, G and E∧F are generalized 
urvature tensors. For a symmetri

(0, 2)-tensor E we de�ne the (0, 4)-tensor E by E = 1

2E ∧ E. We have g = G = 1
2g ∧ gand

C = R −
1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.(11)We also have (see e.g. [10℄, eq. (24))

Q(E,E ∧ F ) = −Q(F,E).(12)Relations (11) and (12) give
Q(g, C) = Q(g,R) +

1

n− 2
Q(S,G).(13)A

ording to [9℄, for a symmetri
 (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we de�netheir Kulkarni-Nomizu produ
t E ∧ T by

(E ∧ T )(X1, X2, X3, X4;Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

− E(X1, X3)T (X2, X4, Y3, . . . , Yk) − E(X2, X4)T (X1, X3, Y3, . . . , Yk).Using the above de�nitions we 
an prove the followingLemma 2.1 ([9℄, [18℄). Let E1, E2 and F be symmetri
 (0, 2)-tensors at a point x of asemi-Riemannian manifold (M, g), n ≥ 3. Then at x we have
E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) = −Q(F,E1 ∧E2).If E = E1 = E2 then

E ∧Q(E,F ) = −Q(F,E).(14)3. Hypersurfa
es in 
onformally �at spa
es. Let M , n ≥ 3, be a 
onne
ted hyper-surfa
e in a semi-Riemannian manifold (N, gN ) and let g be the metri
 tensor indu
edon M from gN . We denote by ∇, ∇N , the Levi-Civita 
onne
tions 
orresponding to themetri
 tensors g and gN , respe
tively. Similarly, we denote by R and RN the Riemann-Christo�el 
urvature tensors of (M, g) and (N, gN ), respe
tively. Let ξ be a lo
al unitnormal ve
tor �eld onM inN and let ε = gN (ξ, ξ) = ±1. We 
an write the Gauss formulaand the Weingarten formula of (M, g) in (N, gN ) in the form: ∇N
XY = ∇XY +εH(X,Y )ξ



150 K. SAWICZand ∇N
Xξ = −AX, respe
tively, where X,Y are ve
tor �elds tangent to M , H is the se
-ond fundamental tensor of (M, g) in (N, gN ) and A is the shape operator. Let xr = xr(yk)be the lo
al parametri
 expression of (M, g) in (N, gN ), where yk and xr are lo
al 
oordi-nates ofM andN , respe
tively, and h, i, j, k ∈ {1, 2, . . . , n} and p, r, t, u ∈ {1, 2, . . . , n+1}.The Gauss equation of (M, g) in (N, gN ) has the form

Rhijk = RN
prtuB

p
h B

r
i B

t
j B

u
k + ε(HhkHij −HhjHik), B r

k =
∂xr

∂yk
,(15)where RN

prtu, Rhijk and Hhk are the lo
al 
omponents of the tensors RN , R and H,respe
tively.Let now (N, gN ) be a 
onformally �at spa
e. We have ([11℄, Se
tion 4)
Chijk = µGhijk + εHhijk +

ε

n− 2
(g ∧ (H2 − tr(H)H))hijk,(16)

µ =
1

(n− 2)(n− 1)
(κ− 2S̃rtB

r
hB

t
kg

hk + κ̃),(17)where S̃rt are the lo
al 
omponents of the Ri

i tensor S̃ of the ambient spa
e, Ghijk arethe lo
al 
omponents of the tensor G and κ̃ and κ are the s
alar 
urvatures of (N, gN )and (M, g), respe
tively. From (16) we get
C ·H =

ε

n− 2
(Q(g,H3) + (n− 3)Q(H,H2)(18)

− tr(H)Q(g,H2)) + µQ(g,H),

C ·H2 = ε(Q(H,H3) +
1

n− 2
(Q(g,H4) − tr(H)Q(g,H3)(19)

− tr(H)Q(H,H2))) + µQ(g,H2).Theorem 3.1. Let M , dimM ≥ 4, be a hypersurfa
e in a 
onformally �at semi-Rieman-nian manifold.(i) ([14℄, Theorem 4.1) M is quasi-umbili
al if and only if it is a 
onformally �at mani-fold.(ii) ([16℄, Theorem 3.1) If M is 2-quasi-umbili
al then it is a manifold with pseudosym-metri
 Weyl tensor.4. Hypersurfa
es in spa
es of 
onstant 
urvature. Let M be a hypersurfa
e in
Nn+1

s (c), n ≥ 4. Now (15) and (17) read
Rhijk = εHhijk +

κ̃

n(n+ 1)
Ghijk,(20)

µ =
1

n− 2

(
κ

n− 1
−

κ̃

n+ 1

)
,(21)respe
tively. Contra
ting (20) with gij and gkh we obtain

Shk = ε(tr(H)Hhk −H2
hk) +

(n− 1)κ̃

n(n+ 1)
ghk,(22)

κ = ε((tr(H))2 − tr(H2)) +
(n− 1)κ̃

n+ 1
,(23)
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tively, where κ is the s
alar 
urvature of M , tr(H) = ghkHhk, tr(H2) = ghkH2
hkand Shk are the lo
al 
omponents of the Ri

i tensor S of M . Further, let A be the

(0, 2)-tensor on M de�ned by
A = H3 − tr(H)H2 +

εκ

n− 1
H.(24)From Theorem 5.1 of [12℄ it follows that A, de�ned by (24), vanishes on the subset UH ofany quasi-Einstein Ri

i-semisymmetri
 hypersurfa
e M in E

n+1
s , n ≥ 4. It is also known([10℄, Theorem 5.1) that A = 0 on the subset UH of a hypersurfa
eM in Nn+1

s (c), n ≥ 4,if and only if, on UH , we have
R · C − C ·R =

1

n− 2
Q(S,R) +

(n− 1)κ̃

(n− 2)n(n+ 1)
Q(g,R).Examples of hypersurfa
es with nonzero tensor A are given in [10℄. Further, on anyhypersurfa
e M in Nn+1

s (c), n ≥ 4, we have ([10℄, Theorem 3.1):
R · C = Q(S,R) −

(n− 2)κ̃

n(n+ 1)
Q(g,R)(25)

−
(n− 3)κ̃

(n− 2)n(n+ 1)
Q(S,G) +

1

n− 2
g ∧Q(H,A),

C ·R =
n− 3

n− 2
Q(S,R) −

(n2 − 3n+ 3)κ̃

(n− 2)n(n+ 1)
Q(g,R)(26)

−
(n− 3)κ̃

(n− 2)n(n+ 1)
Q(S,G) +

1

n− 2
H ∧Q(g,A).Proposition 4.1. If M is a pseudosymmetri
 hypersurfa
e in Nn+1

s (c), n ≥ 4, then on
UH ⊂M we have (4) with

ψ =
1

2
(tr(H2) − (tr(H))2).(27)Proof. Sin
e M is a pseudosymmetri
 manifold, in view of Theorem 1.2(iii), on UH wehave rankH = 2. Now, using Lemma 2.1(i) of [8℄, we get our assertion.Remark 4.1. Examples of hypersurfa
es in Nn+1

s (c), n ≥ 4, with rankH = 2 were foundin [11℄.Theorem 4.1. If M is a hypersurfa
e in Nn+1
s (c), n ≥ 4, satisfying on UH ⊂M

R · C = LQ(g, C),(28)where L is some fun
tion on UH , then rankH = 2 and (4), i.e. (6) with ρ = 0, hold on
UH .Proof. On UH , by (28), we have

(R · C)(X1, X2, X3, X4;X5, X6) + (R · C)(X3, X4, X5, X6;X1, X2)

+ (R · C)(X5, X6, X1, X2, X3, X4) = 0,



152 K. SAWICZwhere X1, . . . , X6 are ve
tor �elds tangent to UH . Now on UH Proposition 5.1 of [18℄implies (6) and
R · S =

κ̃

n(n+ 1)
Q(g, S) + ρQ(g,H).(29)On the other hand, from (28), in view of Theorem 1.2(i) and (ii), it follows that (5) holdson UH , whi
h in view of Theorem 1.2(iii) implies rankH = 2 on UH . Further, from (5),by a suitable 
ontra
tion, we get (8). This, together with (29), gives ρ = 0. Thus ourtheorem is proved.5. Hypersurfa
es satisfying H3 = tr(H)H2 + ψH + ρg. Let M be a hypersurfa
e in

Nn+1
s (c), n ≥ 4, satisfying (6) on UH ⊂M . By making use of (6), (24) turns into

A =

(
εκ

n− 1
+ ψ

)
H + ρg, ρ =

1

n

(
tr(A) −

(
εκ

n− 1
+ ψ

)
tr(H)

)
.(30)Further, we set on UH

β1 =
ε

n− 2
(ψ + (n− 2)εµ),

β2 = εµtr(H) +
1

n− 2
(ψtr(H) + (n− 3)ρ),

β3 = β2 − εβ1tr(H),

β4 =
κ

n− 1
+ εψ −

(n2 − 3n+ 3)κ̃

n(n+ 1)
,

β5 = β1 −
(n− 3)κ̃

n(n+ 1)
.

(31)
Proposition 5.1. If M is a hypersurfa
e in Nn+1

s (c), n ≥ 4, satisfying (6) on UH ⊂M ,for some fun
tions ψ and ρ on UH , then on UH we have
R · C = Q(S,R) −

(n− 2)κ̃

n(n+ 1)
Q(g,R) + α2Q(S,G) +

ρ

n− 2
Q(H,G),(32)

C ·R =
n− 3

n− 2
Q(S,R) + α1Q(g,R) + α2Q(S,G),(33)

(n− 2)(R · C − C ·R) =

(
(n− 1)κ̃

n(n+ 1)
−

κ

n− 1
− εψ

)
Q(g,R)

+Q(S,R) + ρQ(H,G),

(34)
C · C =

n− 3

n− 2
Q(S,R) + α1Q(g,R)(35)

+
1

n− 2
((α1 − α2)Q(S,G) +

n− 3

n− 2
ρQ(H,G)),

α1 =
1

n− 2

(
κ

n− 1
+ εψ −

(n2 − 3n+ 3)κ̃

n(n+ 1)

)
=

1

n− 2
β4,(36)

α2 = −
(n− 3)κ̃

(n− 2)n(n+ 1)
.Proof. By making use of (14) and (30), (25) yields (32). Applying now (6) to (26) andusing (14) and (30), we get (33). Subtra
ting (32) from (33) we easily �nd (34). The
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H3 − tr(H)H2 = ψH + ρg,

H4 − tr(H)H3 = ψH2 + ρH,
(37)respe
tively. Applying (37) to (18) and (19) we obtain

C ·H =

(
µ+

εψ

n− 2

)
Q(g,H) +

(n− 3)ε

n− 2
Q(H,H2),(38)

C ·H2 =
(n− 3)εtr(H)

n− 2
Q(H,H2) +

(
µ+

ε

n− 2
ψ

)
Q(g,H2)(39)

−
(n− 3)ερ

n− 2
Q(g,H),respe
tively. Using (21), (22), (31), (38), and (39) we �nd

C · S = εC · (tr(H)H −H2) +
(n− 1)κ̃

n(n+ 1)
C · g(40)

= −εβ1Q(g,H2) + β2Q(g,H).Applying (22) to (39) and using (31), we get
C · S = β3Q(g,H) + β1Q(g, S).(41)Using (11), (14), (30), (33), (36) and (41) we �nd

(n− 2)C · C = (n− 2)C ·R − g ∧ (C · S)(42)
= (n− 2)C ·R − g ∧ (β3Q(g,H) + β1Q(g, S))

= (n− 3)Q(S,R) + (n− 2)α1Q(g,R)

+

(
β1 −

(n− 3)κ̃

n(n+ 1)

)
Q(S,G) + β3Q(H,G).An appli
ation of (20) and (22) and Lemma 2.1 leads to the identity

H ∧Q(g, εH2) − g ∧Q(H,S) = H ∧Q(g, εtr(H)H) −H ∧Q(g, S) − g ∧Q(H,S)

= tr(H)Q(g,R) − (H ∧Q(g, S) + g ∧Q(H,S))

= tr(H)Q(g,R) +Q(S, g ∧H).Applying this and (31) to (42) we get
(n− 2)C · C = (n− 3)Q(S,R) + β3Q(H,G) + β4Q(g,R) + β5Q(S,G),whi
h turns into (35), by making use of (21) and (31). Our proposition is thus proved.Proposition 5.2. If M is a hypersurfa
e in Nn+1

s (c), n ≥ 4, satisfying (9) on UH ⊂M ,for some fun
tions L1, L2 and L3, then (6) holds on UH . Moreover, at every x ∈ UH wehave:(i) L1 = n−3
n−2 , L2 = α1 and L3 = α2, or(ii) L1 6= n−3
n−2 , rank(S − α0g) = 1, ρ = 0, and in 
onsequen
e, (4) and (8), or(iii) L1 6= n−3
n−2 , rank(S −α0g) > 1, (5), and in 
onsequen
e, rankH = 2, (4) and ρ = 0,
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α0 = −

(n− 2)(L2 − α1)

(n− 2)L1 − (n− 3)
.(43)Proof. In view of Corollary 4.1 of [10℄, (9) implies (6) on UH . Further, Proposition 5.1yields (33), whi
h together with (9) leads to

(
L1 −

n− 3

n− 2

)
Q(S,R) + (L2 − α1)Q(g,R) + (L3 − α2)Q(S,G) = 0.(44)(i) We assume that L1 = n−3

n−2 at x. Now (44) redu
es to
(L2 − α1)Q(g,R) + (L3 − α2)Q(S,G) = 0.(45)In addition, we suppose that L2 6= α1 at x. Thus (45) yields Q(g,R)+α3Q(S,G) = 0, forsome α3 ∈ R, whi
h by (12), turns intoQ(g,R−α3g∧S) = 0. This givesR−α3g∧S = α4G,for some α4 ∈ R. But the last relation, in a standard way, implies C = 0, a 
ontradi
tion.Therefore we have L2 = α1. Now (45) redu
es to (L3 −α2)Q(S,G) = 0, when
e L3 = α2.We assume now that: L1 6= n−3

n−2 at x. Thus (44) turns into
Q(S − α0g,R) + α5Q(S,G) = 0,(46)where α0 is de�ned by (43) and α5 ∈ R. Sin
e Q(S,G) = Q(S − α0g,G) = 0, (46) yields

Q(S − α0g,R+ α5G) = 0.(47)(ii) Let rank(S − α0g) = 1 at x. Applying this to (22) we obtain
H2 = tr(H)H + α6g + α7w ⊗ w, w ∈ T ∗

xM,(48)for some α6, α7 ∈ R, where α7 6= 0. From (48) it follows that
H3

ij = tr(H)H2
ij + α6Hij + α7w

rHriwj ,(49)where wr = grjwj and wj are the lo
al 
omponents of w. But (49) implies wrHrj = α8wj ,for some α8 ∈ R. Applying the last equation and (48) to (49), we get
H3 = (tr(H) + α8)H

2 + (α6 − α8tr(H))H − α6α8g.Comparing this with (6) we obtain
α8H

2 + (α6 − α8tr(H) − ψ)H − (α6α8 + ρ)g = 0.Sin
e x ∈ UH , we have α8 = 0, α6 = ψ and ρ = 0. Thus (6) redu
es to (4). But (4), inview of Theorem 1.2(iv), implies (8).(iii) Let rank(S − α0g) > 1 at x. Now (47), in view of Lemma 4.2 of [10℄, implies
R+ α5G =

α9

2
(S − α0g) ∧ (S − α0g)for some α9 ∈ R − {0}. The last relation implies (7). Now Theorem 1.2(ii) and (iii)
ompletes the proof.A 
onsequen
e of the last proposition is the followingTheorem 5.1. Let M be a hypersurfa
e in Nn+1

s (c), n ≥ 4, and let V be the set of allpoints of UH ⊂ M at whi
h the tensor R · S − κ̃
n(n+1)Q(g, S) is nonzero. Then on V the
ondition (6) is equivalent to (33) and (36).
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tion with results on hypersurfa
es with pseudosymmetri
 Weyl ten-sor.Theorem 5.2. If M is a hypersurfa
e in Nn+1
s (c), n ≥ 4, satisfying (3) and (6) on

UH ⊂M then on this set we have (4), i.e. (6) with ρ = 0, (5), (27) and
LC =

n− 3

2(n− 2)

(
κ̃

n+ 1
−

κ

n− 1

)
.(50)Proof. (35), by (3) and (11), turns into

Q(S,R) =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(n2 − 3n+ 3)κ̃

n(n+ 1)

)
Q(g,R)

+
1

(n− 3)(n− 2)

(
(n− 2)LC −

κ

n− 1
− εψ +

(n2 − 4n+ 6)κ̃

n(n+ 1)

)
Q(S,G)

−
ρ

n− 2
Q(H,G).Now (32) and (51) yield

R · C =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
(Q(g,R) +

1

n− 2
Q(S,G)),whi
h, by (13), turns into

R · C =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
Q(g, C).This, in view on Theorem 4.1(i) and (ii), implies

R ·R =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
Q(g,R),

κ̃

n(n+ 1)
=

1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
,whi
h yields (5) and

LC =
1

n− 2

(
κ

n− 1
−

κ̃

n+ 1
+ εψ

)
.(51)Sin
e (5) holds on UH , Proposition 4.1 implies (4) and (27) on UH . Further, applying(23) and (27) into (51) we obtain (50), whi
h 
ompletes the proof.Theorem 5.3. Every 2-quasi-umbili
al hypersurfa
e M in Nn+1
s (c), n ≥ 4, satisfying(6) on UH ⊂M , is 2-
ylindri
al on this set.Proof. Sin
e M is a 2-quasi-umbili
al hypersurfa
e, in view of Theorem 3.1(ii), (3) holdson UH . Using now Theorem 4.1(iv) and Theorem 5.2 on UH we get rankH = 2. Further,from (2) we have rankB = 2, where B = H − αg. The last two equations, in view ofLemma 2.1 of [8℄ (see eq. (19) of [8℄), yield tr(H)H = H ∧ H2 and tr(B)B = B ∧ B2,respe
tively. From these relations, by suitable 
ontra
tion, we �nd α(H2+α1H+α2g) = 0,where α1 and α2 are some fun
tions on UH . But from the last equation it follows that

α = 0 on UH , whi
h 
ompletes the proof.
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