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Abstract. We investigate hypersurfaces M in spaces of constant curvature with some special
minimal polynomial of the second fundamental tensor H of third degree. We present a curvature
characterization of pseudosymmetry type for such hypersurfaces. We also prove that if such a
hypersurface is a manifold with pseudosymmetric Weyl tensor then it must be pseudosymmetric.

1. Introduction. Let M, n = dim M > 3, be a connected hypersurface in a semi-
Riemannian manifold (N, g"). We denote by g the metric tensor induced on M from g%
Further, let H, resp. A, be the second fundamental tensor, resp. the shape operator, of
(M, g) in (N, g"). It is well known that H(X,Y) = g(AX,Y), for any vector fields X
and Y tangent to M. We define the (0, 2)-tensor H*, k > 1, by H*(X,Y) = g(A¥X,Y),
where H! = H and A' = A. In Sections 3 and 4 we present further basic facts relating
to hypersurfaces.

A hypersurface M, n > 3, in (N, g") is said to be quasi-umbilical at x € M if at this
point we have

(1) H=ag+pu®u, wel,M, «opfckR.

If « =0 (resp.,, 3 =0 or « = 8 =0) at « then M is called cylindrical (vesp., umbilical
or geodesic) at x. If (1) is fulfilled at every point of M then it is called a quasi-umbilical
hypersurface. A hypersurface M, n > 4, in (N, gN) is said to be 2-quasi-umbilical at
x € M (see [16] and references therein) if at this point we have

(2) H=ag+pu@ut+yvev, uwvel,M, «af,v€eR,
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where U, V are vectors at x such that g(U,V) =0, u(X) = g(U, X) and v(X) = ¢g(V, X)
for every vector X at x. If (2) is fulfilled at every point of M then it is called a 2-
quasi-umbilical hypersurface. If o = 0 at x then M is called 2-cylindrical at x. It is clear
that if (N, g") is a Riemannian manifold then the above definition of a 2-quasi-umbilical
hypersurface M at x € M is equivalent to the following: the hypersurface M, n > 4, in a
Riemannian manifold (N, g%V) is said to be 2-quasi-umbilical at x € M when at z it has a
principal curvature with multiplicity > n — 2, i.e. when the principal curvatures at x are
Wy Vs A,..., A, where A occurs (n — 2)-times. Evidently, 2-quasi-umbilical hypersurfaces
form a natural extension of the class of quasi-umbilical hypersurfaces.

Every 2-quasi-umbilical hypersurface in conformally flat space is a manifold with
pseudosymmetric Weyl tensor (see Theorem 3.1(ii)). A semi-Riemannian manifold (M, g),
n > 4, is said to be a manifold with pseudosymmetric Weyl tensor ([5], Section 12.6) if, at
every point of M, the tensors C'-C and Q(g, C) are linearly dependent. This is equivalent
on U ={x € M|C #0 at z} to

(3) C-C=LcQ(y,C),

where L¢ is some function on Ue. For precise definitions of the symbols used we refer to
Sections 2 and 3 of this paper and [3] and [10].
Now let M be a hypersurface in a semi-Riemannian space N?*!(c) of constant cur-

vature with signature (s,n + 1 —s), n > 4, where ¢ = and K denotes the scalar

K
n(n+1)
curvature of the ambient space. We denote by Uy the set of all points of M at which the
tensor H? of M is not a linear combination of the metric tensor g and H. It is known

that Uy C Uc NUs, where Us C M is defined by Us = {x € M|S — Zg # 0 at x} (see
e.g. [10], Section 2). Theorem 4.3 of [17] and Lemma 4.1 and Theorem 4.1 of [4] imply

THEOREM 1.1. If M is a hypersurface with pseudosymmetric Weyl tensor in N1 (c),
n > 4, satisfying on Uy C M the equation

(4) H? =tr(H)H? + ¥ H,

where 1 s some function on Uy, then on this set we have
3

5 R-R=—— ,R).

(5) i +1)Q(9 )

Theorem 5.2 of this paper shows that the above theorem remains true if on Uy we
replace (4) by

(6) H3 = tr(H)H? + ¢y H + pg,

where 1 and p are some functions on . Thus in particular, from Theorem 5.2 it follows
that if M is a hypersurface with pseudosymmetric Weyl tensor in a Riemannian space of
constant curvature satisfying (6) on Uy C M then (5) holds on Uy. Further, Theorem
5.3 shows that every hypersurface M in N"l(c), n > 4, satisfying (6) on Uy C M is
2-cylindrical on this set.

We remark that if (6) holds on the subset Uy of a hypersurface M in a Riemannian
space of constant curvature then at every point of this set M has three three distinct
principal curvatures.
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A semi-Riemannian manifold (M, g), n > 4, is said to be pseudosymmetric ([5], Section
3.1) if, at every point of M, the tensors R - R and Q(g, R) are linearly dependent. This

is equivalent on Up = {x € M|R — (=i #0at z} to

(7) R-R = LrQ(g, R),

where Ly is some function on Ug.

Hypersurfaces satisfying (3), resp., (7), were investigated e.g. in: [15], [16] and [17],
resp., in: [2], [4], [6], [7], [11], and [18]. We say that (3) and (7) are certain conditions
of pseudosymmetry type. For a recent survey of results on manifolds satisfying such
conditions we refer to [3].

Hypersurfaces in semi-Euclidean spaces in E*t1, n > 4, satisfying (6) were investi-
gated in [1]. Examples of such hypersurfaces in E**!, with p # 0, will be presented in
[19] (see also [13]).

We note that on the set M \ Uy of a hypersurface M in N"*1(c), n > 4, (3) and
(7) are always satisfied (see e.g. [17], Theorem 3.1). Thus in particular, (3) and (7) are
satisfied at all points at which M has only two distinct principal curvatures. We present
now some results of [2], [4] and [7].

THEOREM 1.2. Let M be a hypersurface in N (c), n >4, and let Uy C M.

(i) ([2], Theorem 8.1) The conditions (7) and R - C = LrQ(g,C) are equivalent on
Uc C M.

(i) ([4], Lemma 4.1 and Theorem 4.1) If M is pseudosymmetric then (5) holds on Ug.
(111) ([7], Theorems 3.1 and 5.1) The equation rankH = 2 is satisfied on Up if and only
if (5) holds on this set.

(iv) ([4], Proposition 3.2, Proposition 3.1(i1)) (4) holds on Uy if and only if on this set
we have

(8) R-S= n(n——l—l)Q(g’S)'

In connection with the results presented above, we consider in Section 4 the question
of finding a condition of pseudosymmetry type equivalent to (6) on the set Uy of a
hypersurface M in N**1(c), n > 4. Propositions 5.1 and 5.2 solve this question. Namely
we have: (6) holds on Uy C M if and only if on this set we have

(9) C-R=L1Q(S,R) + L2Q(g, R) + L3Q(S, G)

for some functions Lq, Ly and Ls3. Further, let M be a hypersurface in a Riemannian
space of constant curvature N"*1(c), n > 4, and let V. C Uy C M be the set of all points
at which the tensor R - S — ﬁ@(g, S) is nonzero. Our main result is the following
(see Theorem 5.1)

THEOREM 1.3. Let M be a hypersurface in N'Tt(c), n > 4, and let V be the set defined
above. Then on V' the condition (6) is equivalent to (33) and (36).

We note that from Theorem 1.2(iv) it follows that if M is a hypersurface of a Rie-
mannian space of constant curvature and (6) holds on V, then at every point of this set
there are exactly three distinct nonzero principal curvatures. Now Theorem 1.3 implies
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COROLLARY 1.1. Let M be a hypersurface in a Riemannian space of constant curvature
N"tY(c), n > 4, and let V be the set defined above. Then on V the condition (6) is
equivalent to (33) and (36).

The author would like to express her thanks to the referee for his hints, remarks and
comments.

2. Preliminaries. Throughout this paper all manifolds are assumed to be connected
paracompact manifolds of class C*°. Let (M,g) be an n-dimensional, n > 3, semi-
Riemannian manifold and let V be its Levi-Civita connection and Z(M) the Lie algebra
of vector fields on M. We define on M the endomorphisms X A4 Y and R(X,Y") of E(M)
by
(X A4 Y)Z = A(Y, 2)X — A(X, 2)Y,
R(X.Y)Z =VxVyZ -VyVxZ—VixyZ
respectively, where A is a symmetric (0, 2)-tensor on M and X,Y, Z € Z(M). The Ricci
tensor S, the Ricci operator S and the scalar curvature & of (M, g) are defined by
S(X,Y)=tr{Z - R(Z,X)Y}, ¢(SX,Y)=S(X,)Y), k=1trS,

respectively. The endomorphism C(X,Y) is defined by

C(X,Y)Z =R(X,Y)Z —

KR
n_2<X/\gSY+SX/\gY—mX/\gY>Z.

Now the (0, 4)-tensor G, the Riemann-Christoffel curvature tensor R and the Weyl con-
formal curvature tensor C of (M, g) are defined by

G(Xla X27 X3a X4) = g((Xl /\9 XQ)X3ﬂ X4)a

R(X1, X2, X5, X4) = g(R(X1, X2) X3, X4),

C (X1, X2, X5, X4) = g(C(X1, X2) X3, X4),

respectively, where X7, X5, ... € E(M). Let B(X,Y) be a skew-symmetric endomorphism
of Z(M) and let B be a (0,4)-tensor associated with B(X,Y) by

(10) B(X1, X2, X3, X4) = g(B(X1, X2) X5, X4).
The tensor B is said to be a generalized curvature tensor if

B(X1, Xo, X3, X4) + B(X2, X3, X1, X4) + B(X3, X1, X2, X4) =0,

B(X17 X2) X37 X4) = B(X3) X47 Xl) XQ)
Let B(X,Y) be a skew-symmetric endomorphism of Z(M) and let B be the tensor defined
by (10). We extend the endomorphism B(X,Y") to derivation B(X,Y")- of the algebra of
tensor fields on M, assuming that it commutes with contractions and B(X,Y) - f =0
for any smooth function f on M. Now for a (0, k)-tensor field 7', k > 1, we define the
(0,k + 2)-tensor B - T by

(B . T)(Xla s 7Xk;X) Y) = (B(X7Y) ' T)(Xh s 7Xk7;X7Y)
- 7T(B(X7 Y)Xl,XQa v 7Xk) - T(Xla . 'an—laB(X, Y)Xk)
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If Ais a symmetric (0,2)-tensor then we define the (0, k + 2)-tensor Q(A,T) by
Q(AvT)(le s 7Xk;X7 Y) = (X AaY - T)(X17 s 7Xk;X7 Y)
= _T((X NA Y)XlaX27 ceey Xk‘) - T(X17 s 7Xk—1a (X Na Y)Xk)
In this manner we obtain the (0,6)-tensors B - B and Q(A, B). Setting in the above
formulas B=Ror B=C, T=RorT=CorT =5 A=gor A=S5, we get the
tensors R-R, R-C,C-R, R-S, Q(g9,R), Q(S,R), Q(g,C) and Q(g,S). For symmetric
(0,2)-tensors E and F', we denote their Kulkarni-Nomizu product by
(EAF) (X1, Xo, X3, X4) = E(X1, Xa)F(Xa, X3) + E(Xa, X3)F(X1, X4)
—E(X1, X3)F (X2, X4) — E(X2, X4)F (X1, X3).

Clearly, the tensors R, C, G and EAF are generalized curvature tensors. For a symmetric

(0,2)-tensor E we define the (0,4)-tensor E by E = LEAE. We have g =G = 1gAg
and

1 K
We also have (see e.g. [10], eq. (24))
(12) Q(E,ENF)=—-Q(F,E).
Relations (11) and (12) give
(13) Q(9.C) = Qo )+ ——Q(5,6).

According to [9], for a symmetric (0, 2)-tensor E and a (0, k)-tensor T, k > 2, we define
their Kulkarni-Nomizu product E AT by
(E AT)(X17X2;X37X4;1/35 s 7Yk)
= E(X17 X4)T(X27 X3a }/3; B Yk) + E(XQa X3)T(X1a X47 Y37 B Yk)
- E(Xla XS)T(X27 X47 Y37 vy Yk) - E(X27 X4)T(X17 X37 }/37 ceey Yk)
Using the above definitions we can prove the following
LEMMA 2.1 (]9], [18]). Let Ey, Es and F be symmetric (0,2)-tensors at a point x of a
semi-Riemannian manifold (M, g), n > 3. Then at x we have
By N Q(E2, F) + B2 ANQ(Er, F) = —Q(F, E1 A E).
IfE = E1 = E2 then
(14) EAQ(E,F) = —Q(F, B).

3. Hypersurfaces in conformally flat spaces. Let M, n > 3, be a connected hyper-
surface in a semi-Riemannian manifold (N, g"V) and let g be the metric tensor induced
on M from gV. We denote by V, V¥, the Levi-Civita connections corresponding to the
metric tensors g and g%, respectively. Similarly, we denote by R and RY the Riemann-
Christoffel curvature tensors of (M, g) and (N, g"), respectively. Let ¢ be a local unit
normal vector field on M in N and let e = g™V (£, &) = £1. We can write the Gauss formula
and the Weingarten formula of (M, g) in (N, g"V) in the form: VYY = VxY +eH(X,Y)¢
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and V§§ = —AX, respectively, where X, Y are vector fields tangent to M, H is the sec-
ond fundamental tensor of (M, g) in (N, g’¥) and A is the shape operator. Let 2" = 2" (y*)
be the local parametric expression of (M, g) in (N, g"), where y* and 2" are local coordi-
nates of M and N, respectively, and h, 4,5,k € {1,2,...,n} and p,r, t,u € {1,2,... ,n+1}.
The Gauss equation of (M, g) in (N, g") has the form

u ox"
(15) Rpiji = R} B)YB,"B;' B\ + e(HpeHij — HpjHir), By = o5
where Rﬁitu: Rpijr and Hpy are the local components of the tensors RN R and H,
respectively.

Let now (N, g") be a conformally flat space. We have ([11], Section 4)

— €
(16) Chijk = nGhij + eHnigh + — (9 1 (H? — tr(H)H))pijk,

(17) K — 28,4 B) BLg" +R),

_ 1 (
H=m=2)n—1)
where g,«t are the local components of the Ricci tensor S of the ambient space, Gp;ji, are
the local components of the tensor G and & and k are the scalar curvatures of (N, g")
and (M, g), respectively. From (16) we get

(18) C-H = ——(Qlg, H) + (n — 3)Q(H, H?)
—tr(H)Q(g, H?)) + nQ(g, H),
(19) C -1 = e(QUH, HY) + —— (@9, H*) ~ tr(H)Qg, H*)

— tr(H)Q(H, H?))) + 1Q(g, H?).

THEOREM 3.1. Let M, dim M > 4, be a hypersurface in a conformally flat semi-Rieman-
nian manifold.

(i) ([14], Theorem 4.1) M is quasi-umbilical if and only if it is a conformally flat mani-
fold.

(i) ([16], Theorem 3.1) If M is 2-quasi-umbilical then it is a manifold with pseudosym-
metric Weyl tensor.

4. Hypersurfaces in spaces of constant curvature. Let M be a hypersurface in
N +1(¢), n > 4. Now (15) and (17) read

(20) Rpiji = eHpiji, + me‘jk,

1 ~
(21) u:n—2(nil_nil>’
respectively. Contracting (20) with g%/ and ¢g*" we obtain
(22) Sni = e(tr(H)Hyy, — H2,) + %ghk,
(23 = el(or(m))? = er (i) + =2,
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respectively, where r is the scalar curvature of M, tr(H) = g"*Hyy, tr(H?) = g"*HZ,
and Spi are the local components of the Ricci tensor S of M. Further, let A be the
(0,2)-tensor on M defined by

ER

(24) A=H?—tr(H)H? + H.

n—1
From Theorem 5.1 of [12] it follows that A, defined by (24), vanishes on the subset Uy of
any quasi-Einstein Ricci-semisymmetric hypersurface M in E?T1 n > 4. It is also known

(]10], Theorem 5.1) that A = 0 on the subset Uy of a hypersurface M in N 1(c), n > 4,
if and only if, on Up, we have

RC-C R=— QR+ "—UF

n—2 mQ(QaR)~

Examples of hypersurfaces with nonzero tensor A are given in [10]. Further, on any
hypersurface M in N™"1(c), n > 4, we have ([10], Theorem 3.1):

(25) R-C=Q(s.R) - S 2500, R)
Q8.6+ g A QU A),
~n—3 (n? —3n+3)&
(26) C-R= n_QQ(SaR)*mQ(Q,R)
(n—3)k

1
—WQ(S» G)+ mH A Q(g, A).

PROPOSITION 4.1. If M is a pseudosymmetric hypersurface in N "1(c), n > 4, then on
Uy C M we have (4) with

(27) b= S (tr(H?) — (i (H))).

Proof. Since M is a pseudosymmetric manifold, in view of Theorem 1.2(iii), on Uy we
have rankH = 2. Now, using Lemma 2.1(i) of [8], we get our assertion.

REMARK 4.1. Examples of hypersurfaces in N?*1(c), n > 4, with rank H = 2 were found
in [11].

THEOREM 4.1. If M is a hypersurface in N**1(c), n > 4, satisfying on Uy C M
(28) R-C=LQ(g,C),

where L is some function on Ug, then rankH = 2 and (4), i.e. (6) with p =0, hold on
Uy .

Proof. On Uy, by (28), we have

(R-O)(X1, Xo, X3, X4; X5, Xo) + (R - C) (X3, Xy, X5, Xo; X1, X2)
+ (R : C)(X57X63X1,X23X3aX4) = O;
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where X,..., X¢ are vector fields tangent to Uy. Now on Uy Proposition 5.1 of [18]
implies (6) and

(29) R-S = ﬁ@(g, )+ pQlg, H).

On the other hand, from (28), in view of Theorem 1.2(i) and (ii), it follows that (5) holds
on Up, which in view of Theorem 1.2(iii) implies rankH = 2 on Up. Further, from (5),
by a suitable contraction, we get (8). This, together with (29), gives p = 0. Thus our
theorem is proved.

5. Hypersurfaces satisfying H3 = tr(H)H? + ¢ H + pg. Let M be a hypersurface in
N 1(e), n > 4, satisfying (6) on Uy C M. By making use of (6), (24) turns into

(30) A=< ex +w)H+pg, p:%(tr(A)—<ngfl+1/)>tr(H)).

n—1
Further, we set on Uy
€

B = (0 + (0~ Den),
5o = eptr(H) + —— (btr(H) + (n — 3)0),
(31) Bs = B2 — efitr(H),
=t e

PROPOSITION 5.1. If M is a hypersurface in N (c), n > 4, satisfying (6) onUy C M,
for some functions ¥ and p on Uy, then on Uy we have

_ (n—2)k p
3 R-C= QSR - PR R) + 02Q(5.6) + L5 QUHLG)
(33) C-R=""30(S,R) + g, R) + 0sQ(S, G),

n—2
I L R e e B LI

+Q(S, R) + pQ(H, G),

() CC="T QR+ Q. R
(a1 — @2)Q(8,6) + =2 pQUH,G)).
1 K (n? —3n+3)r\ 1
36 aln—2<n—1+€w n(n+1) > n—264’
(36) (n—3)R

Qg = —

(n—2)n(n+1)
Proof. By making use of (14) and (30), (25) yields (32). Applying now (6) to (26) and
using (14) and (30), we get (33). Subtracting (32) from (33) we easily find (34). The
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relations (6) and (24) yield
(37) H? —tr(H)H? = ¢ H + py,
H* —tr(H)H® = ¢H? + pH,

respectively. Applying (37) to (18) and (19) we obtain

(38) C-H= (u + %)Q(g, my+ :32)6Q(H, H?),

(39) o = =D o %) 4 (ot S0 )ala. )
)

respectively. Using (21), (22), (31), (38), and (39) we find

(40) C-SzeC-(tr(H)H—HQH—%O-g

= _E/BIQ(gv H2) + ﬁQQ(gv H)
Applying (22) to (39) and using (31), we get

(41) C- 8= psQ(g, H) + 51Q(g, 5).
Using (11), (14), (30), (33), (36) and (41) we find
(42) n=2)C-C=n—-2)C-R—gA(C-S)

= (n=3)Q(S, R) + (n — 2)aaQ(g, R)

(n—3)k
+(@1 - m)@(& )+ BQUH. G).

An application of (20) and (22) and Lemma 2.1 leads to the identity
HAQ(978H2) _g/\Q(HvS) = H/\Q(g,EtT(H)H) - H/\Q(ga S) _g/\Q(H7 S)
= tr(H)Q(g, R) — (H A Q(9,5) + 9 A Q(H, 5))
= tr(H)Q(g, R) + Q(S, g A H).
Applying this and (31) to (42) we get

(n—=2)C-C = (n-=3)Q(S,R) + B3Q(H,G) + B1Q(g, R) + 5Q(S, G),
which turns into (35), by making use of (21) and (31). Our proposition is thus proved.

PROPOSITION 5.2. If M is a hypersurface in N 1(c), n > 4, satisfying (9) onUy C M,
for some functions Ly, La and L3, then (6) holds on Ug. Moreover, at every x € Uy we
have:

(’L) L1 = Z—:g, LQ = Q1 and Lg = Qig, OT
(i) Ly z:g, rank(S — apg) =1, p =0, and in consequence, (4) and (8), or

(i4i) Ly # =3 rank(S — apg) > 1, (5), and in consequence, rankH = 2, (4) and p = 0,

n—27
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where
(n—2)(Ly —on)
(n—2)L; — (n—3)°
Proof. In view of Corollary 4.1 of [10], (9) implies (6) on Uy . Further, Proposition 5.1
yields (33), which together with (9) leads to

@) (- BER)QUS ) + (L 4 R) + (L~ a)Q(S. ) .

(43) oy = —

(i) We assume that L1 = 2=3 at z. Now (44) reduces to

(45) (L2 — a1)Q(g, R) + (L — 2)Q(S, G) = 0.

In addition, we suppose that Ly # «; at . Thus (45) yields Q(g, R) + a3Q(S, G) = 0, for

some a3 € R, which by (12), turns into Q(g, R—a3gAS) = 0. This gives R—a3zgA\S = auG,

for some a4 € R. But the last relation, in a standard way, implies C' = 0, a contradiction.

Therefore we have Ly = . Now (45) reduces to (Ls — a2)Q(S,G) = 0, whence Ls = as.
We assume now that: Ly # “=3 at . Thus (44) turns into

(46) Q(S — apg, R) + asQ(S,G) = 0,
where g is defined by (43) and a5 € R. Since Q(S,G) = Q(S — apg, G) = 0, (46) yields
(47) Q(S — apg, R+ asG) = 0.

(ii) Let rank(S — apg) = 1 at z. Applying this to (22) we obtain
(48) H? =tr(H)H + agg + arw @w, w e TFM,
for some ag, a7 € R, where a7 # 0. From (48) it follows that
(49) Hf] = tr(H)Hfj + agHij + arw" Hyywj,
where w” = ¢g"Vw; and w; are the local components of w. But (49) implies w” H,.; = agw;,
for some ag € R. Applying the last equation and (48) to (49), we get

H? = (tr(H) + ag) H? + (o — asgtr(H))H — agagg.
Comparing this with (6) we obtain
agH? + (g — agtr(H) — ) H — (agas + p)g = 0.

Since & € Uy, we have ag = 0, ag = 1 and p = 0. Thus (6) reduces to (4). But (4), in

view of Theorem 1.2(iv), implies (8).
(iii) Let rank(S — apg) > 1 at x. Now (47), in view of Lemma 4.2 of [10], implies

R+asG = %(S—aog) A (S = apg)

for some ag € R — {0}. The last relation implies (7). Now Theorem 1.2(ii) and (iii)
completes the proof.
A consequence of the last proposition is the following

THEOREM 5.1. Let M be a hypersurface in N1 (c), n > 4, and let V be the set of all
points of Uy C M at which the tensor R - S — ﬁ@(g, S) is nonzero. Then on'V the
condition (6) is equivalent to (33) and (36).
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We finish this section with results on hypersurfaces with pseudosymmetric Weyl ten-
sor.

THEOREM 5.2. If M is a hypersurface in N*""1(c), n > 4, satisfying (3) and (6) on
Uy C M then on this set we have (4), i.e. (6) with p =0, (5), (27) and

(50) LCQ(T;—32)<ni1nil)'

Proof. (35), by (3) and (11), turns into

_ 1 K (n® — 3n + 3)R
Q(S’R)m((”z)LCm€¢+n(n—+1>>Q(9,R)

SRS S (S, S itk e UL
a2 <( e = T T ) )Q(S’G)
——Loq, 0.

Now (32) and (51) yield
(2n — 3)R

R.C:n— 1

(-2t - S evs ) QR+ Q5.0

n(n+1)
which, by (13), turns into

1 K (2n — 3)k
R-C= 3((n 2)Lc — ey + n(n T 1) )Q(g,C).
This, in view on Theorem 4.1(i) and (ii), implies
1 K (2n —3)k
R-R= n_3<(n—2)LC—m—ﬂﬂ*'m)cg(gvﬁ«)’
K 1 K (2n — 3)k
nin+1) n3<(n_2>LC_ n—1 mev n(n+1) )’
which yields (5) and
1 K 3

(51) chn—2<n—1_n+1+w>'

Since (5) holds on Uy, Proposition 4.1 implies (4) and (27) on Upy. Further, applying
(23) and (27) into (51) we obtain (50), which completes the proof.

THEOREM 5.3. Every 2-quasi-umbilical hypersurface M in N™(c), n > 4, satisfying
(6) on Uy C M, is 2-cylindrical on this set.

Proof. Since M is a 2-quasi-umbilical hypersurface, in view of Theorem 3.1(ii), (3) holds
on Uy . Using now Theorem 4.1(iv) and Theorem 5.2 on Uy we get rankH = 2. Further,
from (2) we have rankB = 2, where B = H — ag. The last two equations, in view of
Lemma 2.1 of [8] (see eq. (19) of [8]), yield tr(H)H = H A H? and tr(B)B = B A B2,
respectively. From these relations, by suitable contraction, we find a( H? 41 H+ang) = 0,
where a; and ay are some functions on Uy. But from the last equation it follows that
a =0 on Uy, which completes the proof.
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