PDES, SUBMANIFOLDS AND
AFFINE DIFFERENTIAL GEOMETRY
BANACH CENTER PUBLICATIONS, VOLUME 69
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2005

INVARIANCE GROUPS OF RELATIVE NORMALS

THOMAS BINDER

Institute for Neuro- and Bioinformatics, University of Lübeck Ratzeburger Allee 160, D-23538 Lübeck, Germany E-mail: binder@inb.uni-luebeck.de

MARTIN WIEHE

Institute for Mathematics, Technische Universität Berlin Strasse des 17. Juni 136, D-10623 Berlin, Germany E-mail: wiehe@math.tu-berlin.de

Abstract. We investigate a two-parameter family of relative normals that contains Manhart's one-parameter family and the centroaffine normal. The invariance group of each of these normals is classified, and variational problems are studied. The results are Euler-Lagrange equations for the hypersurfaces that are critical with respect to the area functionals of the induced and semi-Riemannian volume forms and a classification of the critical hyperovaloids in the two-parameter family.

1. Introduction. F. Manhart [4] introduced a one-parameter family of relative normals that contains the Euclidean and the Blaschke normal. Obviously, for any two given conormals on a non-degenerate hypersurface \mathfrak{x} , there is a one-parameter family connecting them. This family is unique up to affine reparametrizations.

For example, suppose \mathfrak{x} is a non-degenerate centroaffine hypersurface immersion, then the Euclidean support function ρ^E never vanishes. One can add another parameter to Manhart's family which joins the centroaffine normal, i.e.

(1)
$$\mathfrak{Y}^{(a,b)} = (\rho^E)^{-b} |H_n^E|^{-a} \mu, \qquad a, b \in \mathbb{R}.$$

Here μ , ρ^E , H_n^E denote the Euclidean conormal, support function, and Gauss-Kronecker curvature, respectively. (The sign is fixed by $\rho^E > 0$.)

For a relative normal \mathfrak{y} for \mathfrak{x} we define the area functionals with respect to the induced and semi-Riemannian volume forms ω and $\hat{\omega}$ by

$$A = A(M, \mathfrak{x}, \mathfrak{y}) := \int_{M} \omega, \quad \text{and} \quad \hat{A} = \hat{A}(M, \mathfrak{x}, \mathfrak{y}) := \int_{M} \hat{\omega}.$$

Let $A^{(a,b)}:=A(M,\mathfrak{x},\mathfrak{y}^{(a,b)})$ and $\hat{A}^{(a,b)}:=\hat{A}(M,\mathfrak{x},\mathfrak{y}^{(a,b)}).$

2000 Mathematics Subject Classification: Primary 53A15; Secondary 53A10. The paper is in final form and no version of it will be published elsewhere.

In affine differential geometry the Blaschke area $A^e := A^{(\frac{1}{4},0)}$ is one of the best analysed functionals. Work in this direction was started by Blaschke [1] for dimension two. The first and second variation of A^e for arbitrary dimension had been studied by Calabi [2]; further contributions include [5] and [10]. Another approach is to use \hat{A} , which was followed by [3], [4]. Wang [11] studies the first and second variation of the centroaffine area $\hat{A}^c := \hat{A}^{(0,1)}$.

The first and second variation of $A^{(a,0)}$ in Manhart's one-parameter family were studied by the second author in [12]. Results for the first variation of $A^{(0,b)}$ can be found in [7]. In this paper we derive Euler-Lagrange equations for the first variation of $A^{(a,b)}$ and $\hat{A}^{(a,b)}$ and prove

THEOREM 1. Let $\mathfrak{x}: M^n \to A^{n+1}$ be a hyperovaloid which is $A^{(a,b)}$ -critical and suppose $(a,b) \neq (1,0)$. Then $\mathfrak{x}(M)$ is a sphere.

Remark 2. Any hypersurface is $A^{(1,0)}$ -critical.

2. Relative geometry of hypersurfaces. For a detailed introduction to the subject see e.g. [6] or [9].

Consider a non-degenerate C^{∞} -immersion $\mathfrak{x}: M^n \to A^{n+1}$ of an n-dimensional, $n \geq 2$, connected oriented C^{∞} -manifold into real flat affine space with standard flat connection $\overline{\nabla}$. Suppose that $\mathfrak{y}: M^n \to \mathbb{R}^{n+1}$ is a C^{∞} transversal vector field along \mathfrak{x} , i.e. $d\mathfrak{x}(T_pM) \oplus \mathbb{R}\mathfrak{y}(p) = \mathbb{R}^{n+1}$ at each $p \in M$. The vector space associated to A^{n+1} is denoted by \mathbb{R}^{n+1} . The structure equations of \mathfrak{x} with respect to \mathfrak{y} read as follows:

$$\overline{\nabla}_u d\mathfrak{x}(v) = d\mathfrak{x}(\nabla_u v) + h(u,v)\mathfrak{y}, \quad d\mathfrak{y}(u) = -d\mathfrak{x}(Su) + \theta(u)\mathfrak{y}$$

for all vector fields $u, v \in \mathfrak{X}(M)$. If \mathfrak{y} has vanishing connection form θ , then it is called a relative normal. From now on we will always assume that \mathfrak{y} is a relative normal. In this case the pair $(\mathfrak{x}, \mathfrak{y})$ is called a relative hypersurface.

h is a symmetric bilinear form which is also non-degenerate since $\mathfrak x$ is non-degenerate; it is hence called the *relative metric* induced by $\mathfrak y$. We denote the Levi-Civita connection of h and the positive valued semi-Riemannian volume form of h by $\hat{\nabla}$ and $\hat{\omega}$, respectively. ∇ is a torsion-free Ricci-symmetric affine connection called the *induced connection*. S is called the *shape operator*. Its trace $nH := \operatorname{trace} S$ is the *relative mean curvature* and its determinant $H_n := \det S$ is the *relative Gauss-Kronecker curvature*. The *induced volume form* ω is defined by

$$\omega(u_1,\ldots,u_n) := \det(d\mathfrak{x}(u_1),\ldots,d\mathfrak{x}(u_n),\mathfrak{y});$$

it is parallel with respect to the induced connection: $\nabla \omega = 0$.

Define the (1,2)-difference tensor C, the Tchebychev vector field T and the Tchebychev form T^{\flat} by

$$C(u,v) = C_u v := \nabla_u v - \hat{\nabla}_u v, \qquad nh(T,u) = nT^{\flat}(u) := \operatorname{trace}\{v \mapsto C(v,u)\}.$$

Generally, $^{\flat}$ denotes the operation of lowering an index with respect to h.

Often it will be convenient to consider the *conormal* \mathfrak{Y} to describe the normalization of a hypersurface, which is defined as a section of the cotangent line bundle satisfying

$$\langle \mathfrak{Y}, d\mathfrak{x} \rangle = 0$$
 and $\langle \mathfrak{Y}, \mathfrak{y} \rangle = 1$,

where $\langle \cdot, \cdot \rangle : (\mathbb{R}^{n+1})^* \times \mathbb{R}^{n+1} \to \mathbb{R}$ denotes the standard scalar product. When talking about a *relative normalization*, we mean that either \mathfrak{Y} or \mathfrak{y} is given on \mathfrak{x} . This makes sense, since for relative hypersurfaces there is a bijective correspondence between normals and conormals.

The relative support function with respect to a point $\mathfrak{x}_0 \in A^{n+1}$ is defined by $\rho_{\mathfrak{x}_0} := \langle \mathfrak{Y}, \mathfrak{x}_0 - \mathfrak{x} \rangle$. Let Δ denote the Laplacian with respect to $\hat{\nabla}$. We define the Laplace-type operators

$$\Box f := \Delta f + n T^{\flat}(\operatorname{grad}_h f), \quad \Box^* f := \Delta f - n T^{\flat}(\operatorname{grad}_h f).$$

The induced quantities are *invariant* with respect to the full affine group $GL(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$ acting on \mathbb{R}^{n+1} in the following sense: For any given relative hypersurface $(\mathfrak{x},\mathfrak{y})$ and $(B,\mathfrak{b}) \in GL(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$, the coefficients of the structure equations of $(\mathfrak{x},\mathfrak{y})$ and $(\mathfrak{x}^{\natural} := B\mathfrak{x} + \mathfrak{b}, \mathfrak{y}^{\natural} := B\mathfrak{y})$ coincide: $\nabla = \nabla^{\natural}, h = h^{\natural},$ and $S = S^{\natural}$.

We now list some formulas describing the change of relative normalization.

LEMMA 1. For a hypersurface $\mathfrak{x}:M^n\to A^{n+1}$, any two conormals \mathfrak{Y} and \mathfrak{Y}^{\natural} with the same orientation are related by $\mathfrak{Y}^{\natural}=e^{\varphi}\mathfrak{Y}$, where $\varphi\in C^{\infty}(M)$. Under this transition, the relative metric changes conformally: $h^{\natural}=e^{\varphi}h$. Moreover, we compute (see e.g. [9])

$$\begin{split} \mathfrak{y}^{\natural} &= e^{-\varphi}(\mathfrak{y} + dx(\operatorname{grad}\varphi)), \\ \nabla_u^{\natural} v &= \nabla_u v - h(u,v) \operatorname{grad}\varphi, \\ \Delta^{\natural} f &= e^{-\varphi} \bigg(\Delta f + \frac{n-2}{2} d\varphi(\operatorname{grad}f) \bigg), \\ \hat{\omega}^{\natural} &= e^{\frac{n}{2}\varphi} \hat{\omega}, \\ \omega^{\natural} &= e^{-\varphi} \omega, \\ S^{\natural} u &= e^{-\varphi} (Su - \nabla_u \operatorname{grad}\varphi + u(\varphi) \operatorname{grad}\varphi), \\ H^{\natural} &= e^{-\varphi} \bigg(H - \frac{1}{n} \Delta \varphi - T^{\flat}(\operatorname{grad}\varphi) + \frac{1}{n} \|\operatorname{grad}\varphi\|^2 \bigg), \\ T^{\flat\natural} &= T^{\flat} - \frac{n+2}{2n} d\varphi, \\ T^{\natural} &= e^{-\varphi} \bigg(T - \frac{n+2}{2n} \operatorname{grad}\varphi \bigg). \end{split}$$

Finally, let us mention some special relative normals.

(i) The Blaschke normal \mathfrak{y}^e is determined up to sign by $|\omega| = \hat{\omega}$, which is called the apolarity condition; it is also characterized up to a non-vanishing constant factor by T=0. The Blaschke normal is invariant with respect to unimodular affine transformations $SL(n+1,\mathbb{R})\oplus\mathbb{R}^{n+1}$, meaning that for any unimodular affine transformation (B,\mathfrak{b}) the Blaschke normal of $\mathfrak{x}^{\natural}=B\mathfrak{x}+\mathfrak{b}$ is $\mathfrak{y}^{\natural e}=B\mathfrak{y}^e$. Invariants induced by the Blaschke normal will be denoted by e.

- (ii) For an appropriate choice of an origin, any non-degenerate hypersurface locally can be endowed with $\mathfrak{y}^c := -\mathfrak{x}$, which is the *centroaffine normal*. It is characterized by $S = \mathrm{id}$. Therefore, a proper relative sphere is exactly the underlying hypersurface with its centroaffine normal up to a constant factor. The centroaffine normal is invariant with respect to $GL(n+1,\mathbb{R})$. Centroaffine invariants will be marked by c if ambiguous.
- (iii) Locally, we can normalize any hypersurface with a constant transversal field, which is always a relative normal. The hypersurface will be an improper relative sphere with respect to this normal.
- (iv) The Euclidean normal is a relative normal which is invariant with respect to the group of Euclidean motions $SO(n+1,\mathbb{R})\oplus\mathbb{R}^{n+1}$. Euclidean invariants will be marked by E if ambiguous. Moreover, we denote fundamental forms by I, $\mathbb{I} := h^E$ and write $\mu := \mathfrak{Y}^E = \mathfrak{y}^E$.
- **3.** Invariance groups of constructions of relative normals. The construction of a relative normal is a mapping which assigns a relative normal $\mathfrak y$ to a given non-degenerate hypersurface $\mathfrak x$. The invariance group of such a construction is the maximal subgroup $I\subseteq GL(n+1,\mathbb R)\oplus\mathbb R^{n+1}$ such that the order of construction and transformation does not matter, i.e. for any $g\in I$ with linear part B we have $c\circ g=B\circ c$ on the set of all non-degenerate hypersurfaces.

Examples of constructions are E, e and c. Of course, we are only interested in a small subset of all constructions, namely those with big invariance groups. In the generic case, invariance groups will be $\{(id,0)\}$. The invariance groups of relative normals in the two-parameter family will be denoted by $I^{(a,b)}$.

LEMMA 2. Let $\mathfrak{x}: M^n \to A^{n+1}$ be a non-degenerate hypersurface. For a given conormal \mathfrak{Y} and $q \in C^{\infty}(M)$, let $\mathfrak{Y}^{(a)} = q^a \mathfrak{Y}$ be a one-parameter family of relative conormals. Assume $\rho = \rho^{(0)} \neq 0$. Let G be a subgroup of the full affine group such that $G \subseteq I^{(a_0)}$ and $G \subseteq I^{(a_1)}$ for two values $a_0 \neq a_1$. Then $G \subseteq I^{(a)}$ for all $a \in \mathbb{R}$.

Proof. Without loss of generality we can assume $a_0=0$ and $a_1=1$, for otherwise the one-parameter family $\mathfrak{Y}^{(a)}=\tilde{q}^{\tilde{a}}\tilde{\mathfrak{Y}}$ where $\tilde{q}=q^{a_1-a_0}$, $\tilde{a}=\frac{a-a_0}{a_1-a_0}$ and $\tilde{\mathfrak{Y}}=q^{a_0}\mathfrak{Y}$ satisfies this condition. The proof is trivial for a pure translation, so assume the affine map from G fixes the origin and has matrix B. Let $\mathfrak{x}^{\natural}=B\mathfrak{x}$, $\mathfrak{y}^{\natural}=B\mathfrak{y}^{(a)}$ be the transformed hypersurface. It suffices to prove $\mathfrak{y}^{\natural(a)}=\mathfrak{y}^{\natural}$. We know that $\mathfrak{y}^{\natural(0)}=B\mathfrak{y}^{(0)}$ and $\mathfrak{y}^{\natural(1)}=B\mathfrak{y}^{(1)}$, thus $\mathfrak{Y}^{\natural(0)}=B^{*-1}\mathfrak{Y}^{(0)}$ and $\mathfrak{Y}^{\natural(1)}=B^{*-1}\mathfrak{Y}^{(1)}$. From the assumption we can express $q=\frac{\rho^{(1)}}{\rho^{(0)}}$. We get $\rho^{\natural(0)}=\rho^{(0)}$ and $\rho^{\natural(1)}=\rho^{(1)}$, hence $q^{\natural}=q$. Finally we get

$$\langle \mathfrak{Y}^{\natural(a)}, \mathfrak{y}^{\natural} \rangle = \langle q^{\natural a} B^{*-1} \mathfrak{Y}, Bq^{-a} (\mathfrak{y} + d\mathfrak{x} \operatorname{grad} \log q^a) \rangle = 1.$$

COROLLARY 3. (i) In the particular case that $I^{(a_0)} \subseteq I^{(a_1)}$ it follows that $I^{(a)} \cap I^{(a_1)} = I^{(a_0)}$ for each $a \in \mathbb{R} \setminus \{a_1\}$.

(ii) If
$$I^{(a_0)} \subseteq I^{(a_1)} = GL(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$$
, then $I^{(a)} = I^{(a_0)}$ for each $a \in \mathbb{R} \setminus \{a_1\}$.

The following theorem is an extension of [12], Theorem 5.7.

Theorem 4. Let $\mathfrak{x}: M^n \to A^{n+1}$ be a non-degenerate hypersurface and $a, b \in \mathbb{R}$. The invariance group of the relative normal $\mathfrak{y}^{(a,b)}$ is

- (i) $SL(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$ if $(a,b) = (\frac{1}{n+2},0)$,
- (ii) $\mathbb{R}^+SO(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$ if $(a,b) = (-\frac{1}{n},0)$ (in this case $\mathfrak{y}^{(a,b)}$ is called the conformal relative normal),
- (iii) $SO(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$ if $a \notin \{\frac{1}{n+2}, -\frac{1}{n}\}, b = 0$,
- (iv) $GL(n+1,\mathbb{R})$ if (a,b) = (0,1),
- (v) $SL(n+1,\mathbb{R})$ if a(n+2)+b=1 and $y^{(a,b)}$ is neither the Blaschke nor the centroaffine normal,
- (vi) $\mathbb{R}^+SO(n+1,\mathbb{R})$ if b=an+1 and $y^{(a,b)}$ is neither the conformal nor the centroaffine normal,
- (vii) $SO(n+1,\mathbb{R})$ otherwise.

Proof. As ρ^E is not invariant with respect to translations (origin is fixed), we know that translations are not part of the invariance group for $b \neq 0$. We exclude the line a(n+2)+b=1. This part of the proof follows easily from Lemma 2, where one has to use invariance groups of the centroaffine and the Blaschke normalizations.

Invariance. Suppose we have a linear transformation $\mathfrak{x}^{\natural} = B\mathfrak{x}$ of \mathfrak{x} such that B = cD for some $D \in O(n+1,\mathbb{R})$ and $0 \neq c \in \mathbb{R}$. Define $\mathfrak{y}^{\natural} = B\mathfrak{y}^{(a,b)}$. It is our aim to find conditions under which $\mathfrak{y}^{\natural} = \mathfrak{y}^{(a,b)\natural}$, where $\mathfrak{y}^{(a,b)\natural}$ is the relative normal of \mathfrak{x}^{\natural} belonging to the parameter (a,b). We have $d\mathfrak{x}^{\natural} = cDd\mathfrak{x}$ and thus $\mu^{\natural} = D\mu$. The sign of μ^{\natural} is chosen such that

$$\rho^{E\,\natural} = -\langle \mu^{\natural}, \mathfrak{x}^{\natural} \rangle = -\langle D\mu, cD\mathfrak{x} \rangle = -c\langle \mu, \mathfrak{x} \rangle = c\rho^{E}.$$

Moreover,

$$-d\mathfrak{x}^{\natural}(S^{E\natural}u) = d\mu^{\natural}(u) = Dd\mu(u) = -\epsilon Dd\mathfrak{x}(S^{E}u) = -c^{-1}d\mathfrak{x}^{\natural}(S^{E}u).$$

We get $S^{\dagger E}=c^{-1}S^{E},$ hence $H_{n}{}^{\dagger E}=c^{-n}H_{n}^{E}.$ Finally,

$$\mathfrak{Y}^{(a,b)\,\natural} = \rho^{E\,\natural - b} |H_n^{E\,\natural}|^{-a} \mu^{\natural} = c^{an-b} D \mathfrak{Y}^{(a,b)}$$

and

$$\langle \mathfrak{Y}^{(a,b)\natural},\mathfrak{y}^{\natural}\rangle = c^{an-b}\langle D\mathfrak{Y}^{(a,b)},B\mathfrak{y}^{(a,b)}\rangle = c^{an-b+1}\langle D\mathfrak{Y}^{(a,b)},D\mathfrak{y}^{(a,b)}\rangle = c^{an-b+1} = 1.$$

This works only for c = 1 or b = an + 1.

Maximality. Suppose that $\mathfrak{x},\mathfrak{x}^{\natural}\colon M^n\to A^{n+1}$ are non-degenerate hypersurfaces such that $\mathfrak{x}^{\natural}=B\mathfrak{x}$ and $\mathfrak{y}^{(a,b)\,\natural}=B\mathfrak{y}^{(a,b)}$, where $B\in GL(n+1,\mathbb{R})$. Then all objects induced on M by $(\mathfrak{x},\mathfrak{y}^{(a,b)})$ and $(\mathfrak{x}^{\natural},\mathfrak{y}^{(a,b)\,\natural})$ coincide. Let us show that we can write B=cD for some $D\in SO(n+1,\mathbb{R})$ and $c\in\mathbb{R}\setminus\{0\}$, where c=1 follows from the invariance part. This is done if we prove $\nabla(I^{\natural})=\nabla(I)$ and $I^{\natural}=cI$. The definition can be rewritten as

$$\mathfrak{Y}^{(a,b)} = \rho^{E-a(n+2)-b} \rho^{ea(n+2)} \mu = \rho^{E-a(n+2)-b+1} \rho^{ea(n+2)-1} \mathfrak{Y}^e.$$

We have

$$T^{\flat(a,b)} = \frac{n+2}{2n} d\log(\rho^{Ea(n+2)+b-1} \rho^{e1-a(n+2)})$$

With $T^{\flat(a,b)} = T^{\flat(a,b)\natural}$ we get

$$\left(\frac{\rho^{e\natural}}{\rho^e}\right)^{1-a(n+2)}\left(\frac{\rho^{E\natural}}{\rho^E}\right)^{a(n+2)+b-1}=\mathrm{const}\neq 0.$$

Under a $GL(n+1,\mathbb{R})$ transformation of the hypersurface the Blaschke support function is changed by a constant factor which equals the determinant of the transformation matrix. Thus, for $a(n+2) + b \neq 1$, we get that $\rho^{\natural E}/\rho^E = \mathrm{const.}$ We obtain $\mathbb{I}^{\natural} = c \mathbb{I}$ from

$$\rho^{E-a(n+2)-b}\rho^{ea(n+2)}\, \mathbb{I} = h^{(a,b)} = h^{\natural(a,b)} = \rho^{E\,\natural-a(n+2)-b}\rho^{e\,\natural\,a(n+2)}\mathbb{I}^\natural.$$

The proof is finished by recalling $\nabla^{\natural(a,b)} = \nabla^{(a,b)}$ in

$$\begin{split} \nabla^{(a,b)}{}^{\natural}_{u}v &= \nabla (\mathbf{I}^{\natural})_{u}v - \mathbf{I}^{\natural}(u,v)\operatorname{grad}(\mathbf{I}^{\natural})\log(\rho^{\natural E - a(n+2) - b}\rho^{e\natural a(n+2)}) \\ &= \nabla (\mathbf{I}^{\natural})_{u}v - \mathbf{I}(u,v)\operatorname{grad}(\mathbf{I})\log(\rho^{E - a(n+2) - b}\rho^{ea(n+2)}) \\ &= \nabla (\mathbf{I}^{\natural})_{u}v + \nabla^{(a,b)}_{u}v - \nabla (\mathbf{I})_{u}v. \end{split}$$

The classification follows from the unification of the two parts. \blacksquare

We conclude this section by mentioning another possibility of a one-parameter family. Theorem 5. Suppose det $S^e \neq 0$. Then $\mathfrak{Y}^{(a)} = |H_n^e|^{-a} \mathfrak{Y}^e$ is a one-parameter family with invariance group

(i)
$$GL(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$$
 if $a = -\frac{2(n+1)}{n^2}$, and

(ii)
$$SL(n+1,\mathbb{R}) \oplus \mathbb{R}^{n+1}$$
 otherwise.

Proof. First observe that translations are included in the invariance groups since the construction is translation independent. For $B=cD\in GL(n+1,\mathbb{R})$ where c>0 and $\det D=\pm 1$ suppose $\mathfrak{x}^{\natural}=B\mathfrak{x}$ and let $\mathfrak{y}^{\natural}=B\mathfrak{y}^{(a)}$. As in the previous proof, we ask for $\mathfrak{y}^{\natural}=\mathfrak{y}^{(a)\natural}$. As before we get $S^{e\natural}=c^{-\frac{n}{n+2}}S^e$, thus $H_n{}^{e\natural}=c^{-\frac{n^2}{n+2}}H_n{}^e$. We obtain $\mathfrak{Y}^{(a)\natural}=c^{\frac{n(1+an)}{n+2}}D^{*-1}\mathfrak{Y}^{(a)}$. Finally, $\langle \mathfrak{Y}^{(a)\natural},\mathfrak{y}^{\natural}\rangle=c^{\frac{an^2+2n+2}{n+2}}$ shows that either c=1 or $a=-\frac{2(n+1)}{n^2}$. This shows that the normals are invariant with respect to the given groups. The maximality follows from Corollary 3 (ii). ■

For hypersurfaces with non-singular Blaschke shape operator, there is a relative normalization which is invariant with respect to the full affine group.

COROLLARY 6. Consider a one-parameter family $\mathfrak{Y}^{(a)} = |H_n|^{-a}\mathfrak{Y}$ with $H_n \neq 0$. Then $I^{(0)} \subseteq I^{(a)}$ for all $a \in \mathbb{R}$.

4. First variation of area functionals. To do variational calculus we follow the notation of [12]. A relative deformation of a hypersurface \mathfrak{x} with relative normal \mathfrak{y} is a C^{∞} -family $(\mathfrak{x}^t, \mathfrak{y}^t)$ of non-degenerate relative hypersurfaces such that $\mathfrak{x}^0 = \mathfrak{x}$ and $\mathfrak{y}^0 = \mathfrak{y}$. We describe an infinitesimal deformation of \mathfrak{x} by the pair (ψ, ϕ) defined by

$$\mathfrak{x}' = d\mathfrak{x}(\psi) + \phi\mathfrak{y}, \quad (.)' := \frac{\partial}{\partial t}(.)|_{t=0}.$$

We will use the following formulas from [12], Lemma 3.4 and (6.1.3), which hold for any relative deformation.

(2)
$$\langle \mathfrak{Y}', d\mathfrak{x} \rangle = -\psi^{\flat} - d\phi,$$

(3)
$$(\log \omega)' = \langle \mathfrak{Y}, \mathfrak{y}' \rangle - nH\phi + \operatorname{div} \psi,$$

(4)
$$(\log \hat{\omega})' = \frac{1}{2} (-n\langle \mathfrak{Y}, \mathfrak{y}' \rangle + \Box^* \phi - nH\phi + 2\widehat{\text{div}}\psi),$$

(5)
$$\rho' = -\rho \langle \mathfrak{Y}, \mathfrak{y}' \rangle + h(\operatorname{grad} \rho, \psi + \operatorname{grad} \phi) - \phi.$$

Moreover, for a Euclidean deformation (i.e. \mathfrak{y}^t is the Euclidean normal of \mathfrak{x}^t) with infinitesimal representation $(\tilde{\psi}, \tilde{\phi})$ we obtain (cf. [12], (4.1.2b))

(6)
$$(\log H_n^E)' = \Box^E \tilde{\phi} + nH^E \tilde{\phi} - 2nT^{\flat E} (\tilde{\psi} + \operatorname{grad}(\mathbb{I})\tilde{\phi}).$$

Proposition 7. Let $\mathfrak{x}:M^n\to A^{n+1}$ be a non-degenerate hypersurface and $a,b\in\mathbb{R}$. Then

(i) \mathfrak{x} is $A^{(a,b)}$ -critical if and only if

$$(a-1)nH^{(a,b)} - \frac{b}{\rho^{(a,b)}} = 0.$$

(ii) \mathfrak{x} is $\hat{A}^{(a,b)}$ -critical if and only if

$$(1+an)(\operatorname{div}(\hat{\nabla}^{(a,b)}T^{(a,b)}) - H^{(a,b)}) + \frac{b}{\rho^{(a,b)}} = 0.$$

Proof. Fix (a, b) and assume that for each deformed hypersurface \mathfrak{x}^t the deformed normal is $\mathfrak{y}^{(a,b)t}$ from the two-parameter family. Then

$$d\mathfrak{x}(\psi) + \phi\mathfrak{y}^{(a,b)} = \mathfrak{x}' = d\mathfrak{x}(\tilde{\psi}) + \tilde{\phi}\mu$$

links the two representations. We will first compute the unknown part $\langle \mathfrak{Y}^{(a,b)}, \mathfrak{y}^{(a,b)'} \rangle$ in the formulas above.

$$\begin{split} (7) \quad \langle \mathfrak{Y}^{(a,b)}, \mathfrak{y}^{(a,b)\prime} \rangle &= - \langle (\rho^{E-b} | H_n^E |^{-a} \mu)', \rho^{Eb} | H_n^E |^a (\mu + d \mathfrak{x} (\operatorname{grad} \log(\rho^{E-b} | H_n^E |^{-a}))) \rangle \\ &= a H_n^{E-1} (H_n^{E\prime} - \mathbb{I} (\operatorname{grad}(\mathbb{I}) H_n^E, \tilde{\psi} + \operatorname{grad}(\mathbb{I}) \tilde{\phi})) \\ &+ b \rho^{E-1} (\rho^{E\prime} - \mathbb{I} (\operatorname{grad}(\mathbb{I}) \rho^E, \tilde{\psi} + \operatorname{grad}(\mathbb{I}) \tilde{\phi})) \\ &= a (\Box^{(a,b)} \phi + n H^{(a,b)} \phi) - b \rho^{(a,b)-1} \phi. \end{split}$$

We used the fact $\tilde{\phi} = \rho^{Eb} |H_n^E|^a \phi$. For the first part of the assertion we compute, using (3) and (7),

$$(A^{(a,b)})' = \int \omega^{(a,b)'} = \int (\langle \mathfrak{Y}^{(a,b)}, \mathfrak{y}^{(a,b)'} \rangle - nH^{(a,b)}\phi + \operatorname{div}(\nabla^{(a,b)})\psi)\omega^{(a,b)}$$
$$= \int (a\Box^{(a,b)}\phi + (a-1)nH^{(a,b)}\phi - b\rho^{(a,b)-1}\phi)\omega^{(a,b)}.$$

Now (i) follows by the fundamental theorem since $\int \Box^{(a,b)}(\cdot)\omega^{(a,b)} = 0$. For the second part (ii),

$$\begin{split} (\hat{A}^{(a,b)})' &= \int \hat{\omega}^{(a,b)\prime} = \frac{1}{2} \int (-n \langle \mathfrak{Y}^{(a,b)}, \mathfrak{y}^{(a,b)\prime} \rangle + \Box^{*(a,b)} \phi - n H^{(a,b)} \phi) \hat{\omega}^{(a,b)} \\ &= \frac{1}{2} \int ((\Box^{*(a,b)} - an\Box^{(a,b)}) \phi - (1+an)n H^{(a,b)} \phi + nb \rho^{(a,b)-1} \phi) \hat{\omega}^{(a,b)} \\ &= \frac{n}{2} \int ((1+an) \text{div}^{(a,b)} T^{(a,b)} - (1+an) H^{(a,b)} + b \rho^{(a,b)-1}) \phi \hat{\omega}^{(a,b)}, \end{split}$$

where we have used (4), (7), the definitions of \square , \square^* and the identity

$$\int T^{\flat}(\operatorname{grad}\phi)\omega = -\int h\bigg(\operatorname{grad}\phi,\operatorname{grad}\log\bigg|\frac{\omega}{\hat{\omega}}\bigg|\bigg))\omega = \int (\operatorname{div}T)\phi\omega. \ \blacksquare$$

We will now prove Theorem 1. Observe that by applying the first Minkowski integral formula

$$0 = \int (1 - \rho^{(a,b)} H^{(a,b)}) \omega^{(a,b)} = \frac{n(a-1) - b}{n(a-1)} \int \omega^{(a,b)}$$

we get b = n(a-1). Proposition 7 (i) states that there is the relation $H = f(\rho) = \frac{1}{\rho}$ for some function f on the real line. The assertion follows from the following theorem of U. Simon for the first relative curvature function, which is the mean curvature.

THEOREM 8 ([8], Theorem 6.1). Let $\mathfrak{x}: M^n \to A^{n+1}$ be a closed locally strongly convex C^5 -hypersurface with a relative normal \mathfrak{y} . Suppose H > 0. Assume that there exists a C^1 -function f such that $H = f(\rho)$ and $f' \leq 0$. Then $\mathfrak{x}(M)$ is a sphere.

References

- [1] W. Blaschke, Vorlesungen über Differentialgeometrie, vol. II, Springer, Berlin, 1923.
- [2] E. Calabi, Hypersurfaces with maximal affinely invariant area, Am. J. Math. 104 (1982), 91–126.
- [3] E. Glässner, Über die Minimalflächen der zweiten Fundamentalform, Monatsh. Math. 78 (1974), 193–213.
- [4] F. Manhart, Zur Differentialgeometrie der 2. Grundform, Ber. Math.-Stat. Sekt. Forsch. Graz 219 (1984), 1–7.
- [5] A. Martínez and F. Milán, Affine isoperimetric problems and surfaces with constant affine mean curvature, Manuscr. Math. 75 (1993), 35–41.
- [6] K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge University Press, 1994.
- [7] H. Pabel and R. Keilbach, *Die zentroaffine Familie von Relativnormalen und ihre Minimalflächen*, 25. Süddeutsches Differentialgeometrie-Kolloquium (Wien, 2000), H. Stachel et al. (eds.), TU Wien, Institut für Geometrie, 2001, 9–15.
- [8] U. Simon, Minkowskische Integralformeln und ihre Anwendungen in der Differentialgeometrie im Großen, Math. Ann. 173 (1967), 307–321.
- [9] U. Simon, A. Schwenk-Schellschmidt, and H. Viesel, *Introduction to the Affine Differential Geometry of Hypersurfaces*, Lecture Notes, Science University of Tokyo, 1991.
- [10] L. Verstraelen and L. Vrancken, Affine variation formulas and affine minimal surfaces, Michigan Math. J. 36 (1989), 77–93.
- [11] C. P. Wang, Centroaffine minimal hypersurfaces in \mathbb{R}^{n+1} , Geom. Dedicata 51 (1994), 63–74.
- [12] M. Wiehe, Deformations in affine hypersurface theory, Ph.D. thesis, Fachber. Math., TU Berlin, 1998, Shaker Verlag, Aachen, 1999.