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Abstract. We investigate a two-parameter family of relative normals that contains Manhart’s one-
parameter family and the centroaffine normal. The invariance group of each of these normals is clas-
sified, and variational problems are studied. The results are Euler-Lagrange equations for the hy-
persurfaces that are critical with respect to the area functionals of the induced and semi-Riemann-
ian volume forms and a classification of the critical hyperovaloids in the two-parameter family.

1. Introduction. F. Manhart [4] introduced a one-parameter family of relative nor-
mals that contains the Euclidean and the Blaschke normal. Obviously, for any two given
conormals on a non-degenerate hypersurface r, there is a one-parameter family connecting
them. This family is unique up to affine reparametrizations.

For example, suppose ¢ is a non-degenerate centroaffine hypersurface immersion, then
the Euclidean support function p¥ never vanishes. One can add another parameter to
Manhart’s family which joins the centroaffine normal, i.e.

(1) P = (pP) | HE |, abeR

Here p, p¥, HE denote the Euclidean conormal, support function, and Gauss-Kronecker
curvature, respectively. (The sign is fixed by p¥ > 0.)
For a relative normal y for ¢ we define the area functionals with respect to the induced
and semi-Riemannian volume forms w and @ by
A= A(M,x,9) = / w, and A=A(M,r,p):= / o.
M M
Let A@?) .= A(M,g,n(@)) and A@b) .= A(M, g, D).

2000 Mathematics Subject Classification: Primary 53A15; Secondary 53A10.
The paper is in final form and no version of it will be published elsewhere.

[171]



172 T. BINDER AND M. WIEHE

In affine differential geometry the Blaschke area A° := A9 is one of the best
analysed functionals. Work in this direction was started by Blaschke [1] for dimension
two. The first and second variation of A¢ for arbitrary dimension had been studied by
Calabi [2]; further contributions include [5] and [10]. Another approach is to use A, which
was followed by [3], [4]. Wang [11] studies the first and second variation of the centroaffine
area A¢:= AOD),

The first and second variation of A(*% in Manhart’s one-parameter family were stud-
ied by the second author in [12]. Results for the first variation of A(*) can be found in
[7]. In this paper we derive Euler-Lagrange equations for the first variation of A(**) and
Aa:d) and prove

THEOREM 1. Let t : M™ — A"t be a hyperovaloid which is A(®Y -critical and suppose
(a,b) # (1,0). Then r(M) is a sphere.

REMARK 2. Any hypersurface is A0 -critical.

2. Relative geometry of hypersurfaces. For a detailed introduction to the subject
see e.g. [6] or [9].

Consider a non-degenerate C*°-immersion r : M"™ — A™*! of an n-dimensional, n > 2,
connected oriented C'*°-manifold into real flat affine space with standard flat connection
V. Suppose that 1y : M™ — R™*! is a O™ transversal vector field along r, i.e. dr(T,M) &
Ry(p) = R+ at each p € M. The vector space associated to A"*! is denoted by R™*1.
The structure equations of ¢ with respect to y read as follows:

Vaud(v) = de(Vyv) + h(u,v)y,  dy(u) = —dp(Su) + 0(u)y

for all vector fields u,v € X(M). If y has vanishing connection form 6, then it is called a
relative normal. From now on we will always assume that t is a relative normal. In this
case the pair (xr,p) is called a relative hypersurface.

h is a symmetric bilinear form which is also non-degenerate since ¢ is non-degenerate;
it is hence called the relative metric induced by n. We denote the Levi-Civita connection
of h and the positive valued semi-Riemannian volume form of h by V and @, respectively.
V is a torsion-free Ricci-symmetric affine connection called the induced connection. S is
called the shape operator. Its trace nH := trace S is the relative mean curvature and its
determinant H,, := det S is the relative Gauss-Kronecker curvature. The induced volume
form w is defined by

Wy, ... uy) = det(dp(uy), ..., de(un),9);

it is parallel with respect to the induced connection: Vw = 0.

Define the (1, 2)-difference tensor C, the Tchebychev vector field T and the Tcheby-
chev form T” by

C(u,v) = Cyv := Vv — Vo, nh(T,u) = nT’(u) := trace{v — C(v,u)}.

Generally, > denotes the operation of lowering an index with respect to h.
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Often it will be convenient to consider the conormal ) to describe the normalization
of a hypersurface, which is defined as a section of the cotangent line bundle satisfying

(Y,dr) =0 and  (Y,p) =1,

where (-,-) : (R**1)* x R"*1 — R denotes the standard scalar product. When talking
about a relative normalization, we mean that either ) or y is given on r. This makes sense,
since for relative hypersurfaces there is a bijective correspondence between normals and
conormals.

The relative support function with respect to a point rg € A" is defined by py, :=
(,r0 — r). Let A denote the Laplacian with respect to V. We define the Laplace-type
operators

Of := Af +nT’(grad,, f), O°f:= Af —nT"(grad, f).

The induced quantities are invariant with respect to the full affine group GL(n +
1,R) @ R**! acting on R™*! in the following sense: For any given relative hypersurface
(r,y) and (B,b) € GL(n + 1,R) @& R"*!, the coefficients of the structure equations of
(xr,p) and (¢! := Bx + b,p? := By) coincide: V = V%, h = h%, and S = S".

We now list some formulas describing the change of relative normalization.

LEMMA 1. For a hypersurface t : M™ — A" any two conormals Q) and Y? with the
same orientation are related by P? = e?Y), where ¢ € C®(M). Under this transition,
the relative metric changes conformally: h% = e¥h. Moreover, we compute (see e.g. [9])
p' = e"?(y + dz(grad ¢)),
Viv = Vv — h(u,v) grad ¢,

-2
atf = e (ar+ " Pdptad ),
Of = e%¥0,
W= e Yw,

S%u = e~ ?(Su — V, grad ¢ + u(p) grad ),

1 1
Hi =¥ <H — —Ap — Tb(gradgo) + —|grad<p||2>,
n n

e 2,
2n
Th = e‘P<T _n+2 gradgo).
2n

Finally, let us mention some special relative normals.

(i) The Blaschke normal n°¢ is determined up to sign by |w| = @, which is called the
apolarity condition; it is also characterized up to a non-vanishing constant factor by
T = 0. The Blaschke normal is invariant with respect to unimodular affine transfor-
mations SL(n+1,R)®R" ! meaning that for any unimodular affine transformation
(B, b) the Blaschke normal of ¥ = Br + b is n°® = By°. Invariants induced by the
Blaschke normal will be denoted by €.
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(ii) For an appropriate choice of an origin, any non-degenerate hypersurface locally can
be endowed with n° := —r, which is the centroaffine normal. It is characterized by
S = id. Therefore, a proper relative sphere is exactly the underlying hypersurface
with its centroaffine normal up to a constant factor. The centroaffine normal is
invariant with respect to GL(n + 1,R). Centroaffine invariants will be marked by ¢
if ambiguous.

(iii) Locally, we can normalize any hypersurface with a constant transversal field, which
is always a relative normal. The hypersurface will be an improper relative sphere
with respect to this normal.

(iv) The Euclidean normal is a relative normal which is invariant with respect to the
group of Euclidean motions SO(n+1, R)®R™"!. Euclidean invariants will be marked
by ¥ if ambiguous. Moreover, we denote fundamental forms by I, I := h¥ and write

pi=P¥ =y~

3. Invariance groups of constructions of relative normals. The construction of a
relative normal is a mapping which assigns a relative normal ) to a given non-degenerate
hypersurface r. The invariance group of such a construction is the maximal subgroup
I C GL(n+ 1,R) & R™"! such that the order of construction and transformation does
not matter, i.e. for any g € I with linear part B we have co g = B o ¢ on the set of all
non-degenerate hypersurfaces.

Examples of constructions are E, e and c. Of course, we are only interested in a
small subset of all constructions, namely those with big invariance groups. In the generic
case, invariance groups will be {(id,0)}. The invariance groups of relative normals in the
two-parameter family will be denoted by (%),

LEMMA 2. Let r: M™ — A" be a non-degenerate hypersurface. For a given conormal
9 and q € C®(M), let D@ = ¢*Y be a one-parameter family of relative conormals.
Assume p = p(0 £ 0. Let G be a subgroup of the full affine group such that G C (@)
and G C I for two values ag # a1. Then G C I®) for all a € R.

Proof. Without loss of generality we can assume a¢g = 0 and a; = 1, for otherwise the one-
parameter family 9)(® = qf@ where § = ¢™ %, a = % and @ = ¢*9) satisfies this
condition. The proof is trivial for a pure translation, so assume the affine map from G fixes
the origin and has matrix B. Let ¢! = By, n = By(® be the transformed hypersurface.
It suffices to prove (@ = pi. We know that n?® = Bp© and y*) = By® thus
2940 = =19 and PtM = B* 1Y), From the assumption we can express ¢ = %.

We get p'(@ = p(@ and p?™) = p() hence ¢ = ¢. Finally we get
(D", 9% = ("B 'Y, Bq“(y + drgradlog¢”)) = 1. m

COROLLARY 3. (i) In the particular case that (%) C I(@1) 4t follows that I®) N [(@1) =
1(@) for each a € R\{a,}.
(ii) If I(@0) C 1(@) = GL(n+ 1,R) @ R+, then I(®) = (%) for each a € R\{a;}.

The following theorem is an extension of [12], Theorem 5.7.
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THEOREM 4. Let t: M"™ — A™! be a non-degenerate hypersurface and a,b € R. The
invariance group of the relative normal y(@?) is

(i) SL(n+1,R) @ R"*! if (a,b) = (;25,0),
(ii) RTSO(n+1,R)@R" ! if (a,b) = (—2,0) (in this case n@*) is called the conformal
relative normal ),
(iii) SO(n+1,R) @R ifa & {25, —+},b=0,
(iv) GL(n+ 1,R) if (a,b) = (0,1),
(v) SL(n+1,R) if a(n+2)+b =1 and y'*? is neither the Blaschke nor the centroaffine
normal,
(vi) RYSO(n+1,R) if b= an+1 and y(*? is neither the conformal nor the centroaffine

normal,
(vii) SO(n+ 1,R) otherwise.

Proof. As p¥ is not invariant with respect to translations (origin is fixed), we know
that translations are not part of the invariance group for b # 0. We exclude the line
a(n + 2) + b = 1. This part of the proof follows easily from Lemma 2, where one has to
use invariance groups of the centroaffine and the Blaschke normalizations.

Invariance. Suppose we have a linear transformation 1? = By of r such that B = ¢D
for some D € O(n + 1,R) and 0 # ¢ € R. Define y? = By(®?_ It is our aim to find
conditions under which y# = (@t where n(@1 is the relative normal of ¥ belonging
to the parameter (a,b). We have dif = cDdy and thus % = Dyu. The sign of pf is chosen
such that

pP% = —(uh,¥%) = —(Dp, eDx) = —c(u,x) = cp”.
Moreover,
—dr*(SF%) = dpf(u) = Ddp(u) = —eDde(SFu) = —c1def (SFu).
We get S = ¢718F hence H,"¥ = ¢ "HE. Finally,
@(a,b)h _ th*b|H5h‘*a‘uh _ CanfbD@(a,b)
and
<Q_j(a’b)h71)h> — Can—b<D@(a,b)7BU(a,b)> — Can_b+l<DQ_j(a’b),DU(a’b)> _ Can—b+1 - 1.

This works only for c=1or b=an + 1.

Mazimality. Suppose that g,z%: M™ — A"t are non-degenerate hypersurfaces such
that ¢! = Br and n(»8 = By(®Y  where B € GL(n + 1,R). Then all objects induced on
M by (r,p(®?) and (&% n(®®)8) coincide. Let us show that we can write B = c¢D for some
D € SO(n+ 1,R) and ¢ € R\{0}, where ¢ = 1 follows from the invariance part. This is
done if we prove V(If) = V(I) and T? = ¢T. The definition can be rewritten as

@(a,b) — pEfa(nJr2)7bpea(n+2)'u — pE7a(n+2)7b+1pea(n+2)71@e.

‘We have

olab) _ Nt 2dlog(pEa(n+2)+b7lpelfa(n+2))
2n
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With 7°(@b) = 7°(@:b)b we get
eh\ 1—a(n+2) Ep\ a(n+2)+b—1
(p_:) (p_}j) = const # 0.
p p
Under a GL(n+1,R) transformation of the hypersurface the Blaschke support function is
changed by a constant factor which equals the determinant of the transformation matrix.
Thus, for a(n +2) +b # 1, we get that pF/pF = const. We obtain I¥ = cIl from

pEfa(nJrQ)fbpea(nJrZ) 1= h(a,b) — hh(a,b) _ thfa(n+2)fbpeha(n+2)]Ih.

The proof is finished by recalling V#(®?) = v(@.b) in
V(“’b)iv - V(Ih)uv _ H”(u, v) grad(I[“) log(phE—a(n+2)—bpeha(n+2))
= V(I*),v — I(u, v) grad(Il) log(p® ~ "+ =0 pealn+2)
= V(15,0 + V@ — V(I),0.
The classification follows from the unification of the two parts. m
We conclude this section by mentioning another possibility of a one-parameter family.

THEOREM 5. Suppose det S¢ # 0. Then @ = |H,°|~*Y° is a one-parameter family
with invariance group

(i) GL(n+1,R) ® R if g = =20 gpg

n

(ii) SL(n + 1,R) & R otherwise.

Proof. First observe that translations are included in the invariance groups since the

construction is translation independent. For B = ¢D € GL(n + 1,R) where ¢ > 0 and

det D = 41 suppose ! = Br and let n? = By(®. As in the previous proof, we ask
2

for n? = n(@t As before we get S¢ = ¢ n+25¢, thus H,®" = ¢ n+2 H,°. We obtain

n(l+an) an®42n42
@t = ¢ nr2 DY@, Finally, (Y@, y?) = ¢ n+2  shows that either ¢ = 1 or
a= 7%. This shows that the normals are invariant with respect to the given groups.

The maximality follows from Corollary 3 (ii). m

For hypersurfaces with non-singular Blaschke shape operator, there is a relative nor-
malization which is invariant with respect to the full affine group.

COROLLARY 6. Consider a one-parameter family 9(® = |H,|~*Q) with H,, # 0. Then
I C 1@ for all a € R.

4. First variation of area functionals. To do variational calculus we follow the no-
tation of [12]. A relative deformation of a hypersurface r with relative normal y is a
C°°-family (x',n?) of non-degenerate relative hypersurfaces such that 1 = ¢ and n° = .
We describe an infinitesimal deformation of ¢ by the pair (¢, ¢) defined by
0
V=d) + oy, ()= &(Nt:(r

We will use the following formulas from [12], Lemma 3.4 and (6.1.3), which hold for any
relative deformation.

(2) (', dr) = —¢" — do,
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(3) (logw) = (V,v') —nHe + divep,
(4) (log @)’ = 3(—n(D,v') + O0*¢ — nHe + 2divey),
(5) p'= —p(D,v') + h(grad p,9 + grad ¢) — ¢.

Moreover, for a Euclidean deformation (i.e. y* is the Euclidean normal of ') with in-
finitesimal representation (1, ¢) we obtain (cf. [12], (4.1.2b))
(6) (log HY) =0F¢ + nHE ¢ — 2nT°F (1) + grad(I)¢).

PROPOSITION 7. Let t : M"™ — A"l be a non-degenerate hypersurface and a,b € R.
Then

(i) t is A _critical if and only if
b

oy =0

(a — 1)nH®Y —

(i) ¢ is A@D) _critical if and only if
b
e 0

(14 an)(div(V@O @) — glab)y 4

Proof. Fix (a,b) and assume that for each deformed hypersurface r* the deformed normal
is p(®®? from the two-parameter family. Then

dr() + o @?) =y = dr() + op

links the two representations. We will first compute the unknown part (@(“’b), U(“’b)’) in
the formulas above.

(7) (@@l = —(pP U HY |7 ), o7 H Y| (1 + di(grad log(p® " | H,7|~))))

= aHy ™ (Hy' — W(grad() Hyy . + grad(I)¢))

+bp" 1 (p"" — W(grad(I)p”, ¢ + grad(1)¢))

—_ G(D(a’b)¢ 4 TLH(a’b)¢> _ bp(a’b)_1¢.
We used the fact ¢~> = pPP|HF|%¢. For the first part of the assertion we compute, using
(3) and (7),

(Aleb)y = /w(a,b)/ _ /(<m(a,b)7 6@B)y _ @D g 1 diy(VED) )y)ed)
= / (0P ¢ + (a — 1)nH @ ¢ — hp(@) =1 p)(@:0),

Now (i) follows by the fundamental theorem since [ (%) (-)w(®® = 0. For the second
part (ii),

(Alab)y — /a}(a,b)/ _ %/(_n<m(a,b)7 g@B)y 4 1 @b) g _ g F(@D) ) cy(ad)

1
=2 / (@@ — anD@)g — (1 + an)nH @D + nbp(@D 1) (@)

z / (14 an)div@D T — (1 4 an) HOD) 4 pplab)—1)gplab),

2
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where we have used (4), (7), the definitions of [J, 0* and the identity

/ T’ (grad ¢)w = — / h(grad¢, grad log ))w = / (divT)pw. m

We will now prove Theorem 1. Observe that by applying the first Minkowski integral

formula ( Db
_ {1 — e priab)yy an — Ma—1) —b / (a.b)
o= fu-» o na-1) J“

we get b = n(a — 1). Proposition 7 (i) states that there is the relation H = f(p) = %
for some function f on the real line. The assertion follows from the following theorem of

w
w

U. Simon for the first relative curvature function, which is the mean curvature.

THEOREM 8 ([8], Theorem 6.1). Let r : M™ — A" be a closed locally strongly convex
C?-hypersurface with a relative normal v. Suppose H > 0. Assume that there exists a
Cl-function f such that H = f(p) and f' < 0. Then r(M) is a sphere.
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