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Abstract. Geometry of traceless cubic forms is studied. It is shown that the traceless part of

the cubic form on a statistical manifold determines a conformal-projective equivalence class of

statistical manifolds. This conformal-projective equivalence on statistical manifolds is a natural

generalization of conformal equivalence on Riemannian manifolds. As an application, Tchebychev

type immersions in centroaffine immersions of codimension two are studied.

1. Introduction. The purpose of this paper is to study geometry of traceless cubic

forms on statistical manifolds. Cubic forms and their traceless parts have been studied

in affine differential geometry. In particular, it is known that an affine hypersurface lies

on a quadratic if its cubic form vanishes everywhere on the hypersurface (e.g. [1]).

In affine hypersurface theory, the traceless cubic form is invariant under choice of

equiaffine transversal vector fields. (In other words, we often say that a traceless cubic

form is invariant under relative normalizations.) We generalize this property, namely, we

show that the traceless cubic form on a statistical manifold is invariant under conformal-

projective changes of statistical manifolds. Moreover, we show that the traceless cu-

bic form determines a conformal-projective class of statistical manifolds. The notion of

conformal-projective class of statistical manifolds was introduced by the present author

in [6]. This class induces conformal-projective geometry of statistical manifolds, which is

a natural generalization of conformal geometry of Riemannian manifolds.

Traceless cubic forms are useful objects in Tchebychev hypersurface theory, and

conformal-projective relations are useful objects in geometry of centroaffine immersions
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of codimension two. Applying the conformal-projective geometry to Tchebychev hyper-

surface theory, we introduce Tchebychev type immersions in centroaffine immersions of

codimension two.

We remark that several fundamental results in conformal-projective geometry have

been obtained in Kurose’s recent work [3]. Tchebychev geometry has interesting applica-

tions to Bayesian statistics. See the recent work by Takeuchi, Amari and the author [7].

2. Cubic forms on statistical manifolds. In this section, we summarize the funda-

mental facts about cubic forms.

Let M be an n-dimensional manifold, let h be a semi-Riemannian metric on M , and

let ∇ be a torsion-free affine connection on M . We say that the triplet (M,∇, h) is a

statistical manifold if (∇, h) is a Codazzi pair on M , that is, ∇h is a totally symmetric

(0, 3)-tensor field on M .

We can define the dual connection (or conjugate connection) ∇∗ of ∇ with respect to

h by

Xh(Y, Z) = h(∇XY, Z) + h(Y,∇∗

XZ).

The connection ∇∗ is torsion-free, and the covariant derivative ∇∗h is totally symmetric.

Hence (M,∇∗, h) is also a statistical manifold. We call (M,∇∗, h) the dual statistical

manifold of (M,∇, h). Denote by ∇0 the Levi-Civita connection of h. Then ∇0 satisfies

∇0 =
1

2
(∇ + ∇∗).

We define tensor fields of type (0, 3) and of type (1, 2) by

C(X,Y, Z) := (∇Xh)(Y, Z),

K(X,Y ) := KXY :=
1

2
(∇XY −∇∗

XY ).

From the definition of statistical manifolds, C is totally symmetric. Since ∇ and ∇∗ are

torsion-free, K is also symmetric. Moreover, C and K satisfy the following formulas:

Proposition 2.1.

C(X,Y, Z) = −2h(KXY, Z),

KXY = ∇XY −∇0
XY = ∇0

XY −∇∗

XY.

For proof, see Chapter 2 in [8], for example.

Proposition 2.2. Denote by R and R∗ the curvature tensors of ∇ and ∇∗, respectively.

Then

(1)
(∇0

XC)(Y, Z, V ) − (∇0
Y C)(X,Z, V ) = h(R∗(X,Y )Z −R(X,Y )Z, V ),

(∇0
XK)(Y, Z) − (∇0

YK)(X,Z) =
1

2
(R(X,Y )Z −R∗(X,Y )Z).

Proof. It is straightforward to show the formulas. See also Section 4.4.10 in [10], for

example.

The tensor fields C and K are called the cubic form on (M,∇, h). Sometimes K is

also called the difference tensor field [8] since K represents the difference of two affine

connections.
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We define a 1-form T ♭ by the trace of cubic form K:

nT ♭(X) := tr{Y 7→ KXY }

(
= −

1

2
trh{(Y, Z) 7→ C(X,Y, Z)}

)
.

The 1-form T ♭ is called the Tchebychev form on a statistical manifold (M,∇, h). Denote

by T the metrical dual vector field of T ♭, namely, h(X,T ) = T ♭(X). The vector field

T is called the Tchebychev vector field. For a statistical manifold (M,∇, h), since ∇ is

assumed to be torsion-free, the Tchebychev form T ♭ is exact if and only if the Ricci tensor

of ∇ is symmetric (see Section 4.4.8 in [10]).

We define the traceless cubic form (or the traceless difference tensor K̃ on a statistical

manifold (M,∇, h) by

(2) K̃XY = KXY −
n

n+ 2
(h(X,Y )T + T ♭(Y )X + T ♭(X)Y ).

Contracting the above equation, we can easily check tr{Y 7→ K̃XY } = 0.

3. Conformal-projective changes of statistical manifolds. In this section, we re-

call conformal-projective geometry of statistical manifolds.

Suppose that (M,∇, h) and (M, ∇̄, h̄) are statistical manifolds. We say that (M,∇, h)

and (M, ∇̄, h̄) are conformally-projectively equivalent if there exist two functions ψ and

φ on M such that

h̄(X,Y ) = eψ+φh(X,Y ),(3)

∇̄XY = ∇XY − h(X,Y )gradhψ + dφ(Y )X + dφ(X)Y,(4)

and the change (∇, h) 7→ (∇̄, h̄) is called a conformal-projective change.

A statistical manifold (M,∇, h) is said to be conformally-projectively flat if (M,∇, h)

is locally conformally-projectively equivalent to some flat statistical manifold. Here a

statistical manifold (M,∇, h) is said to be flat if the connection ∇ is flat.

Suppose that (M, g) and (M, ḡ) are Riemannian manifolds. If ḡ = e2φg for some

function φ, then their Levi-Civita connections ∇̄0 and ∇0 satisfy

∇̄0
XY = ∇0

XY − g(X,Y )gradgφ+ dφ(Y )X + dφ(X)Y.

Hence the conformal-projective equivalence on statistical manifolds is a generalization of

a conformal equivalence on Riemannian manifolds.

This conformal-projective equivalence relation includes further equivalence relations

on statistical manifolds. If the function ψ in (3) and (4) is constant, then the connections

∇ and ∇̄ are projectively equivalent. In this case, (M,∇, h) and (M, ∇̄, h̄) are said to

be (−1)-conformally equivalent. If the function φ is constant, then the connections are

dual-projectively equivalent [2], which is a well-known relation in affine hypersurface

theory. In this case, (M,∇, h) and (M, ∇̄, h̄) are said to be 1-conformally equivalent.

The dual statistical manifolds have the following formula.

Proposition 3.1. Suppose that two statistical manifolds (M,∇, h) and (M, ∇̄, h̄) are

conformally-projectively equivalent and satisfy the formulas (3) and (4). Then their dual
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statistical manifolds (M,∇∗, h) and (M, ∇̄∗, h̄) are also conformally-projectively equiva-

lent and the dual connections satisfy

(5) ∇̄∗

XY = ∇∗

XY − h(X,Y )gradhφ+ dψ(Y )X + dψ(X)Y.

Proof. We can obtain the result from straightforward calculations. See also Section 2 in

[6] or Section 2 in [3].

For a statistical manifold (M,∇, h), we denote by R the curvature tensor of ∇, by

Ric and Ric∗ the Ricci tensors of ∇ and ∇∗, respectively. The Ricci operator Ric# is

determined by h(Ric#(X), Y ) := Ric(X,Y ), and the scalar curvature σ is determined by

the trace of the Ricci operator, namely, σ := tr Ric# = trh Ric.

We define the conformal-projective curvature tensor W of (M,∇, h) by

W (X,Y )Z = R(X,Y )Z

−{h(Y, Z)A(X)− h(X,Z)A(Y ) +B(Y, Z)X −B(X,Z)Y }

−
σ

n(n− 1)
{h(Y, Z)X − h(X,Z)Y },

where A and B are the tensor fields of type (1,1) and of type (0,2), respectively, given by

A(X) :=
1

n(n− 2)
{Ric#(X) + (n− 1)Ric∗#(X) − σX},

B(X,Y ) :=
1

n(n− 2)
{(n− 1)Ric(X,Y ) + Ric∗(X,Y ) − σh(X,Y )}.

The conformal-projective curvature tensor is a generalization of Weyl’s conformal curva-

ture tensor in Riemannian geometry. Indeed, the following results hold.

Proposition 3.2. Let (M,∇, h) and (M, ∇̄, h̄) be statistical manifolds of dimension

n ≥ 2. If they are conformally-projectively equivalent, then their conformal-projective

curvature tensors coincide.

Proof. See Section 4 in [3].

Theorem 3.3 ([3]). Let (M,∇, h) be a statistical manifold of dimension n ≥ 4. Then it

is conformally-projectively flat if and only if the conformal-projective curvature tensor W

vanishes everywhere on M .

Proof. See Theorem 1.2 in [3].

4. Traceless cubic forms and conformal-projective geometry. In this section, we

consider traceless cubic forms on statistical manifolds in terms of conformal-projective

geometry.

Proposition 4.1. Suppose that two statistical manifolds (M,∇, h) and (M, ∇̄, h̄) are

conformally-projectively equivalent. Then their traceless cubic forms K̃ and ˜̄K coincide.

Proof. Since (M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent, then ∇ and

∇̄ satisfy (4) and their dual connections satisfy (5). Hence the cubic form K̄ on (M, ∇̄, h̄)

is given by

2K̄XY = 2KXY − h(X,Y )(gradhψ − gradhφ) − (dψ − dφ)(Y )X − (dψ − dφ)(X)Y.(6)
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Contracting (6), we have

(7) T̄ ♭(X) − T ♭(X) = −
n+ 2

2n
(dψ − dφ)(X).

Substituting (7) into (6), we can see K̃ = ˜̄K.

Conversely, a traceless cubic form determines a class of conformal-projective structure

on a statistical manifold. This is our main theorem.

Theorem 4.2. Let (M,∇, h) and (M, ∇̄, h̄) be simply connected statistical manifolds.

Suppose that the Ricci tensor of ∇ is symmetric and the Ricci tensor of ∇̄ is also sym-

metric. Suppose that h and h̄ are conformally equivalent, and the traceless cubic forms K̃

and ˜̄K coincide. Then (M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent.

Proof. Since h and h̄ are conformally equivalent, there exists a function φ1 such that

h̄(X,Y ) = eφ1h(X,Y ). Then their Levi-Civita connections satisfy

(8) ∇̄0
XY = ∇0

XY −
1

2
h(X,Y )gradhφ1 +

1

2
(dφ1(Y )X + dφ1(X)Y ).

Denote by T ♭ and T̄ ♭ the Tchebychev forms on (M,∇, h) and (M, ∇̄, h̄), respectively.

Since the Ricci tensors are symmetric and M is simply connected, there exist functions

ψ0 and ψ̄0 satisfying T ♭ = dψ0 and T̄ ♭ = dψ̄0.

Set ψ1 = ψ0 − ψ̄0. From the assumption ˜̄K = K̃, straightforward calculation shows

that

(9) K̄XY = KXY −
n

n+ 2
(h(X,Y )gradhψ1 + dψ1(Y )X + dψ1(X)Y ).

Set ψ = 1
2φ1 + n

n+2ψ1, φ = 1
2φ1 −

n
n+2ψ1. Substituting (8) to (9), we have

h̄(X,Y ) = eψ+φh(X,Y ),

∇̄XY = ∇XY − h(X,Y )gradhψ + dφ(Y )X + dφ(X)Y.

This implies that two statistical manifolds (M,∇, h) and (M, ∇̄, h̄) are conformally-

projectively equivalent.

5. Traceless cubic forms and centroaffine immersions of codimension two.

In this section, we consider geometry of traceless cubic forms in terms of centroaffine

immersions of codimension two. For the details of centroaffine immersions of codimension

two, see [9].

Let M be an n-dimensional manifold (n ≥ 2), let f be an immersion from M to R
n+2,

and let ξ be a local vector field along f . We call a pair {f, ξ} a centroaffine immersion

of codimension two if, for each point p ∈M , the tangent space Tf(p)M is decomposed as

Tf(p)R
n+2 = f∗(TpM) ⊕ Rξp ⊕ Rf(p),

where Rξp and Rf(p) are 1-dimensional subspaces spanned by ξp and f(p), respectively.

Identifying Tf(p)R
n+2 as R

n+2, the above equation implies that ξp and f(p) are transver-

sal to f(M). We call ξ a transversal vector field.
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Denote by D the standard flat affine connection of R
n+2. The covariant derivative is

accordingly decomposed as follows:

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ + k(X,Y )f,

DXξ = −f∗(SX) + τ (X)ξ + µ(X)f.

We call ∇ the induced connection, h the affine fundamental form, τ the transversal

connection form and S the affine shape operator.

For a centroaffine immersion of codimension two, the following structural equations

hold:

Gauss:

R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY − k(Y, Z)X + k(X,Z)Y,(10)

Codazzi:

(∇Xk)(Y, Z) + µ(X)h(Y, Z) = (∇Y k)(X,Z) + µ(Y )h(X,Z),

(∇Xh)(Y, Z) + τ (X)h(Y, Z) = (∇Y h)(X,Z) + τ (Y )h(X,Z),(11)

(∇XS)(Y ) − τ (X)SY + µ(X)Y = (∇Y S)(X) − τ (Y )SX + µ(Y )X,

Ricci:

k(X,SY ) − k(Y, SX) = (∇Xµ)(Y ) − (∇Y µ)(X) + τ (Y )µ(X) − τ (X)µ(Y ),

h(X,SY ) − h(Y, SX) = (∇Xτ )(Y ) − (∇Y τ )(X).(12)

Contracting Gauss equation, we have

(13) Ric(Y, Z) = trSh(Y, Z) − h(SY,Z) − (n− 1)k(Y, Z).

Now we check how various induced quantities depend on ξ. Set

(14) ξ′ = e−ψ(ξ + af + f∗U).

Then the induced quantities ∇, h and τ change as follows:

∇′

XY = ∇XY − h(X,Y )U,(15)

h′(X,Y ) = eψh(X,Y ),(16)

τ ′(X) = τ (X) − dψ(X) + h(X,U).(17)

Two centroaffine immersions f and f̄ are said to be projectively equivalent if f̄ = eφf

for some function φ, and we call the change f 7→ f̄ a projective change. For a projective

change f̄ = eφf , induced quantities ∇̄, h̄ and τ̄ of {f̄ , ξ} are given as follows:

∇̄XY = ∇XY + dφ(Y )X + dφ(X)Y,(18)

h̄(X,Y ) = eφh(X,Y ),(19)

τ̄ = τ.(20)

We say that f is non-degenerate if h is non-degenerate. From Equation (16), the

definition is independent of choice of ξ. We say that {f, ξ} is equiaffine if τ = 0. If {f, ξ} is

non-degenerate and equiaffine, from Codazzi equation (11), the triplet of induced objects

(M,∇, h) is a statistical manifold.
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If we exchange transversal vector fields equiaffinely, then the tangent vector U in (14)

is given by the gradient vector of ψ from Equation (17):

(21) U = gradhψ.

Hence we obtain a conformal-projective equivalence relation from a change of transversal

vector fields and a projective change.

Proposition 5.1 ([6]). Let {f, ξ} be a non-degenerate equiaffine centroaffine immersion

of codimension two. Denote by ∇ the induced connection, and by h the affine fundamental

form of {f, ξ}. Then (M,∇, h) is a conformally-projectively flat statistical manifold.

Suppose that {f, ξ} is non-degenerate and equiaffine. Denote by Rn+2 the dual space

of R
n+2. Then the dual map {v, w} of {f, ξ} is defined by

〈v(p), ξp〉 = 1, 〈v(p), f(p)〉 = 0, 〈v(p), f∗Xp〉 = 0,

〈w(p), ξp〉 = 0, 〈w(p), f(p)〉 = 1, 〈w(p), f∗Xp〉 = 0,

where 〈 , 〉 is the pairing of Rn+2 and R
n+2. The dual map {v, w} is a centroaffine

immersion of codimension two from M to Rn+2 since h is non-degenerate. We denote by

∇∗, h∗, S∗, . . . the induced objects of {v, w}. Then we have the following formulas:

Xh(Y, Z) = h(∇XY, Z) + h(Y,∇∗

XZ),(22)

h∗(X,Y ) = h(X,Y ),(23)

k∗(X,Y ) = −h(SX, Y ),(24)

h(S∗X,Y ) = −k(X,Y ),(25)

τ∗ = 0.

Now we consider Tchebychev type immersions in centroaffine immersions of codimen-

sion two. The following proposition is a direct analogue of the result in affine hypersurface

theory.

Proposition 5.2 ([5]). Let {f, ξ} be a non-degenerate equiaffine centroaffine immersion

of codimension two. Denote by ∇0 the Levi-Civita connection of the affine fundamental

form h, by T the Tchebychev vector field, and by K̃ the traceless cubic form of {f, ξ}.

Then the following conditions are equivalent:

(1) (∇0
XK̃)(Y, Z) = (∇0

Y K̃)(X,Z).

(2) L = λ id for some function λ,

where L is determined by L := 1
2S − 1

2S
∗ − n

n+2∇
0T .

(3) div K̃ = 0.

Proof. The proof is also an analogue of Proposition 2.3 in [5]. From Gauss equation (10)

and Equation (25), the curvature tensor R satisfies

(26) R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY + h(S∗Y, Z)X − h(S∗X,Z)Y.

From Ricci equations (12) and (13), the Ricci tensor of ∇ is symmetric since ξ is equiaffine.

This implies that the Tchebychev form T ♭ is exact.
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Form the definition of traceless cubic form, Proposition 2.2, and Equation (26), using

dT ♭ = 0, we have

(27) (∇0
XK̃)(Y, Z) − (∇0

Y K̃)(X,Z)

= h(Y, Z)LX − h(X,Z)LY + h(LX,Z)Y − h(LY,Z)X.

(2) ⇒ (1): This is trivial from (27).

(1) ⇒ (2): From the assumption, we have

h(Y, Z)LX − h(X,Z)LY + h(LX,Z)Y − h(LY,Z)X = 0.

Contracting the equation above, we have

h(Y, Z)trL− h(LYX,Z) + h(LY,Z) − nh(LY,Z) = 0.

This implies that LY = 1
n
trLY .

(2) ⇔ (3): This is quite same as in [5].

We say that a non-degenerate equiaffine immersion {f, ξ} is of Tchebychev type if L =

λ id for some function λ. This definition is independent of choice of equiaffine transversal

vector field ξ and projective changes of f from Equations (15)–(21) and Theorem 4.2.

Tchebychev type immersions in centroaffine immersions of codimension two naturally

generalize Tchebychev hypersurface immersions or Tchebychev type immersions into a

space form of constant curvature. For example, the following proposition generalizes the

result on Tchebychev type immersions into a space form of constant curvature [4].

Proposition 5.3. Suppose that {f, ξ} is a non-degenerate equiaffine centroaffine immer-

sion of codimension two. Then {f, ξ} is Tchebychev type if and only if its dual map {v, w}

is also Tchebychev type.

Proof. L∗ = 1
2S

∗ − 1
2S + n

n+2∇
0T = −L.

The following theorem is a characterization of Tchebychev type immersions.

Theorem 5.4. Suppose that {f, ξ} is a Tchebychev type immersion. Then there exists a

Tchebychev hypersurface immersion {f̄ , ξ̄} to R
n+1 ⊂ R

n+2, at least locally, such that f

is projectively equivalent to f̄ .

Proof. Since {f, ξ} is a centroaffine immersion, we can change the immersion f̄ = eφf for

some function φ, at least locally, such that f̄ is contained in an affine hyperplane which

does not pass through the origin. We denote the hyperplane by R
n+1.

We can take a transversal vector field ξ̄ which is contained in the hyperplane R
n+1.

This implies that {f̄ , ξ̄} is an affine hypersurface immersion. Denote by ∇̄, h̄, S̄, . . . the

induced objects of {f̄ , ξ̄}. We accordingly have k̄ = 0, and S̄∗ = 0.

Since the traceless cubic form is independent of projective changes and choice of

equiaffine transversal vector fields, we have

L̄ =
1

2
S̄ −

n

n+ 2
∇̄0T̄ = λ id,

for some function λ. This implies that f̄ is a Tchebychev hypersurface immersion (see

[5]). From the definition of f̄ , the Tchebychev type immersion f is projectively equivalent

to f̄ .
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Recall that K̃ = 0 characterized hyperquadratic in affine hypersurface theory. Hence

we have the following corollary. (This corollary was obtained in [9] in a more general

setting.)

Corollary 5.5. If a non-degenerate equiaffine centroaffine immersion of codimension

two {f, ξ} satisfies that K̃ = 0, then the image lies on a quadratic cone.
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