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Abstract. We study when the Jacobi operator associated to the Weyl conformal curvature

tensor has constant eigenvalues on the bundle of unit spacelike or timelike tangent vectors. This

leads to questions in the conformal geometry of pseudo-Riemannian manifolds which generalize

the Osserman conjecture to this setting. We also study similar questions related to the skew-

symmetric curvature operator defined by the Weyl conformal curvature tensor.

1. Introduction

1.1. Algebraic curvature tensors. We work in a purely algebraic context for the moment.

Consider a triple V := (V, g, A) where g is a non-degenerate inner product of signature
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(p, q) on a finite dimensional real vector space V of dimension m := p+ q ≥ 3 and where

A ∈ ⊗4V ∗ is an algebraic curvature tensor on V ; i.e. A has the usual symmetries of the

Riemann curvature tensor:

A(x, y, z, w) = A(z, w, x, y) = −A(y, x, z, w), and

A(x, y, z, w) +A(y, z, x, w) +A(z, x, y, w) = 0.

We say that V is Riemannian if p = 0 and Lorentzian if p = 1.

If φ is a g self-adjoint endomorphism of V , then we set

Aφ(x, y, z, w) := g(φx,w)g(φy, z) − g(φx, z)g(φy,w).(1.a)

Fiedler [4] showed these algebraic curvature tensors span the space A(V ) of all algebraic

curvature tensors. These tensors will play a crucial role in our subsequent discussion;

setting φ = Id yields the algebraic curvature tensor of constant sectional curvature +1.

1.2. The Weyl conformal curvature tensor. There is a natural representation of the or-

thogonal group O(V, g) on A(V ) defined by pull-back; if A ∈ A(V ) and ψ ∈ O(V, g), the

pull-back ψ∗A ∈ A(V ) is given by

(ψ∗A)(x, y, z, w) = A(ψx, ψy, ψz, ψw).

This representation is not irreducible but decomposes as the direct sum of 3 irreducible

representations which we can describe as follows. Let gij := g(ei, ej) and let gij be the

inverse matrix relative to some basis {ei} for V . The associated Ricci tensor ρA and scalar

curvature τA are then defined by contracting indices:

ρA(x, y) :=
∑

ij

gijA(x, ei, ej , y) and τA :=
∑

ij

gijρA(ei, ej).

The associated maps σρ : A→ ρA ∈ S2(V ∗) and στ : A→ τA ∈ R are O(V, g) equivariant.

The space W(V, g) := ker(σρ) of algebraic Weyl tensors is an irreducible representation

space for O(V, g) and we have:

A(V ) = W(V, g) ⊕ S2(V ∗)

as an O(V, g) representation space. The further decomposition of S2(V ∗) as the direct

sum of the trace free tensors and the scalar multiples of the identity then completes

the decomposition of A(V ) as a direct sum of irreducible O(V, g) modules. Let πW be

orthogonal projection from ⊗4V ∗ to W(V, g):

πW(A)(x, y, z, w) = A(x, y, z, w) − 1

m− 2
{ρA(x,w)g(y, z) + g(x,w)ρA(y, z)}(1.b)

+
1

m− 2
{ρA(x, z)g(y, w) + g(x, z)ρA(y, w)}

+
1

(m− 1)(m− 2)
τA{g(x,w)g(y, z) − g(x, z)g(y, w)}.

1.3. The Jacobi operator. If A is an algebraic curvature tensor, then the Jacobi operator

JA is a g self-adjoint map of V characterized by the property:

g(JA(x)y, z) = A(y, x, x, z).
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For example, if A = Aφ is given by Equation (1.a), then

JAφ
(x)y = g(φx, x)φy − g(φx, y)φx.(1.c)

It is clear that ρA(x, x) = Tr{JA(x)} for any A; in particular

Tr{JW (x)} = 0 for any x ∈ V if W ∈ W(V, g).(1.d)

The pseudo-spheres of unit spacelike (+) and unit timelike (−) vectors in V are

S±(V) := {v ∈ V : g(v, v) = ±1}.
We say that V is spacelike (resp. timelike) Jordan Osserman if the Jordan normal form of

JA is constant on S+(V) (resp. on S−(V)). If V is Riemannian, then the Jordan normal

form is determined by the eigenvalue structure and, as every non-zero vector is spacelike,

we shall drop the qualifiers ‘spacelike’ and ‘Jordan’ in the interests of notational simplicity.

Note that the eigenvalue structure does not determine the Jordan normal form in the

higher signature context.

1.4. The skew-symmetric curvature operator. Let {e1, e2} be an orthonormal basis for

an oriented spacelike (resp. timelike) 2 plane π of V . One then defines the skew-symmetric

curvature operator A(π) by the identity:

g(A(π)x, y) := A(e1, e2, x, y).

This g skew-symmetric endomorphism of V is independent of the particular oriented

orthonormal basis for π which is chosen. One says V is spacelike (resp. timelike) Jordan

Ivanov-Petrova if the Jordan normal form of A(π) is constant on the Grassmannian of

oriented spacelike (resp. timelike) 2 planes in V .

1.5. The geometric setting. Let R be the Riemann curvature tensor of a pseudo-Rie-

mannian manifold (M, g) of signature (p, q) and dimension m := p + q ≥ 3. Let RP :=

(TPM, gP , RP ) be the triple determined by the tangent bundle of M at a point P of M ,

the pseudo-Riemannian metric gP , and the curvature tensor RP .

We say that (M, g) is pointwise spacelike (resp. timelike) Jordan Osserman if RP is

spacelike (resp. timelike) Jordan Osserman for every point P of M ; the Jordan normal

form of JR is allowed to vary with the point P of M . We say (M, g) is globally spacelike

(resp. timelike) Jordan Osserman if the Jordan normal form of JR on the appropriate

pseudo-sphere bundle is independent of P . It is known that any global Riemannian (p = 0)

Osserman manifold is locally isometric to a rank 1 symmetric space if m 6= 16 [3, 18,

20, 19] and that any local Lorentzian (p = 1) Jordan Osserman manifold has constant

sectional curvature [1, 5]. In the higher signature setting, there exist spacelike and timelike

Jordan Osserman manifolds which are not locally homogeneous [2, 7]. There is a vast

literature on the subject and we shall content ourselves by refering to [6] for further

details.

We say that (M, g) is pointwise spacelike (resp. timelike) Jordan Ivanov-Petrova if

RP is spacelike (resp. timelike) Jordan Ivanov-Petrova for every point P of M ; again, the

Jordan normal form of JR is allowed to vary with the point P of M . These manifolds have

been classified in the Riemannian setting if m 6= 3, 7 [8, 11, 17], in the Lorentzian setting

if m ≥ 11 and if {m,m + 1} are not powers of 2 [15, 16], and in the higher signature
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setting if q ≥ 11, if p ≤ q−6

4
, if {q, q + 1, . . . , q + p} does not contain a power of 2, and

if R(π) is not nilpotent [21]. We refer to [9] for further details concerning spacelike and

timelike Jordan Ivanov-Petrova manifolds.

1.6. Conformal geometry. Let P be a point of a pseudo-Riemannian manifold (M, g). Let

WP := (TPM, gP ,WP ) where WP := πWRP is the associated Weyl conformal curvature

tensor on TPM . We say that (M, g) is conformally spacelike (resp. timelike) Jordan Osser-

man if WP is spacelike (resp. timelike) Jordan Osserman for every point P ofM . Similarly,

we say that (M, g) is conformally spacelike (resp. timelike) Jordan Ivanov-Petrova if WP

is spacelike (resp. timelike) Jordan Ivanov-Petrova for every point P of M . In both set-

tings, the Jordan normal form is permitted to vary with the point P of M ; the technical

distinction between ‘global’ and ‘pointwise’ plays no role in this setting.

Recall that two metrics g1 and g2 are said to be conformally equivalent if there is

a positive scaling function α ∈ C∞(M) so that g1 = αg2. We let [g] be the set of all

pseudo-Riemannian metrics on M which are conformally equivalent to g.

Theorem 1.1. Let g1 ∈ [g2]. Then:

1. (M, g1) is conformally spacelike (resp. timelike) Jordan Osserman if and only if (M, g2)

is conformally spacelike (resp. timelike) Jordan Osserman.

2. (M, g1) is conformally spacelike (resp. timelike) Jordan Ivanov-Petrova if and only if

(M, g2) is conformally spacelike (resp. timelike) Jordan Ivanov-Petrova.

Proof. As g1 = αg2, one has Wg1
= αWg2

; the Weyl conformal curvature tensor simply

rescales. Let x ∈ TPM be a g2 spacelike or timelike unit vector. Let

x̃ :=
1

√

α(P )
x

be the corresponding g1 spacelike or timelike unit vector. Similarly, if {e1, e2} is an

oriented g2 orthonormal basis for π, then
{

1√
α
e1,

1√
α
e2

}

is the corresponding oriented g1 orthonormal basis for π. We then have

JWg1
(x̃) =

1

α(P )
JWg2

(x) and Wg1
(π) =

1

α(P )
Wg2

(π).

The Lemma now follows as the Jordan normal forms are simply rescaled.

Theorem 1.1 shows that the notions we are studying are well defined in conformal

geometry and justifies the notation we have employed. Here is a brief guide to the re-

mainder of the paper. In Section 2, we will present some results concerning conformally

spacelike and timelike Jordan Osserman manifolds. In Section 3, we will present some

results concerning conformally spacelike and timelike Jordan Ivanov-Petrova manifolds.

We conclude in Section 4 with some examples.

2. Conformally Jordan Osserman manifolds. We begin with the following obser-

vation:
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Theorem 2.1. If (M, g) is Einstein, then (M, g) is conformally spacelike (resp. timelike)

Jordan Osserman if and only if (M, g) is pointwise spacelike (resp. timelike) Jordan

Osserman.

Proof. If (M, g) is Einstein, then Equation (1.b) implies

g(JW (x)y, z) = g(JR(x)y, z) + λ{g(y, z)g(x, x) − g(y, x)g(z, x)}
where λ is a suitably chosen constant. Thus

JW (x)y =

{

0 if y = x,

{JR(x) + λg(x, x) Id}y if y ⊥ x.

Thus apart from the trivial eigenvalue 0, the Jordan normal form of JW (x) and JR(x)

are simply shifted by adding a scalar multiple of the identity if x is not a null vector.

Theorem 2.1 is now immediate.

The classification is complete in certain settings:

Theorem 2.2. Assume either that (M, g) is an odd dimensional Riemannian manifold

or that (M, g) is a Lorentzian manifold. Then (M, g) is conformally spacelike Jordan

Osserman if and only if (M, g) is conformally flat.

Proof. We say V = (V, g, A) has constant sectional curvature λ if A = λAId, i.e.

A(x, y, z, w) = λ{g(x,w)g(y, z) − g(x, z)g(y, w)}.
If V is Riemannian spacelike Jordan Osserman and if the dimension m is odd, then work

of Chi [3] shows that V has constant sectional curvature. If V is Lorentzian and spacelike

Jordan Osserman, then results of Blažić, Bokan and Gilkey [1] and of Garćıa–Rı́o, Kupeli

and Vázquez-Abal [5] shows that V has constant sectional curvature.

If A has constant sectional curvature λ and if x is not null, then Equation (1.c) shows

JA(x)(y) =

{

0 if y = x,

λg(x, x)y if y ⊥ x.

Consequently Tr(JA(x)) = (m − 1)λg(x, x). Therefore, if A ∈ W(V, g), then necessarily

λ = 0 by Equation (1.d). Theorem 2.2 now follows by applying these observations to

V := (TPM, gP ,WP ).

One says that a manifold is spacelike (resp. timelike) Osserman if the eigenvalues of

the Jacobi operator are constant on the pseudo-sphere S+(TPM) (resp. S−(TPM)) for

any point P ∈ M . Theorem 2.2 extends to show that any Lorentzian manifold (M, g)

which is spacelike (resp. timelike) Osserman is conformally flat.

Any local rank 1 Riemannian symmetric space is necessarily conformally Osserman

since the group of local isometries acts transitively on the unit sphere bundle. We con-

jecture that the converse holds; this is the analogue of the Osserman conjecture in this

setting:

Conjecture 2.3. A connected Riemannian manifold (M, g) is conformally Osserman if

and only if (M, g) is locally conformally equivalent to a rank 1 symmetric space.

We shall see in Section 4 that this conjecture fails in the higher signature setting.
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3. Conformally Jordan Ivanov-Petrova manifolds. The classification is almost

complete in the Riemannian setting:

Theorem 3.1. Let (M, g) be a conformally spacelike Jordan Ivanov-Petrova Riemannian

manifold of dimension m 6= 3, 7. Then (M, g) is conformally flat.

Proof. Suppose first m ≥ 5 and m 6= 7. We apply results of [8, 11] to see that any

Riemannian Ivanov-Petrova algebraic curvature tensor in these dimensions has rank 2.

Such tensors are classified. Let P ∈ M . There exists a self-adjoint isometry φP of TPM

with φ2
P = Id so that WP = λRφP

where RφP
is given by Equation (1.a). We may then

use Equation (1.c) to see:

JW (x)y = λgP (φPx, x)φP y if y ⊥ φPx.(3.a)

Decompose TPM = T+

P M ⊕ T−

P M into the ±1 eigenspaces of φP . Let e± be unit vectors

in T±

P M . Set a± := dimT±

P M . Then Equation (3.a) implies that

Tr{JW (e+)} = λ(a+ − 1 − a−) and Tr{JW (e−)} = λ(a− − 1 − a+).(3.b)

If φ = ± Id, then WP has constant sectional curvature and the argument given to

establish Theorem 2.2 shows WP = 0. Thus we may assume that a+ ≥ 1 and a− ≥ 1. By

Equation (1.d), Tr{JW (x)} = 0 for any x. Thus we have

(a+ − a− − 1)λ = 0 and (a− − a+ − 1)λ = 0.

Adding these two equations implies −2λ = 0 and hence WP = 0. This establishes the

Lemma except when m = 4.

We complete the proof of the Lemma by dealing with the exceptional case m = 4.

We follow the discussion in Ivanov-Petrova [17] to see that either W has the form given

in Equation (3.a), in which case the argument given above shows WP = 0, or that there

exists an orthonormal basis {e1, e2, e3, e4} for TPM so that the non-zero components of

W are given by:

W1212 = a1, W1234 = a2, W1313 = a2, W1324 = −a1,

W1414 = a2, W1423 = a1, W2323 = a2, W2314 = a1,

W2424 = a2, W2413 = −a1, W3434 = a1, W3412 = a2.

(3.c)

where a2 + 2a1 = 0. Since ρW (e1, e1) = −2a2 − a1 = 0 by Equation (1.d), we conclude

a1 = a2 = 0, which once again implies WP = 0.

There are analogous results in the higher signature setting, although with slightly

more restrictive hypotheses.

Theorem 3.2. Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q)

which is conformally spacelike Ivanov-Petrova. Assume that q ≥ 11, that p ≤ q−6

4
, and

that {q, q+1, . . . , q+p} does not contain a power of 2. Then either W (π) is nilpotent for

every spacelike 2 plane or (M, g) is conformally flat.

Proof. Results of [15, 16, 21] show that there exists a normalizing constant λ so that

WP = λWφ where Wφ is given by Equation (1.a) where one of the following conditions

holds:
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1. φ2 = Id and φ is a self-adjoint isometry of TPM .

2. φ2 = − Id and φ is a self-adjoint para-isometry of TPM .

3. φ2 = 0.

If φ2 = 0, then W (π) is always nilpotent. We complete the proof by showing that either

(1) or (2) imply λ = 0.

Suppose φ is a self-adjoint isometry of TPM with φ2 = Id. As in the proof of Theorem

3.1, we decompose TPM = T+

P M ⊕ T−

P M into the ±1 eigenspaces of φ. Again, we set

a± = dimT±

P were we may suppose a+ ≥ 1 and a− ≥ 1. These eigenspaces are orthogonal

with respect to the metric gP and thus the restriction of the metric to each eigenspace

is non-degenerate. Thus we may choose vectors e± ∈ T±

P M so gP (e±, e±) = ε± 6= 0.

Equation (3.b) then extends to become

Tr{JW (e+)} = ε+λ(a+ − 1 − a−) and Tr{JW (e−)} = ε−λ(a− − 1 − a+).

We argue as in the proof of Theorem 3.1 to see that this implies λ = 0.

If φ is a para-isometry, we complexify. Replacing φ by φ̃ :=
√
−1φ and applying the

argument given above to the g self-adjoint (complex) isometry φ̃ to see that
√
−1λ = 0

and thus, again, WP = 0.

This result, together with the examples in the subsequent section, motivates the fol-

lowing:

Conjecture 3.3. Let (M, g) be a conformally spacelike Ivanov-Petrova manifold. If

(M, g) is not conformally flat, then W (π) is nilpotent for any oriented spacelike 2-plane π.

4. Examples. Theorem 2.2 shows that Conjecture 2.3 holds if m is odd. The situation

is considerably more complicated in the higher signature setting. The following family

of manifolds [10] is useful in this setting. It also shows there are conformally spacelike

Jordan Ivanov-Petrova manifolds which are not conformally flat. Let p ≥ 2. Introduce

coordinates (x1, . . . , xp, y1, . . . , yp) on R
2p and let f = f(x1, . . . , xp) be a smooth function

on R
2p. Define a neutral signature metric gf on R

2p by setting

gf (∂x
i , ∂

x
j ) := ∂x

i f · ∂x
j f, gf (∂x

i , ∂
y
j ) = gf (∂y

j , ∂
x
i ) = δij , gf (∂y

i , ∂
y
j ) = 0.

Let H = (Hij) ∈Mp(R) be the Hessian where Hij = ∂x
i ∂

x
j .

Theorem 4.1. Let (M, gf ) be as defined above. Assume that p ≥ 3.

1. Assume that H is definite. If x is not null, then JW (x) has rank p−1 and JW (x)2 = 0.

Thus (M, gf ) is conformally spacelike and timelike Jordan Osserman.

2. If H is indefinite, then (M, gf ) is neither conformally spacelike Jordan Osserman nor

conformally timelike Jordan Osserman.

3. Assume that H is non-degenerate. If π is an oriented spacelike or timelike 2 plane,

then Rank(W (π)) = 2 and W (π)2 = 0. Thus (M, gf ) is conformally spacelike and timelike

Jordan Ivanov-Petrova.

Proof. We showed in [10] that (M, gf ) was Ricci flat. Consequently, W = R. The as-

sertions of Theorem 4.1 now follow from the corresponding assertions for JR(x) and for

R(π) which were established in [10].



202 N. BLAŽIĆ ET AL.

The manifolds of Theorem 4.1 have a Jacobi operator and skew-symmetric cur-

vature operator which are nilpotent of order 2. There are also manifolds where the

Jacobi operator and skew-symmetric curvature operator are nilpotent of order 3. Let

(u1, . . . , us, t1, . . . , ts, w1, . . . , ws) be coordinates on R
3s for s ≥ 2. Let fi(x) be smooth

functions on R and set F (u1, . . . , us) := f1(u1)+ . . .+fs(us). Define a metric of signature

(2s, s) on MF := R
3s by setting

gF (∂u
i , ∂

u
j ) = −2δijF (u) − 2δij

∑

k

uktk, gF (∂u
i , ∂

v
j ) = gF (∂v

j , ∂
u
i ) = δij ,

gF (∂u
i , ∂

t
j) = gF (∂t

j , ∂
u
i ) = 0, gF (∂t

i , ∂
t
j) = −δij ,

gF (∂t
i , ∂

v
j ) = gF (∂v

j , ∂
t
i ) = 0, gF (∂v

i , ∂
v
j ) = 0.

Theorem 4.2. Let (MF , gF ) be as defined above where s ≥ 2.

1. Let x be spacelike. Then JW (x) has rank 2s−2, JW (x)2 has rank s−1, and JW (x)3 = 0.

Consequently (MF , gF ) is conformally spacelike Jordan Osserman. However, (MF , gF ) is

not conformally timelike Jordan Osserman.

2. Let π be an oriented spacelike 2-plane. Then W (π) has rank 4, W (π)2 has rank 2,

and W (π)3 = 0. Consequently (MF , gF ) is conformally spacelike Jordan Ivanov-Petrova.

However, (MF , gF ) is not conformally timelike Jordan Ivanov-Petrova.

Proof. We showed in [12] that (MF , gF ) is Ricci flat. Consequently, R = W . The asser-

tions of the Theorem now follow from the corresponding assertions for JR which were

established in [12] and for W (π) which were established in [14].
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