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Abstract. Let M™ be a hypersurface in R"*!. We prove that two classical Jacobi curvature
operators J, and J, commute on M", n > 2, for all orthonormal pairs (z,y) and for all points p €
M if and only if M™ is a space of constant sectional curvature. Also we consider all hypersurfaces
with n > 4 satisfying the commutation relation (Kgz,y 0 K, u)(u) = (K. 0 Kg,y)(u), where
K y(u) = R(x,y,u), for all orthonormal tangent vectors x,y, z, w and for all points p € M.

1. Introduction. Let V be the Levi-Civita connection of a Riemannian manifold
(M™,g). Let z,y and z be tangent vector fields on M™. Then the associated curva-
ture tensor R(z,y, z) is defined by
R(z,y,2) = VoVyz = VyVaz — Vi 2.
The value of R(z,y,2) at a point p of M depends only on the values of z,y and z at p.
The classical Jacobi curvature operator

Jp : oM — T, M,
induced by the unit vector x € T, M and defined by

Ji(u) = R(u, z, x)
is a symmetric operator.

The skew-symmetric curvature operator K, ,
Kyy: ToM — T, M,
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is defined by
KIJ/(’U’) = R(.’E, Y, U),

for any orthonormal pair (z,y) of tangent vectors at any point p in M and u € T,M.
The curvature operator K, , does not depend on the oriented orthonormal basis chosen
for the oriented 2-plane span{z,y} [3].

Here, using the eigenvalues of the Weingarten map of M, we give a characterization of
those hypersurfaces in R"*! for which the operator .J, satisfies the following condition:

Jrody=JyoJ,
on T, M for any two orthogonal vectors x,y € T,M.

Also we characterize the hypersurfaces for which the operator K, , satisfies the fol-

lowing condition:
Kz,y © Kz,u = Kz;u, o K@y

on T, M for any four orthogonal vectors z,y, z,u € T, M.

2. A characterization of n-dimensional hypersurfaces in R"*! with commuting
Jacobi operators

THEOREM 1. A hypersurface M in R"', n > 3, satisfies the commutation relation:

(1) Jyody=JyoJy
on T, M for all orthonormal pairs x,y € T, M and for all p € M if and only if exactly one
of the following two conditions for the eigenvalues A1, ..., \, of the Weingarten operator
of M holds:
1) )\1 = ...= )\n;
2) AM=...= A1 =0, A\, #0.
Proof. Let e1,...,e, and A1,..., A, be the eigenvectors and eigenvalues of the Wein-
garten operator of M™. Then we have [4]
0, k#1i,7;
Rei, ej,en) = ¢ —Nidjej, k=1i;
)\i)\jei, k= ]

The matrix of the Jacobi operator J,, where a is a unit tangent vector at point p € M™
and a = ale; + ... + ae,, is:

> z’;él(ai)Q)‘i)‘l —a'a® o —ata™ A\,
(2) —ala2)\1>\2 Z?:l, iig(ai)Q)\i)\g te —CLQ(ITL)\Q)\”
—ata" M\, —a2a Ao\, e Z?:L #n(ai)%\i}\n
Let b be a unit tangent vector such that g(a,b) = 0. Then, we find for the elements of
the matrix of the operator J, o J, with respect to ey, ..., ey:
(3) a0 dolld s smr = Y (=0°B" AN (—aa"AN)
k=1, k#s

+ zn: B Nids Y (B)2 XA

i=1, i#s i=1, i#s
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and
n

(4)  [[Jaodbllpq= Z (_bpbk)‘p)‘k)(_aqak)‘q)‘k)

k=1, k#p,q

n ) n
3T EPAA(—aPaA) + (BHAN,) S (@A,
i=1, i#p i=1, i#£p
where p # g and p,q = 1, ..., n. We have similar expressions for the matrix of the operator
Jp 0 J, with respect to ey, ..., e,. From (1) we have the following equation:
[Ja o Jbllp ¢ = 16 © Jallp g

for p < q, p,q=1,...,n and for an arbitrary orthonormal pair a,b. After some algebra
we have:
(5) iy Aiy ((—a™a™(0)? + (a)?bb%2 — (a)2b b 4 aa’ (b)) N\, M,

+ D (@)% = aa” (0%)?) (A, — Aiy) i,
in=1, inF£iy,in

+ > (—aPa b 4 et a” b)Y ) = 0.
da=1, i57i1,i2
We want to find all solutions of (5) for all orthonormal pairs a, b. We will find an arbitrary
orthonormal pair of vectors for which a non-trivial solution of (5) exists, i.e. a solution
which is not zero. Let a and b have the coordinates:

1, B

a'= g, aJZT, a® =0,
where ¢ < j, s #14,5,%,5,s=1,...,n,
V=1, =0,
where k # 1,4,7, k,l =1,...,n. We have
(6) AidjAk (A — Aj) = 0.

Let a and b have the coordinates:

where i < j’ k 7& i’ja § 7é iajvka iaj757
All solutions of (6) and (7) are:

9) M= =A1=0, A0
The solutions (8) and (9) are all solutions of (5). =
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REMARK 1. In the first case we obtain spaces of constant sectional curvature, in the sec-
ond we have ordinary parabolic forms. They are also spaces with zero constant sectional
curvature.

3. A characterization of n-dimensional hypersurfaces in R"*! with commuting
skew-symmetric curvature operators

THEOREM 2. A hypersurface M in R"', n > 4, satisfies the commutation relation:
(10) K:L’,y © Kz,u = Kz,u o Ka:,y

on T, M for all orthonormal vectors x,y,z,u € T,M and for all p € M if and only if
the eigenvalues A1, ..., A\, of the Weingarten operator of M satisfy one of the following
conditions:

D Al ==
2) M=...=X1=0, A\ #£0;
3) M=...=Xp2=0, A1 #0, A\, #0.

Proof. Similar to the proof of Theorem 1, let ey, ..., e, and A1, ..., A, be the eigenvectors

and eigenvalues of the Weingarten operator of M™. Let a = a'e; + ... 4+ a"e,, b =
blei +...+b%p, c=clei+...+c",, d =d'e; +...4+d"e, be four orthonormal tangent
vectors. The condition (10) is true if and only if A1,..., A, satisfy the system:
n
1) XX Y (@' = albh) (M - d'd¥) + (aFb - a'bF) (—cFd) — ddF)AR) =0
k=1,k#i,j
where i < jand 4,7 =1,...,n.

We aim to find all solutions of (11) for all orthonormal tangent vectors a, b, ¢, d and b.
First, we will find an arbitrary 4-tuple of orthonormal tangent vectors for which a non-
trivial solution of (11) exists, i.e. a solution which is not generated by a space of constant
sectional curvature. We put:

a®=-1, a'=0,

where s is fixed and i = 1,...,n, i # s;

bP:\/;, qué, b =0,

where p £ q,i=1,...,n and i # p, q;

ol L V3
2’ 2"’

where p# ¢q,i=1,...,n and i # p, q;
=1, a'=0

where k is fixed and i = 1,...,n, i # k. We have the system:

(12) AsAk(AZ = A2) =0
where s, k,p,g =1,...,n are pairwise different. All solutions of (12) are:
(13) IAil=...= |\l

(14) )\1::>\n—1:0; )\n#(),
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(15) A== A2 =0, An_1 £0, Ay #0.

It is easy to see that (14) and (15) are solutions of (11) for all orthogonal tangent
vectors. Using

Z ((a®t) — aTb*)(Fdt — 'dF) + (a®b' — a'bF) (—cFd + dd¥) =0
k=1,k#i,j
we see that (13) is a solution of (11) for all orthogonal tangent vectors. m

REMARK 2. Examples of hypersurfaces that fulfill the condition 1) of Theorem 2 are
IP-hypersurfaces. An IP-hypersurface in R™*! is a hypersurface in R"*! such that its
induced metric is an IP-metric [2], [1]. The IP-metric is a warped product metric of
the form ds® = dt? + f(t)ds% where ds% is a metric of constant sectional curvature K
and f(t) is a suitably chosen warping function f(t) = Kt?> + Ct + D. An example of a
hypersurface in R"*! with induced IP-metric of the standard metric of R**! is a rotated
hypersurface

rl = f(u')sin(u?)sin(u?). ..sin(u")
2?2 = f(u!)sin(u?)sin(u?). .. cos(u")
2"t = f(ul)sin(u?) cos(u?)

" = f(ul)cos(u?)

2"t = h(ul)

where

fu') =+/(u))2+Cul + D, 4D -C? >0,
h(u') = %\/4[) —C2In(C + 2(u! + +/(u!)? + Cul + D)).

By a direct check it is seen that relation 1) of Theorem 2 holds for the eigenvalues of
the Weingarten operator.
In the second case we have a flat hypersurface.
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