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Abstract. Let Mn be a hypersurface in Rn+1. We prove that two classical Jacobi curvature

operators Jx and Jy commute on Mn, n > 2, for all orthonormal pairs (x, y) and for all points p ∈

M if and only if Mn is a space of constant sectional curvature. Also we consider all hypersurfaces

with n ≥ 4 satisfying the commutation relation (Kx,y ◦ Kz,u)(u) = (Kz,u ◦ Kx,y)(u), where

Kx,y(u) = R(x, y, u), for all orthonormal tangent vectors x, y, z, w and for all points p ∈ M .

1. Introduction. Let ∇ be the Levi-Civita connection of a Riemannian manifold

(Mm, g). Let x, y and z be tangent vector fields on Mm. Then the associated curva-

ture tensor R(x, y, z) is defined by

R(x, y, z) = ∇x∇yz −∇y∇xz −∇[x,y]z.

The value of R(x, y, z) at a point p of M depends only on the values of x, y and z at p.

The classical Jacobi curvature operator

Jx : TpM → TpM,

induced by the unit vector x ∈ TpM and defined by

Jx(u) = R(u, x, x)

is a symmetric operator.

The skew-symmetric curvature operator Kx,y

Kx,y : TpM → TpM,
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is defined by

Kx,y(u) = R(x, y, u),

for any orthonormal pair (x, y) of tangent vectors at any point p in M and u ∈ TpM .

The curvature operator Kx,y does not depend on the oriented orthonormal basis chosen

for the oriented 2-plane span{x, y} [3].

Here, using the eigenvalues of the Weingarten map of M , we give a characterization of

those hypersurfaces in Rn+1 for which the operator Jx satisfies the following condition:

Jx ◦ Jy = Jy ◦ Jx

on TpM for any two orthogonal vectors x, y ∈ TpM .

Also we characterize the hypersurfaces for which the operator Kx,y satisfies the fol-

lowing condition:
Kx,y ◦ Kz,u = Kz,u ◦ Kx,y

on TpM for any four orthogonal vectors x, y, z, u ∈ TpM .

2. A characterization of n-dimensional hypersurfaces in Rn+1 with commuting

Jacobi operators

Theorem 1. A hypersurface M in Rn+1, n ≥ 3, satisfies the commutation relation:

Jx ◦ Jy = Jy ◦ Jx(1)

on TpM for all orthonormal pairs x, y ∈ TpM and for all p ∈ M if and only if exactly one

of the following two conditions for the eigenvalues λ1, . . . , λn of the Weingarten operator

of M holds:
1) λ1 = . . . = λn;

2) λ1 = . . . = λn−1 = 0, λn 6= 0.

Proof. Let e1, . . . , en and λ1, . . . , λn be the eigenvectors and eigenvalues of the Wein-

garten operator of Mn. Then we have [4]

R(ei, ej , ek) =







0, k 6= i, j;

−λiλjej , k = i;

λiλjei, k = j.

The matrix of the Jacobi operator Ja, where a is a unit tangent vector at point p ∈ Mn

and a = a1e1 + . . . + anen, is:












∑n

i=1 i 6=1(a
i)2λiλ1 −a1a2λ1λ2 · · · −a1anλ1λn

−a1a2λ1λ2

∑n

i=1, i 6=2(a
i)2λiλ2 · · · −a2anλ2λn

...
...

. . .
...

−a1anλ1λn −a2anλ2λn · · ·
∑n

i=1, i 6=n(ai)2λiλn













(2)

Let b be a unit tangent vector such that g(a, b) = 0. Then, we find for the elements of

the matrix of the operator Ja ◦ Jb with respect to e1, . . . , en:

‖Ja ◦ Jb‖n
s s s=1 =

n
∑

k=1, k 6=s

(−bsbkλsλk)(−asakλsλk)(3)

+

n
∑

i=1, i 6=s

(bi)2λiλs

n
∑

i=1, i 6=s

(bi)2λiλs
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and

‖Ja ◦ Jb‖p q =

n
∑

k=1, k 6=p,q

(−bpbkλpλk)(−aqakλqλk)(4)

+
n

∑

i=1, i 6=p

(bi)2λiλp(−apaqλpλq) + (−bpbqλpλq)
n

∑

i=1, i 6=p

(ai)2λiλq

where p 6= q and p, q = 1, . . . , n. We have similar expressions for the matrix of the operator

Jb ◦ Ja with respect to e1, . . . , en. From (1) we have the following equation:

‖Ja ◦ Jb‖p q = ‖Jb ◦ Ja‖p q,

for p < q, p, q = 1, . . . , n and for an arbitrary orthonormal pair a, b. After some algebra

we have:

λi1λi2 ((−ai1ai2(bi1)2 + (ai1)2bi1bi2 − (ai2)2bi1bi2 + ai1ai2(bi2)2)λi1λi2(5)

+

n
∑

ik=1, ik 6=i1,i2

((aik)2bi1bi2 − ai1ai2(bik)2)(λi1 − λi2)λik

+
n

∑

is=1, is 6=i1,i2

(−ai2aisbi1bis + ai1aisbi2bis)λ2
is

)) = 0.

We want to find all solutions of (5) for all orthonormal pairs a, b. We will find an arbitrary

orthonormal pair of vectors for which a non-trivial solution of (5) exists, i.e. a solution

which is not zero. Let a and b have the coordinates:

ai =
1

2
, aj =

√
3

2
, as = 0,

where i < j, s 6= i, j, i, j, s = 1, . . . , n,

bk = 1, bl = 0,

where k 6= l, i, j, k, l = 1, . . . , n. We have

λiλjλk(λi − λj) = 0.(6)

Let a and b have the coordinates:

ai = −
√

3

2
, aj =

√
3

4
, ak = −1

4
, as = 0;

bi =
1

2
, bj =

3

4
, bk = −

√
3

4
, bs = 0,

where i < j, k 6= i, j, s 6= i, j, k, i, j, s, k = 1, . . . , n. We have

λiλj(λi − λk)(λj + λk) = 0.(7)

All solutions of (6) and (7) are:

λ1 = . . . = λn(8)

and

λ1 = . . . = λn−1 = 0, λn 6= 0.(9)

The solutions (8) and (9) are all solutions of (5).
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Remark 1. In the first case we obtain spaces of constant sectional curvature, in the sec-

ond we have ordinary parabolic forms. They are also spaces with zero constant sectional

curvature.

3. A characterization of n-dimensional hypersurfaces in Rn+1 with commuting

skew-symmetric curvature operators

Theorem 2. A hypersurface M in Rn+1, n ≥ 4, satisfies the commutation relation:

Kx,y ◦ Kz,u = Kz,u ◦ Kx,y(10)

on TpM for all orthonormal vectors x, y, z, u ∈ TpM and for all p ∈ M if and only if

the eigenvalues λ1, . . . , λn of the Weingarten operator of M satisfy one of the following

conditions:
1) |λ1| = . . . = |λn|;
2) λ1 = . . . = λn−1 = 0, λn 6= 0;

3) λ1 = . . . = λn−2 = 0, λn−1 6= 0, λn 6= 0.

Proof. Similar to the proof of Theorem 1, let e1, . . . , en and λ1, . . . , λn be the eigenvectors

and eigenvalues of the Weingarten operator of Mn. Let a = a1e1 + . . . + anen, b =

b1e1 + . . .+bnen, c = c1e1 + . . .+cnen, d = d1e1 + . . .+dnen be four orthonormal tangent

vectors. The condition (10) is true if and only if λ1, . . . , λn satisfy the system:

λiλj

n
∑

k=1,k 6=i,j

((akbj − ajbk)(ckdi − cidk) + (akbi − aibk)(−ckdj − cjdk)λ2
k) = 0(11)

where i < j and i, j = 1, . . . , n.

We aim to find all solutions of (11) for all orthonormal tangent vectors a, b, c, d and b.

First, we will find an arbitrary 4-tuple of orthonormal tangent vectors for which a non-

trivial solution of (11) exists, i.e. a solution which is not generated by a space of constant

sectional curvature. We put:

as = −1, ai = 0,

where s is fixed and i = 1, . . . , n, i 6= s;

bp =

√
3

2
, bq =

1

2
, bi = 0,

where p 6= q, i = 1, . . . , n and i 6= p, q;

cp =
1

2
, cq = −

√
3

2
, ci = 0,

where p 6= q, i = 1, . . . , n and i 6= p, q;

dk = 1, ai = 0

where k is fixed and i = 1, . . . , n, i 6= k. We have the system:

λsλk(λ2
p − λ2

q) = 0(12)

where s, k, p, q = 1, . . . , n are pairwise different. All solutions of (12) are:

|λ1| = . . . = |λn|;(13)

λ1 = . . . = λn−1 = 0, λn 6= 0;(14)
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λ1 = . . . = λn−2 = 0, λn−1 6= 0, λn 6= 0.(15)

It is easy to see that (14) and (15) are solutions of (11) for all orthogonal tangent

vectors. Using
n

∑

k=1,k 6=i,j

((akbj − ajbk)(ckdi − cidk) + (akbi − aibk)(−ckdj + cjdk) = 0

we see that (13) is a solution of (11) for all orthogonal tangent vectors.

Remark 2. Examples of hypersurfaces that fulfill the condition 1) of Theorem 2 are

IP-hypersurfaces. An IP-hypersurface in Rn+1 is a hypersurface in Rn+1 such that its

induced metric is an IP-metric [2], [1]. The IP-metric is a warped product metric of

the form ds2 = dt2 + f(t)ds2
K where ds2

K is a metric of constant sectional curvature K

and f(t) is a suitably chosen warping function f(t) = Kt2 + Ct + D. An example of a

hypersurface in Rn+1 with induced IP-metric of the standard metric of Rn+1 is a rotated

hypersurface






































x1 = f(u1) sin(u2) sin(u3) . . . sin(un)

x2 = f(u1) sin(u2) sin(u3) . . . cos(un)
...

xn−1 = f(u1) sin(u2) cos(u3)

xn = f(u1) cos(u2)

xn+1 = h(u1)

ui ∈ Vi, Vi ⊂ R1, i = 1, . . . , n,

where

f(u1) =
√

(u1)2 + Cu1 + D, 4D − C2 > 0,

h(u1) =
1

2

√

4D − C2 ln(C + 2(u1 +
√

(u1)2 + Cu1 + D)).

By a direct check it is seen that relation 1) of Theorem 2 holds for the eigenvalues of

the Weingarten operator.

In the second case we have a flat hypersurface.
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