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Abstract. An almost cosymplectic (k, u, v)-space is by definition an almost cosymplectic man-
ifold whose structure tensor fields ¢, &, 7, g satisfy a certain special curvature condition (see
formula (16)). This condition is invariant with respect to the so-called D-homothetic transforma-
tions of almost cosymplectic structures. For such manifolds, the tensor fields ¢, h (= (1/2)L¢¢),
A (= —V¢) fulfill a certain system of differential equations. It is proved that the leaves of the
canonical foliation of an almost cosymplectic (k, u, v)-space with x < 0 are locally flat Kahle-
rian manifolds. A local characterization of such manifolds is established up to a D-homothetic
transformation of the almost cosymplectic structures.

1. Preliminaries. Let M be a connected, differentiable manifold of dimension 2n + 1,
n > 1. A quadruple (p,&,7,g) is called an almost contact metric structure [1] on M if
v, & n, g are, respectively, a (1,1)-tensor field, a vector field, a 1-form, a Riemannian
metric on M and

pP=—T+neE nE) =1 nX)=g(X8, g(X,¢Y)=g(X,Y)-nX)n).
In the above and in the sequel, X, Y, ... denote arbitrary vector fields on M if not other-
wise stated. Let @ denote the fundamental 2-form associated to an almost contact metric
structure by @(X,Y) = g(¢X,Y).
Given an almost contact metric structure (p, &, 7, g) on M, we say that the manifold
M and the structure (p, &, 1, g) are:

(a) almost cosymplectic if the forms n and @ are closed [10];

(b) cosymplectic if they are almost cosymplectic and the almost contact structure
(p,&,n) is normal (equivalently, Vi = 0, where V is the Levi-Civita connection deter-
mined by g [1]).
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Let M be an almost cosymplectic manifold. Let F be the codimension 1 foliation of
M, which is generated by the integrable distribution D = Ker#. Since D = Im ¢, D is
-invariant and a leaf (a maximal integral submanifold) N of & is p-invariant. Hence, ¢ in-
duces an almost complex structure J (J2 = —I) on N by JX = cp)? for any vector field X
tangent to N. Let G be the Riemannian metric induced on N, G(X,Y) = ¢(X,Y). Then
the pair (J,G) becomes an almost Hermitian structure on N (G(JX,JY) = G(X,Y)).
The fundamental form 2 (2(X,Y) = g(JX,Y)) of (J, @) is closed since it is the pull-back
of the closed form @. Therefore, (J, G) is an almost K&hlerian structure on N. In the case
when J is a complex structure, (J, G) becomes a K&hlerian structure on N. If (J,G) is

Kaéhlerian on every leaf of &, we will say that M is an almost cosymplectic manifold with
Kéhlerian leaves [5, 13].

2. Auxiliary tensor fields. Let M be an almost cosymplectic manifold. Consider the
(1,1)-tensor field A defined on M by

This is a geometric interpretation of A: for an arbitrary leaf N of F, the vector field &
restricted to IV is its normal vector field and AX = —V 3¢ is the shape operator with
respect to £.

Another application of A follows from the following fact [11]: an almost cosymplectic
manifold M has Kéhlerian leaves if and only if

(2) (Vxp)Y = —g(pAX,Y){ +n(Y)pAX.

The main algebraic properties of A can be found in [13],
(3) 9(AX,Y) = g(AY, X), Ap+pA=0, AL=0, noA=0.

For further use, we also define the (1,1)-tensor field h by

1
Observe that the tensor fields A and h are related by
(5) h=Ap, A=oph.
In fact, using (3) and Vep =0 (cf. eq. (2.10) in [11]), we get
2hX = (Lep) X = [§, pX] — ¢[§, X] = 24pX.

As a consequence of (3) and (5), one finds the following algebraic properties of h (cf. also
[7, 8], however the tensor field h defined in those papers differs in sign from ours)

(6) ¢g(hX,Y)=g(hY,X), hp+¢h=0, hA+Ah=0, h{E=0, noh=0.

In the sequel, we also need the following lemma:
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LEMMA 1. For the tensor field A, we have

(7) (VeA)p + ¢(VeA) =0,

(8) LeA=VeA

(9) R(X,Y)E = —(VxA)Y + (VyA)X,
(10) R(£,Y)E = —(VA)Y + A?Y,

where R(X,Y) = [Vx,Vy] — V[x y] are the curvature operators.

Proof. The covariant differentiation V¢ of the second equality of (3) and an application
of Ve =0 give (7). (8) can be found by a straightforward computation using (1). (9) is
just the integrability condition of (1). Finally, (10) follows from (9) by applying X = ¢
and the formulas (3), (1). =

3. D-homothetic transformations. Let M be an almost cosymplectic manifold and
(p,€,m,g) its almost cosymplectic structure. Let R, (M) be the subring of the ring of
smooth functions f on M for which df A n =0, or equivalently df = df ({)n.

Consider a D-homothetic transformation of (¢, &, 7, g) into an almost contact metric
structure (¢, &', 7', g') defined by

1
(11) ¢ =, §’=B£7 n=p8n ¢ =ag+ (B —anemn,

where « is a positive constant and § € R, (M), B # 0 at any point of M. Since dGAn =0,
it follows that dn’ = 0. Moreover d®’ = 0, since the fundamental forms @, &' of the
structures are related by &' = a .

Thus, a D-homothetic transformation of an almost cosymplectic structure (¢, €&, 7,9)
always gives a new almost cosymplectic structure (¢’,£’,7’, ¢') on the same manifold. For
two almost cosymplectic structures (¢,&,7,g) and (¢’, &', 1, ¢’) related by (11), we will
say that they are D-homothetic. In the sequel, geometric invariants corresponding to the
structure (¢, ¢, 1, ¢') will be marked by primes.

D-homothetic transformations of almost contact metric structures with «, 8 = const.
were studied in many papers (see [1, 12, 14], etc.).

PROPOSITION 1. For D-homothetic almost cosymplectic structures, the Levi-Civita con-
nections V' and V are related by

B —a
32
Proof. Clearly, the operation V' defined by the formula (12) is an affine connection on

M. V' is symmetric by the symmetries of V and A (cf. (3)). Next, using (11), we find

(Vxg)(Y, Z) = a(Vixg)(Y, Z) + 28dB(En(X)n(Y)n(2)
+ (8% = ) (V) (Y)n(Z) + n(Y)(Vin)(2)),

whence, by applying (12), (1), (3), we obtain V'g’ = 0, that is, V' is metric. Thus, V' is
the Levi-Civita connection with respect to g’, which completes the proof. m

(12) VY = VY — gax,vye + P& eme.
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PROPOSITION 2. For D-homothetic almost cosymplectic structures, we have

;1 1
(13) A=ZA W=gh
(14) RI(X,Y)E = % R(X,Y)E + dﬂﬁ(f) (n(X)AY — 5(Y)AX).

Proof. Using (1), (3), (11) and (12), we find

1 1
AX = -Vt =—-—-Vxé=-AX.
AR
By the above and (5), (11), we get also the second equality of (13). To prove (14), we
need the formula
B —a dp(§)
T g(AX, AY)E — 32
which is a consequence of (12), (13) and (3). Now, using (9) and (15), we find

R(X,Y)§ = =(VxA)Y + (Vy A)X

(15) (Vi) :% (VxA)Y — n(X)AY,

ap(€)
ﬁZ
(n(X)AY —n(Y)AX),

= - (=(VxA)Y +(VyA)X) +

dp(§)
62

(n(X)AY —n(Y)AX)

R(X,Y)¢ +

Q- -

completing the proof.

4. Auxiliary results. We are specially interested in almost cosymplectic manifolds
whose almost cosymplectic structure (¢, &, 7, g) satisfies the condition

(16) R(X,Y)E = n(Y)(kI + ph+ vA)X — n(X)(k] + ph+ vA)Y

with &, , v € R, (M). In the sequel, such a manifold will be called an almost cosymplectic
(K, i, v)-space and (@, &, n, g) will be called an almost cosymplectic (k, p, v)-structure.
Almost cosymplectic manifolds satisfying the condition (16) with x = const., p = v =
0 were studied in [4]; and with %,y = const., v =0 in [7, 8, 9].
Contact metric manifolds fulfilling the condition (16) with %, = const. and v = 0
were extensively studied in [2, 3] and many other papers; see also the monograph [1] for
conditions of this type.

PROPOSITION 3. For D-homothetic almost cosymplectic structures, if (¢,§,1,9) is an
almost cosymplectic (k, p,v)-structure, then (¢',&',n',g') is an almost cosymplectic

(K, 1, V") -structure with &', ', V" € Ry (M) = Ry, (M) being related to k, p, v by
’ U= vB —dp(§)

(17) "‘@I:%7 M:%7 T,

that 1is,
(18) R(X, V) =0 (YV)K'T+ W +VA)X —n/(X)(K'T+ /B + V' A)Y.

Proof. By applying (16) and next (11), (13) in (14) and making some computations, we
get both (18) and (17). =

The following algebraic lemma will be useful.
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LEMMA 2. Let B be a symmetric (1,1)-tensor field on an almost contact metric manifold
such that B¢ = 0. Then B has a unique decomposition into a sum B = B~ + BT, where
B~, BT are symmetric (1,1)-tensor fields such that

B ¢=B"¢ =0, ¢B~ —-B ¢=0, ¢B"+Btp=0.
Proof. Given B define

1 1
B” = 5(B—»By), B+=§(B+¢B<p)-

It is a straightforward verification that we obtained the desired decomposition. The
uniqueness of the decomposition can also be easily seen. m

PROPOSITION 4. For an almost cosymplectic (k, i, Vv)-space, the tensor field A and the
function k satisfy the relations

(19) A%Y = —k(Y —(Y)E) ,
(20) (VeA)Y = phY +vAY,
(21) dk(§) = 2vk.

Proof. Let us suppose B = R(&, ). First, note that for the tensor field B, the formula
(10) gives the decomposition mentioned in Lemma 2 with B~ = A? and BT = —VA.
This can be easily verified with the help of (3) and (7).

On the other hand, putting X = ¢ in (16) and using (3) and (6), we have

B=R()§=—r(I-n®E) — ph—vA

Considering the right hand side of the above formula and the formulas (3), (6), we find
B~ = —k(I —n®¢&) and BY = —uh — vA. Hence, by the uniqueness, we obtain (19)
and (20).

The covariant differentiation V¢ of (19) and an application of the relations V¢£ = 0,
Ven = 0 (which can be found in [11]), (6) give dx(€)(I —n ® &) = —2v A%, which again
by (19) leads to (21). m

From (19) and (3) it follows that at every point of an almost cosymplectic (k, y, v/)-
space: (1) K < 0; (2) k =0 if and only if A = 0; (3) if & < 0, then the eigenvalues of A
are 0 of multiplicity 1 and ++/—x both of multiplicity n.

LEMMA 3. For an almost cosymplectic (k, u,v)-space, if kK = 0 at a certain point of M,
then k vanishes identically on M.

Proof. Let Z be the closed subset of M containing the points ¢ at which x(q) = 0.
Suppose that p € Z. Choose a coordinate neighborhood U = (—a,a) x U around p such
that ¢ is the coordinate on the open interval (—a,a), (x!,...,2%") are the coordinates on
U and & = 0/0t, n = dt. Since dk A = 0, the function k restricted to Z depends on
t € (—a,a) only; and by (21) it satisfies the linear differential equation dx/dt = 2vk. Since
k vanishes at a certain ¢, kK = 0 identically on (—a,a). Hence k = 0 on the whole of U.

Therefore, the set Z is open. Finally, Z = M since M is connected and Z is nonempty. =
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PROPOSITION 5. For an almost cosymplectic (k, u,v)-space, the tensor fields ¢, h, A
fulfill the following system of differential equations:

(22) Lep=2h, Leh= —2kp+vh—pA, LeA=ph+vA.

Proof. The first equation follows from (4). The third equation follows from (8) and (20).
Now, taking the Lie derivative of the first relation of (5), next using the just obtained
third equation and (4), we find

Leh = (LeA)p + A(Lep) = (ph + vA)p + 2Ah,
which with the help of (3), (5) and (19) leads to the second equation. m

5. Main results. By virtue of Lemma 3, the following two typical situations should be
treated for almost cosymplectic (k, u, v)-spaces M: k = 0 identically on M or k < 0 at
every point of M.

PROPOSITION 6. An almost cosymplectic (0, u,v)-space is locally a product of an open
interval and an almost Kdhlerian manifold.

Proof. When k = 0, then A = 0 by (19), and next V€ = 0 by (1). Hence the assertion
follows. m

In the sequel, we restrict our investigations to the case when x < 0 because of the
above proposition.

THEOREM 1. Let M be an almost cosymplectic (k, u,v)-space with £ < 0. Then the leaves
of the canonical foliation F of M are locally flat Kdhlerian manifolds.

Proof. For an arbitrary almost cosymplectic manifold, the following curvature identity is
well known [11]:

— R(X,9Y, Z,§) = =2(Vaz9)(X,Y),
where R(-,-,-,-) denotes the Riemann curvature (0, 4)-tensor,
R(X1, Xo, X3, X4) = g(R(X1, X2) X3, X4).
On the other hand, for our almost cosymplectic (k, i, v)-space, using (16), we find
— R(X,9Y, 2,§) = =2e(n(Y)g(X, pZ) = n(X)g(Y, p2)),
which applied to the previous relation gives
(Vaz®)(X,Y) = s(n(Y)g(X, 9Z) — n(X)g(Y,9Z)).
Putting AZ instead of Z into the last equation and taking into account (19), k < 0 and

Ve, we get
(Vz2)(X,Y) =n(X)g(Y,pAZ) —n(Y)g(X, pAZ),
which is equivalent to (2). Thus, by a result of [13], M is almost cosymplectic with

Ka&hlerian leaves.
The rest of the proof will be divided into two parts.
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In the first part, we will prove that the leaves of F are flat in the case when x = —1.
Let N be an arbitrary leaf of the canonical foliation ¥ and (J, G) be the induced Kahlerian
structure on N. Let A be the Weingarten operator of N so that we have AX = AX for
any vector field tangent to N.

By Ay + ¢A =0 and (19), A fulfills the following relations:

(23) AJ+JA=0, A*=1I
They imply that +1 are the eigenvalues of A both of the same multiplicity. The corre-

sponding eigendistributions will be denoted by D; and Ds, dim Dy = dim Dy = n.
The tensor A, being the Weingarten operator of IV, satisfies the Codazzi equation

R(X,Y)¢ = —(VzA)Y + (V5 A)X,
where V is the Levi-Civita connection with respect to G. However, by (16), R()?, 57)«5 =0
and the last identity turns into

(Vi A)Y — (Vo A)X = 0.
Now, the tensor field A must be parallel since it is a Codazzi tensor field and has two
different constant eigenvalues. Equlvalently, the distributions Dy, Dy are parallel.
In what follows we denote by Xl, Y1, Zl, ...and X27 Y2, Zg, ... vector fields belonging

to Dy and Ds, respectively.
For the curvature tensor R of V, the parallelity of D; and D5 implies

(24) R(XZ,Y])Zk =0,

if Xi, ffj, Zk do not belong to the same distribution. Thus, R is completely determined
by its behavior on DZ 1 =1, 2. However, we will show that E|@7r =0 for 2 = 1, 2. Indeed,
by (23), we have J21 € Dy and JZ, € D;. Consequently, by virtue of the identity
R(X,Y)=R(JX,JY) and (24), we have

R(X1,Y1)Z, = R(JX1,JY1)Z; = 0, R(X2,Y3)Zy = R(J Xy, JY3)Zy = 0.

Thus, R=0 identically on N, that is, G is locally flat.

In the second part, we consider the case k # const. We make a D-homothetic trans-
formation (11) of the structure (p, £, 7, g) with o = 1 and 8 = \/—k. We obtain an almost
cosymplectic (', ¢/, v')-structure (¢’,&’,n’,¢') with ¥ = —1. By virtue of the first part,
the metric G’ induced from ¢’ on N is locally flat. But the metrics G and G’ induced
from g and ¢’ on the same leaf N are exactly the same. Thus, G is locally flat. m

PROPOSITION 7. An almost cosymplectic (k, p,v)-structure, k < 0, can be D-homo-
thetically transformed to an almost cosymplectic (—1, 1/, 0)-structure with u' = p//—k.

Proof. Let (p,£&,n, g) be an almost cosymplectic (k, i, v)-structure. Make the D-homothe-
tic transformation of the structure (¢, £, 71, g) with « = 1 and 3 = v/—x. Then by Proposi-
tion 3, we obtain an almost cosymplectic (k’, i/, v’)-structure (¢’, &', 7/, ¢') with &’ = —1,
w' = —p/v/—k and a certain v'; cf. formula (17). But by Proposition 4, formula (21), for
the structure (¢’,&’,n’,¢'), we must have dx'(¢') = 21/'k’. This clearly implies v/ = 0. =

For almost cosymplectic (—1, u, 0)-spaces, we have the following local characterization.
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THEOREM 2. Let M be an almost cosymplectic manifold of dimension 2n + 1. Given
p € Ry(M), the following two conditions (I) and (II) are equivalent:

(I) M is an almost cosymplectic (—1, y1,0)-space, that is,
(25) R(X,Y)E = n(¥)(~T + ph)X — n(X)(—T + ph)Y.

(IT) At any point p € M, there is a neighborhood U = (—a, a) X U of p with coordinates

(t,xt, ..., 2%"), t being a coordinate on (—a,a) and (x,...,2%") coordinates on U, and

on U the structure tensor ﬁelds v, &, m, g can be expressed as
P . .
J v _ Y — — Ayt J
(26) = Zg@ da’ ®(’)J 5_815’ n = dt, g-dt@dt—i—Zg”dx ® dz’
where the Latin indices take on values from the range {1,2,...,2n}, the sum is over the
repeated indices and ¢!, g;; are functions depending on t only and such that

(27) > hgry=+1ifj=i+n, —1ifi=j+n,0 otherwise.

Moreover, on U the tensor fields A and h can be written as
(28) A= ZA]dxe@— h = Zh%ix@—

where Aé-, h; are functions of t only, which satisfy the condition > AfAJ = 55 and the
following system of differential equations:

dy? ; dhl : dA? 4
o _opd, Ty Al YA

dt v dt ol — Al ar M

Proof. (I) = (II). Let M be an almost cosymplectic (—1, u, 0)-space and p be an arbitrary
point on M. According to Theorem 1 of [13], choose a coordinate neighborhood U’ around

p with Darboux coordinates (¢,2!,...,2%") such that U’ = (—a,a) x U, a > 0, where t
2n) T

(29)

is a coordinate on (—a,a) and (x!,...,2?") are coordinates on U. With respect to these

coordinates, the structure tensor fields ¢, £, 7, g are expressed as in the formulas (26) and
(27), but ¢!, g;; are functions depending on all coordinates t,z',...,2%" in general. Note

additionally that, by A = 0 and hé = 0, we also have (28) but Wlth Al hi depending

on the all coordinates ¢, z',...,2%" in general. With respect to this coordinate system,
(22) takes the form
o’ - on! , 0A! ;
30 It = 2h! —t =2 Al — = phl.
( ) at 17 at (‘01 ILL ([ at ,U (3

Observe that on U’, i is a function depending on ¢ only.

For any fixed t € (—a, a), the subset {t} x U C U, is an open part of a leaf of F. The
induced complex structure J and the shape operator A can be written on {t} x U in the
following way:

0 i 0
J=> ¢t dx®a— A=Y Al dac@ﬁ
Now, by Theorem 1 (the formula (23) should be considered too), we may assume that
(x',...,2%") are chosen such that on {t} x U
0 0 0 0 ~ 0 0 ~ 0 0

dri  Oxitn’ oxitn — g’ drt  Oxt’ dxitn —  Qpitn’
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This shows that <pg and Ag depend on t only. Consequently, hf are functions of ¢ only
in view of (5). And since the components &;; of the fundamental form ¢ are constants
and g;; = — > pF®,;, then g;; depend on ¢ only. Finally, (30) gives (29), and (19) gives
STASAL =57,

(IT) = (I). We have only to prove that (25) holds under the additional assumptions
(28) and (29).

Let X; = 0/0z". Then Vx, X; = Vx, X;, Ve X; = Vx,§. And since X;’s are Killing
vector fields, g(Vx,; X;, Xi) = 0 for any triple (X;, X;, Xz). Consequently, we have for
the Levi-Civita connection

Vx, X; =Vx,X; = —g9(X;, AX;)E, VeX;=Vx{=—-AX;, Ve£=0.
By the above formula and (28), (29), we compute
R(X;, X;)¢ = [Vx,,Vx,]6 = = Vx, AX; + Vx, AX;
= Z(—AfVXiXk + APV, Xi) =0,

k
vaxié- = _vﬁAXi = — Z <d;?tz Xi + A?Vng)

= —thka + A’X; = — phX; + X;.

Using the two last formulas, we find

R(Y,2)6 = Y'ZVR(X;, Xj)& + Z'n(Y)R(&, Xi)§ — Y'n(Z)R(€, X,)§
Z'n(Y)(—puhX; + X;) — Y(—phX; + X))
= —n2)Y +0(Y)Z + pn(2)hY —n(Y)hZ),

which is just the same as the formula (25). m

Investigations of the class of almost cosymplectic (k, p, v)-spaces will be continued in
our forthcoming paper [6].
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