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Abstra
t. An almost 
osymple
ti
 (κ, µ, ν)-spa
e is by de�nition an almost 
osymple
ti
 man-ifold whose stru
ture tensor �elds ϕ, ξ, η, g satisfy a 
ertain spe
ial 
urvature 
ondition (seeformula (16)). This 
ondition is invariant with respe
t to the so-
alled D-homotheti
 transforma-tions of almost 
osymple
ti
 stru
tures. For su
h manifolds, the tensor �elds ϕ, h (= (1/2)Lξϕ),
A (= −∇ξ) ful�ll a 
ertain system of di�erential equations. It is proved that the leaves of the
anoni
al foliation of an almost 
osymple
ti
 (κ, µ, ν)-spa
e with κ < 0 are lo
ally �at Kähle-rian manifolds. A lo
al 
hara
terization of su
h manifolds is established up to a D-homotheti
transformation of the almost 
osymple
ti
 stru
tures.1. Preliminaries. Let M be a 
onne
ted, di�erentiable manifold of dimension 2n + 1,
n > 1. A quadruple (ϕ, ξ, η, g) is 
alled an almost 
onta
t metri
 stru
ture [1℄ on M if
ϕ, ξ, η, g are, respe
tively, a (1, 1)-tensor �eld, a ve
tor �eld, a 1-form, a Riemannianmetri
 on M and

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ).In the above and in the sequel, X, Y, . . . denote arbitrary ve
tor �elds on M if not other-wise stated. Let Φ denote the fundamental 2-form asso
iated to an almost 
onta
t metri
stru
ture by Φ(X, Y ) = g(ϕX, Y ).Given an almost 
onta
t metri
 stru
ture (ϕ, ξ, η, g) on M , we say that the manifold
M and the stru
ture (ϕ, ξ, η, g) are:(a) almost 
osymple
ti
 if the forms η and Φ are 
losed [10℄;(b) 
osymple
ti
 if they are almost 
osymple
ti
 and the almost 
onta
t stru
ture
(ϕ, ξ, η) is normal (equivalently, ∇ϕ = 0, where ∇ is the Levi-Civita 
onne
tion deter-mined by g [1℄).2000 Mathemati
s Subje
t Classi�
ation: Primary 53C25; Se
ondary 53D15.Key words and phrases: almost 
osymple
ti
 manifold, D-homotheti
 transformation, almost
osymple
ti
 (κ, µ, ν)-spa
e.The paper is in �nal form and no version of it will be published elsewhere.
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212 P. DACKO AND Z. OLSZAKLet M be an almost 
osymple
ti
 manifold. Let F be the 
odimension 1 foliation of
M , whi
h is generated by the integrable distribution D = Ker η. Sin
e D = Im ϕ, D is
ϕ-invariant and a leaf (a maximal integral submanifold) N of F is ϕ-invariant. Hen
e, ϕ in-du
es an almost 
omplex stru
ture J (J2 = −I) on N by JX̃ = ϕX̃ for any ve
tor �eld X̃tangent to N . Let G be the Riemannian metri
 indu
ed on N , G(X̃, Ỹ ) = g(X̃, Ỹ ). Thenthe pair (J, G) be
omes an almost Hermitian stru
ture on N (G(JX̃, JỸ ) = G(X̃, Ỹ )).The fundamental form Ω (Ω(X̃, Ỹ ) = g(JX̃, Ỹ )) of (J, G) is 
losed sin
e it is the pull-ba
kof the 
losed form Φ. Therefore, (J, G) is an almost Kählerian stru
ture on N . In the 
asewhen J is a 
omplex stru
ture, (J, G) be
omes a Kählerian stru
ture on N . If (J, G) isKählerian on every leaf of F, we will say that M is an almost 
osymple
ti
 manifold withKählerian leaves [5, 13℄.
2. Auxiliary tensor �elds. Let M be an almost 
osymple
ti
 manifold. Consider the
(1, 1)-tensor �eld A de�ned on M by(1) AX = −∇Xξ.This is a geometri
 interpretation of A: for an arbitrary leaf N of F, the ve
tor �eld ξrestri
ted to N is its normal ve
tor �eld and AX̃ = −∇

X̃
ξ is the shape operator withrespe
t to ξ.Another appli
ation of A follows from the following fa
t [11℄: an almost 
osymple
ti
manifold M has Kählerian leaves if and only if(2) (∇Xϕ)Y = −g(ϕAX, Y )ξ + η(Y )ϕAX.The main algebrai
 properties of A 
an be found in [13℄,(3) g(AX, Y ) = g(AY, X), Aϕ + ϕA = 0, Aξ = 0, η ◦ A = 0.For further use, we also de�ne the (1,1)-tensor �eld h by(4) h =

1

2
Lξϕ.Observe that the tensor �elds A and h are related by(5) h = Aϕ, A = ϕh.In fa
t, using (3) and ∇ξϕ = 0 (
f. eq. (2.10) in [11℄), we get

2hX = (Lξϕ)X = [ξ, ϕX] − ϕ[ξ, X] = 2AϕX.As a 
onsequen
e of (3) and (5), one �nds the following algebrai
 properties of h (
f. also[7, 8℄, however the tensor �eld h de�ned in those papers di�ers in sign from ours)(6) g(hX, Y ) = g(hY, X), hϕ + ϕh = 0, hA + Ah = 0, hξ = 0, η ◦ h = 0.In the sequel, we also need the following lemma:



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 213Lemma 1. For the tensor �eld A, we have
(∇ξA)ϕ + ϕ(∇ξA) = 0,(7)

LξA = ∇ξA(8)
R(X, Y )ξ = −(∇XA)Y + (∇Y A)X,(9)
R(ξ, Y )ξ = −(∇ξA)Y + A2Y,(10)where R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ] are the 
urvature operators.Proof. The 
ovariant di�erentiation ∇ξ of the se
ond equality of (3) and an appli
ationof ∇ξϕ = 0 give (7). (8) 
an be found by a straightforward 
omputation using (1). (9) isjust the integrability 
ondition of (1). Finally, (10) follows from (9) by applying X = ξand the formulas (3), (1).3. D-homotheti
 transformations. Let M be an almost 
osymple
ti
 manifold and

(ϕ, ξ, η, g) its almost 
osymple
ti
 stru
ture. Let Rη(M) be the subring of the ring ofsmooth fun
tions f on M for whi
h df ∧ η = 0, or equivalently df = df(ξ)η.Consider a D-homotheti
 transformation of (ϕ, ξ, η, g) into an almost 
onta
t metri
stru
ture (ϕ′, ξ′, η′, g′) de�ned by(11) ϕ′ = ϕ, ξ′ =
1

β
ξ, η′ = βη, g′ = αg + (β2 − α)η ⊗ η,where α is a positive 
onstant and β ∈ Rη(M), β 6= 0 at any point of M . Sin
e dβ∧η = 0,it follows that dη′ = 0. Moreover dΦ′ = 0, sin
e the fundamental forms Φ, Φ′ of thestru
tures are related by Φ′ = α Φ.Thus, a D-homotheti
 transformation of an almost 
osymple
ti
 stru
ture (ϕ, ξ, η, g)always gives a new almost 
osymple
ti
 stru
ture (ϕ′, ξ′, η′, g′) on the same manifold. Fortwo almost 
osymple
ti
 stru
tures (ϕ, ξ, η, g) and (ϕ′, ξ′, η′, g′) related by (11), we willsay that they are D-homotheti
. In the sequel, geometri
 invariants 
orresponding to thestru
ture (ϕ′, ξ′, η′, g′) will be marked by primes.

D-homotheti
 transformations of almost 
onta
t metri
 stru
tures with α, β = const.were studied in many papers (see [1, 12, 14℄, et
.).Proposition 1. For D-homotheti
 almost 
osymple
ti
 stru
tures, the Levi-Civita 
on-ne
tions ∇′ and ∇ are related by(12) ∇′

XY = ∇XY − β2 − α

β2
g(AX, Y )ξ +

dβ(ξ)

β
η(X)η(Y )ξ.Proof. Clearly, the operation ∇′ de�ned by the formula (12) is an a�ne 
onne
tion on

M . ∇′ is symmetri
 by the symmetries of ∇ and A (
f. (3)). Next, using (11), we �nd
(∇′

Xg′)(Y, Z) = α(∇′

Xg)(Y, Z) + 2βdβ(ξ)η(X)η(Y )η(Z)

+ (β2 − α)((∇′

Xη)(Y )η(Z) + η(Y )(∇′

Xη)(Z)),when
e, by applying (12), (1), (3), we obtain ∇′g′ = 0, that is, ∇′ is metri
. Thus, ∇′ isthe Levi-Civita 
onne
tion with respe
t to g′, whi
h 
ompletes the proof.



214 P. DACKO AND Z. OLSZAKProposition 2. For D-homotheti
 almost 
osymple
ti
 stru
tures, we have
A′ =

1

β
A, h′ =

1

β
h(13)

R′(X, Y )ξ′ =
1

β
R(X, Y )ξ +

dβ(ξ)

β2
(η(X)AY − η(Y )AX).(14)Proof. Using (1), (3), (11) and (12), we �nd

A′X = −∇′

Xξ′ = − 1

β
∇Xξ =

1

β
AX.By the above and (5), (11), we get also the se
ond equality of (13). To prove (14), weneed the formula(15) (∇′

XA′)Y =
1

β
(∇XA)Y − β2 − α

β3
g(AX, AY )ξ − dβ(ξ)

β2
η(X)AY,whi
h is a 
onsequen
e of (12), (13) and (3). Now, using (9) and (15), we �nd

R′(X, Y )ξ′ = −(∇′

XA′)Y + (∇′

Y A′)X

=
1

β
(−(∇XA)Y + (∇Y A)X) +

dβ(ξ)

β2
(η(X)AY − η(Y )AX)

=
1

β
R(X, Y )ξ +

dβ(ξ)

β2
(η(X)AY − η(Y )AX),
ompleting the proof.4. Auxiliary results. We are spe
ially interested in almost 
osymple
ti
 manifoldswhose almost 
osymple
ti
 stru
ture (ϕ, ξ, η, g) satis�es the 
ondition(16) R(X, Y )ξ = η(Y )(κI + µh + νA)X − η(X)(κI + µh + νA)Ywith κ, µ, ν ∈ Rη(M). In the sequel, su
h a manifold will be 
alled an almost 
osymple
ti


(κ, µ, ν)-spa
e and (ϕ, ξ, η, g) will be 
alled an almost 
osymple
ti
 (κ, µ, ν)-stru
ture.Almost 
osymple
ti
 manifolds satisfying the 
ondition (16) with κ = const., µ = ν =

0 were studied in [4℄; and with κ, µ = const., ν = 0 in [7, 8, 9℄.Conta
t metri
 manifolds ful�lling the 
ondition (16) with κ, µ = const. and ν = 0were extensively studied in [2, 3℄ and many other papers; see also the monograph [1℄ for
onditions of this type.Proposition 3. For D-homotheti
 almost 
osymple
ti
 stru
tures, if (ϕ, ξ, η, g) is analmost 
osymple
ti
 (κ, µ, ν)-stru
ture, then (ϕ′, ξ′, η′, g′) is an almost 
osymple
ti

(κ′, µ′, ν′)-stru
ture with κ′, µ′, ν′ ∈ Rη ′(M) = Rη(M) being related to κ, µ, ν by(17) κ′ =

κ

β2
, µ′ =

µ

β
, ν′ =

νβ − dβ(ξ)

β2
,that is,(18) R′(X, Y )ξ′ = η′(Y )(κ′I + µ′h′ + ν′A′)X − η′(X)(κ′I + µ′h′ + ν′A′)Y.Proof. By applying (16) and next (11), (13) in (14) and making some 
omputations, weget both (18) and (17).The following algebrai
 lemma will be useful.



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 215Lemma 2. Let B be a symmetri
 (1,1)-tensor �eld on an almost 
onta
t metri
 manifoldsu
h that Bξ = 0. Then B has a unique de
omposition into a sum B = B− + B+, where
B−, B+ are symmetri
 (1,1)-tensor �elds su
h that

B−ξ = B+ξ = 0, ϕB− − B−ϕ = 0, ϕB+ + B+ϕ = 0.Proof. Given B de�ne
B− =

1

2
(B − ϕBϕ), B+ =

1

2
(B + ϕBϕ).It is a straightforward veri�
ation that we obtained the desired de
omposition. Theuniqueness of the de
omposition 
an also be easily seen.Proposition 4. For an almost 
osymple
ti
 (κ, µ, ν)-spa
e, the tensor �eld A and thefun
tion κ satisfy the relations

A2Y = −κ(Y − η(Y )ξ) ,(19)
(∇ξA)Y = µhY + νAY,(20)

dκ(ξ) = 2νκ.(21)Proof. Let us suppose B = R(ξ, ·)ξ. First, note that for the tensor �eld B, the formula(10) gives the de
omposition mentioned in Lemma 2 with B− = A2 and B+ = −∇ξA.This 
an be easily veri�ed with the help of (3) and (7).On the other hand, putting X = ξ in (16) and using (3) and (6), we have
B = R(ξ, ·)ξ = −κ(I − η ⊗ ξ) − µh − νA.Considering the right hand side of the above formula and the formulas (3), (6), we �nd

B− = −κ(I − η ⊗ ξ) and B+ = −µh − νA. Hen
e, by the uniqueness, we obtain (19)and (20).The 
ovariant di�erentiation ∇ξ of (19) and an appli
ation of the relations ∇ξξ = 0,
∇ξη = 0 (whi
h 
an be found in [11℄), (6) give dκ(ξ)(I − η ⊗ ξ) = −2νA2, whi
h againby (19) leads to (21).From (19) and (3) it follows that at every point of an almost 
osymple
ti
 (κ, µ, ν)-spa
e: (1) κ 6 0; (2) κ = 0 if and only if A = 0; (3) if κ < 0, then the eigenvalues of Aare 0 of multipli
ity 1 and ±

√
−κ both of multipli
ity n.Lemma 3. For an almost 
osymple
ti
 (κ, µ, ν)-spa
e, if κ = 0 at a 
ertain point of M ,then κ vanishes identi
ally on M .Proof. Let Z be the 
losed subset of M 
ontaining the points q at whi
h κ(q) = 0.Suppose that p ∈ Z. Choose a 
oordinate neighborhood U = (−a, a) × Ũ around p su
hthat t is the 
oordinate on the open interval (−a, a), (x1, . . . , x2n) are the 
oordinates on

Ũ and ξ = ∂/∂t, η = dt. Sin
e dκ ∧ η = 0, the fun
tion κ restri
ted to Z depends on
t ∈ (−a, a) only; and by (21) it satis�es the linear di�erential equation dκ/dt = 2νκ. Sin
e
κ vanishes at a 
ertain t, κ = 0 identi
ally on (−a, a). Hen
e κ = 0 on the whole of U .Therefore, the set Z is open. Finally, Z = M sin
e M is 
onne
ted and Z is nonempty.



216 P. DACKO AND Z. OLSZAKProposition 5. For an almost 
osymple
ti
 (κ, µ, ν)-spa
e, the tensor �elds ϕ, h, Aful�ll the following system of di�erential equations:(22) Lξϕ = 2h, Lξh = − 2κϕ + νh − µA, LξA = µh + νA.Proof. The �rst equation follows from (4). The third equation follows from (8) and (20).Now, taking the Lie derivative of the �rst relation of (5), next using the just obtainedthird equation and (4), we �nd
Lξh = (LξA)ϕ + A(Lξϕ) = (µh + νA)ϕ + 2Ah,whi
h with the help of (3), (5) and (19) leads to the se
ond equation.5. Main results. By virtue of Lemma 3, the following two typi
al situations should betreated for almost 
osymple
ti
 (κ, µ, ν)-spa
es M : κ = 0 identi
ally on M or κ < 0 atevery point of M .Proposition 6. An almost 
osymple
ti
 (0, µ, ν)-spa
e is lo
ally a produ
t of an openinterval and an almost Kählerian manifold.Proof. When κ = 0, then A = 0 by (19), and next ∇ξ = 0 by (1). Hen
e the assertionfollows.In the sequel, we restri
t our investigations to the 
ase when κ < 0 be
ause of theabove proposition.Theorem 1. Let M be an almost 
osymple
ti
 (κ, µ, ν)-spa
e with κ < 0. Then the leavesof the 
anoni
al foliation F of M are lo
ally �at Kählerian manifolds.Proof. For an arbitrary almost 
osymple
ti
 manifold, the following 
urvature identity iswell known [11℄:

R(X, Y, ϕZ, ξ) − R(ϕX, ϕY, ϕZ, ξ)− R(ϕX, Y, Z, ξ)

− R(X, ϕY, Z, ξ) = −2(∇AZΦ)(X, Y ),where R(·, ·, ·, ·) denotes the Riemann 
urvature (0, 4)-tensor,
R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4).On the other hand, for our almost 
osymple
ti
 (κ, µ, ν)-spa
e, using (16), we �nd

R(X, Y, ϕZ, ξ) − R(ϕX, ϕY, ϕZ, ξ)− R(ϕX, Y, Z, ξ)

− R(X, ϕY, Z, ξ) = −2κ(η(Y )g(X, ϕZ)− η(X)g(Y, ϕZ)),whi
h applied to the previous relation gives
(∇AZΦ)(X, Y ) = κ(η(Y )g(X, ϕZ) − η(X)g(Y, ϕZ)).Putting AZ instead of Z into the last equation and taking into a

ount (19), κ < 0 and

∇ξΦ, we get
(∇ZΦ)(X, Y ) = η(X)g(Y, ϕAZ) − η(Y )g(X, ϕAZ),whi
h is equivalent to (2). Thus, by a result of [13℄, M is almost 
osymple
ti
 withKählerian leaves.The rest of the proof will be divided into two parts.



ALMOST COSYMPLECTIC (κ,µ,ν)-SPACES 217In the �rst part, we will prove that the leaves of F are �at in the 
ase when κ = −1.Let N be an arbitrary leaf of the 
anoni
al foliation F and (J, G) be the indu
ed Kählerianstru
ture on N . Let Ã be the Weingarten operator of N so that we have ÃX̃ = AX̃ forany ve
tor �eld tangent to N .By Aϕ + ϕA = 0 and (19), Ã ful�lls the following relations:(23) ÃJ + JÃ = 0, Ã2 = I.They imply that ±1 are the eigenvalues of Ã both of the same multipli
ity. The 
orre-sponding eigendistributions will be denoted by D1 and D2, dim D1 = dim D2 = n.The tensor Ã, being the Weingarten operator of N , satis�es the Codazzi equation
R(X̃, Ỹ )ξ = −(∇̃

X̃
Ã)Ỹ + (∇̃

Ỹ
Ã)X̃,where ∇̃ is the Levi-Civita 
onne
tion with respe
t to G. However, by (16), R(X̃, Ỹ )ξ = 0and the last identity turns into

(∇̃
X̃

Ã)Ỹ − (∇̃
Ỹ

Ã)X̃ = 0.Now, the tensor �eld Ã must be parallel sin
e it is a Codazzi tensor �eld and has twodi�erent 
onstant eigenvalues. Equivalently, the distributions D1, D2 are parallel.In what follows we denote by X̃1, Ỹ1, Z̃1, . . . and X̃2, Ỹ2, Z̃2, . . . ve
tor �elds belongingto D1 and D2, respe
tively.For the 
urvature tensor R̃ of ∇̃, the parallelity of D1 and D2 implies(24) R̃(X̃i, Ỹj)Z̃k = 0,if X̃i, Ỹj , Z̃k do not belong to the same distribution. Thus, R̃ is 
ompletely determinedby its behavior on Di, i = 1, 2. However, we will show that R̃|Di
= 0 for i = 1, 2. Indeed,by (23), we have JZ̃1 ∈ D2 and JZ̃2 ∈ D1. Consequently, by virtue of the identity

R̃(X̃, Ỹ ) = R̃(JX̃, JỸ ) and (24), we have
R̃(X̃1, Ỹ1)Z̃1 = R̃(JX̃1, JỸ1)Z̃1 = 0, R̃(X̃2, Ỹ2)Z̃2 = R̃(JX̃2, JỸ2)Z̃2 = 0.Thus, R̃ = 0 identi
ally on N , that is, G is lo
ally �at.In the se
ond part, we 
onsider the 
ase κ 6= const. We make a D-homotheti
 trans-formation (11) of the stru
ture (ϕ, ξ, η, g) with α = 1 and β =

√
−κ. We obtain an almost
osymple
ti
 (κ′, µ′, ν′)-stru
ture (ϕ′, ξ′, η′, g′) with κ′ = −1. By virtue of the �rst part,the metri
 G′ indu
ed from g′ on N is lo
ally �at. But the metri
s G and G′ indu
edfrom g and g′ on the same leaf N are exa
tly the same. Thus, G is lo
ally �at.Proposition 7. An almost 
osymple
ti
 (κ, µ, ν)-stru
ture, κ < 0, 
an be D-homo-theti
ally transformed to an almost 
osymple
ti
 (−1, µ′, 0)-stru
ture with µ′ = µ/

√
−κ.Proof. Let (ϕ, ξ, η, g) be an almost 
osymple
ti
 (κ, µ, ν)-stru
ture. Make the D-homothe-ti
 transformation of the stru
ture (ϕ, ξ, η, g) with α = 1 and β =

√
−κ. Then by Proposi-tion 3, we obtain an almost 
osymple
ti
 (κ′, µ′, ν′)-stru
ture (ϕ′, ξ′, η′, g′) with κ′ = −1,

µ′ = −µ/
√
−κ and a 
ertain ν′; 
f. formula (17). But by Proposition 4, formula (21), forthe stru
ture (ϕ′, ξ′, η′, g′), we must have dκ′(ξ′) = 2ν′κ′. This 
learly implies ν′ = 0.For almost 
osymple
ti
 (−1, µ, 0)-spa
es, we have the following lo
al 
hara
terization.



218 P. DACKO AND Z. OLSZAKTheorem 2. Let M be an almost 
osymple
ti
 manifold of dimension 2n + 1. Given
µ ∈ Rη(M), the following two 
onditions (I) and (II) are equivalent:(I) M is an almost 
osymple
ti
 (−1, µ, 0)-spa
e, that is,(25) R(X, Y )ξ = η(Y )(−I + µh)X − η(X)(−I + µh)Y.(II) At any point p ∈ M , there is a neighborhood U = (−a, a)×Ũ of p with 
oordinates
(t, x1, . . . , x2n), t being a 
oordinate on (−a, a) and (x1, . . . , x2n) 
oordinates on Ũ , andon U the stru
ture tensor �elds ϕ, ξ, η, g 
an be expressed as(26) ϕ =

∑
ϕj

i dxi ⊗ ∂

∂xj
, ξ =

∂

∂t
, η = dt, g = dt ⊗ dt +

∑
gij dxi ⊗ dxj ,where the Latin indi
es take on values from the range {1, 2, . . . , 2n}, the sum is over therepeated indi
es and ϕj

i , gij are fun
tions depending on t only and su
h that(27) ∑
ϕk

i gkj = +1 if j = i + n, −1 if i = j + n, 0 otherwise.Moreover, on U the tensor �elds A and h 
an be written as(28) A =
∑

Aj
i dxi ⊗ ∂

∂xj
, h =

∑
hj

i dxi ⊗ ∂

∂xj
,where Ai

j, hi
j are fun
tions of t only, whi
h satisfy the 
ondition ∑

As
i A

j
s = δj

i and thefollowing system of di�erential equations:(29) dϕj
i

dt
= 2hj

i ,
dhj

i

dt
= 2ϕj

i − µAj
i ,

dAj
i

dt
= µhj

i .Proof. (I)⇒ (II). Let M be an almost 
osymple
ti
 (−1, µ, 0)-spa
e and p be an arbitrarypoint on M . A

ording to Theorem 1 of [13℄, 
hoose a 
oordinate neighborhood U ′ around
p with Darboux 
oordinates (t, x1, . . . , x2n) su
h that U ′ = (−a, a) × Ũ , a > 0, where tis a 
oordinate on (−a, a) and (x1, . . . , x2n) are 
oordinates on Ũ . With respe
t to these
oordinates, the stru
ture tensor �elds ϕ, ξ, η, g are expressed as in the formulas (26) and(27), but ϕj

i , gij are fun
tions depending on all 
oordinates t, x1, . . . , x2n in general. Noteadditionally that, by Aξ = 0 and hξ = 0, we also have (28) but with Aj
i , hj

i dependingon the all 
oordinates t, x1, . . . , x2n in general. With respe
t to this 
oordinate system,(22) takes the form(30) ∂ϕj
i

∂t
= 2hj

i ,
∂hj

i

∂t
= 2ϕj

i − µAj
i ,

∂Aj
i

∂t
= µhj

i .Observe that on U ′, µ is a fun
tion depending on t only.For any �xed t ∈ (−a, a), the subset {t} × Ũ ⊂ Up is an open part of a leaf of F. Theindu
ed 
omplex stru
ture J and the shape operator Ã 
an be written on {t}× Ũ in thefollowing way:
J =

∑
ϕj

i (t, ·) dxi ⊗ ∂

∂xj
, Ã =

∑
Aj

i (t, ·) dxi ⊗ ∂

∂xj
.Now, by Theorem 1 (the formula (23) should be 
onsidered too), we may assume that

(x1, . . . , x2n) are 
hosen su
h that on {t} × Ũ

J
∂

∂xi
=

∂

∂xi+n
, J

∂

∂xi+n
= − ∂

∂xi
, Ã

∂

∂xi
=

∂

∂xi
, Ã

∂

∂xi+n
= − ∂

∂xi+n
.
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i and Aj

i depend on t only. Consequently, hj
i are fun
tions of t onlyin view of (5). And sin
e the 
omponents Φij of the fundamental form Φ are 
onstantsand gij = −

∑
ϕk

i Φkj , then gij depend on t only. Finally, (30) gives (29), and (19) gives∑
As

iA
j
s = δj

i .(II) ⇒ (I). We have only to prove that (25) holds under the additional assumptions(28) and (29).Let Xi = ∂/∂xi. Then ∇Xi
Xj = ∇Xj

Xi, ∇ξXi = ∇Xi
ξ. And sin
e Xi's are Killingve
tor �elds, g(∇Xj

Xi, Xk) = 0 for any triple (Xi, Xj , Xk). Consequently, we have forthe Levi-Civita 
onne
tion
∇Xi

Xj = ∇Xj
Xi = −g(Xi, AXj)ξ, ∇ξXi = ∇Xi

ξ = −AXi, ∇ξξ = 0.By the above formula and (28), (29), we 
ompute
R(Xi, Xj)ξ = [∇Xi

,∇Xj
]ξ = −∇Xi

AXj + ∇Xj
AXi

=
∑

(−Ak
j∇Xi

Xk + Ak
i ∇Xj

Xk) = 0,

R(ξ, Xi)ξ = ∇ξ∇Xi
ξ = −∇ξAXi = −

∑ (dAk
i

dt
Xk + Ak

i ∇ξXk

)

= −µ
∑

hk
i Xk + A2Xi = − µhXi + Xi.Using the two last formulas, we �nd

R(Y, Z)ξ = Y iZjR(Xi, Xj)ξ + Ziη(Y )R(ξ, Xi)ξ − Y iη(Z)R(ξ, Xi)ξ

= Ziη(Y )(−µhXi + Xi) − Y i(−µhXi + Xi)

= − η(Z)Y + η(Y )Z + µ(η(Z)hY − η(Y )hZ),whi
h is just the same as the formula (25).Investigations of the 
lass of almost 
osymple
ti
 (κ, µ, ν)-spa
es will be 
ontinued inour forth
oming paper [6℄.
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