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Abstract. We study curves in Sl(2, C) whose tangent vectors have vanishing length with re-

spect to the biinvariant conformal metric induced by the Killing form, so-called null curves. We

establish differential invariants of them that resemble infinitesimal arc length, curvature and

torsion of ordinary curves in Euclidean 3-space. We discuss various differential-algebraic repre-

sentation formulas for null curves. One of them, a modification of the Bianchi-Small formula,

gives an Sl(2, C)-equivariant bijection between pairs of meromorphic functions and null curves.

The inverse of this formula is also differential-algebraic. The other one is based on an integral

formula deduced from that of R. Bryant, using certain natural differential operators on Rie-

mannian surfaces that we introduced in [7] for differential-algebraic representation formulas of

curves in C
3. We demonstrate some commands of a Mathematica package that resulted from our

investigations, containing algebraic and graphical utilities to handle null curves, their invariants,

representation formulas and associated surfaces of constant mean curvature 1 in H
3, taking into

consideration several models of H
3.

1. Introduction. Let Σ be a Riemannian surface and NΣ the set of all null curves

of Sl(2, C) defined on Σ, i.e., the set of all meromorphic maps F : Σ → Sl(2, C) such

that 〈dF, dF〉 = 0 for the biinvariant conformal metric 〈., .〉 of Sl(2, C). Null curves and

their differential invariants are in close relation to surfaces of constant mean curvature

1 (cmc-1-surfaces) in the 3-dimensional hyperbolic space H
3. Differential invariants of

null curves correspond to differential invariants of cmc-1-surfaces. However, instead of

surfaces, we will focus on curves and their invariants.

Roughly speaking, a representation formula for NΣ is an operator R acting from a

certain space E of sections of a bundle over Σ to NΣ. In most cases E is the space AΣ

of non-constant meromorphic functions, the space XΣ of meromorphic vector fields, the
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space LΣ of meromorphic 1-forms or one of the cartesian products AΣ × AΣ, AΣ × XΣ

or AΣ × LΣ. Often, instead of NΣ other spaces derived from it have to be consid-

ered, mainly, the factor space NΣ/Sl(2, C) by the left or right action of Sl(2, C), NC

modulo reparametrizations, or the subspace N∗
C

⊂ NC of curves in natural param-

etrization.

We distinguish between integral and algebraic representation formulas. The latter

are differential operators that occur in our examples always as rational expressions in

their argument functions and derivatives of these. The representation formulas containing

integrations are more difficult to handle, but may have simpler expressions and other

advantages. Simpler in structure but more difficult to handle than integral formulas is

R. Bryant’s representation formula




B : (g, ω) ∈ AΣ × LΣ → Bg,ω ∈ NΣ/Sl(2, C), where Bg,ω

is a solution of the linear system dBg,ω = Bg,ω

(
g −g2

1 −g

)
ω

(1.1)

involving the solution of a system of ordinary differential equations. This operator is not

correctly defined on NΣ, even if it is considered as an operator acting from AΣ × LΣ to

NΣ/Sl(2, C) (left hand side action). In general, solutions of (1.1) as well as of integral

representation formulas we are going to consider live on covering spaces of Σ. This formula

has many analogies to the classical Weierstraß formula

(g, ω) ∈ AΣ × LΣ → Wg,ω(z) =

∫ (
1 − g2(z), i

(
1 + g2(z)

)
, 2g(z)

)⊤
ω(1.2)

for null curves in C3. Both, (1.1) and (1.2) are almost bijective and establish a correspon-

dence between null curves in C3 and null curves inSl(2, C). Curves Wg,ω and Bg,ω that

correspond to the same pair (g, ω) are called cousins of each other. Some explicit cousin

constructions will be shown in section 7.2.

Besides (1.1), representation formulas we are going to consider in this paper are:

• An integral formula Mod : AΣ × AΣ → NΣ obtained by a modification of

R. Bryant’s formula (see section 4, equation (4.8)).

• An integral formula Iwa : AC × AC → NC obtained from a meromorphic

parametrization x : C3 → Sl(2, C) (see section 4, equation (4.3)) of Sl(2, C) coming

from the Iwasawa decomposition. Under x, (1.1) turns into a simple differential

equation for the 3 components of a curve in C3 whose solution gives Iwa.

• A family M(n,k,l) : AΣ ×XΣ → NΣ (n > 2, n−1 > k ≥ 0, l ∈ {0, 1, . . . , ‘Min{k, n−
k − 1}}) of algebraic formulas is obtained by removing integrations occurring in

Mod. M(n,k,l) is almost bijective. It can be inverted by integrations (see section 5,

equation (5.5))

• Finally, a modification of A. Small’s formula (see [11], [10] or [13]) leads to an

algebraic formula BS : (f ,g) ∈ AΣ × AΣ → NΣ depending on two arguments.

For this purpose a partial operation between null curves is defined, assigning to

any pair (F1, F2) of null curves such that their Bryant data g1 and g2 (i.e., the

first arguments of (1.1)) are equal, a new null curve BSf ,g = F1 (F2)
−1

. BSf ,g is
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invariant with respect to the fractional linear action of Sl(2, C) on functions of AΣ.

It coincides with a formula derived in ([9]) by different methods.

On NΣ two differential invariants π′2 : NΣ → LΣ ⊗ LΣ and κ2 : NΣ → AΣ are

defined with properties similar to those of null curves in C
3 (see [5] and [6]). We call π′

the infinitesimal natural parameter and κ the null curvature. Together with some kind of

torsion, defined as τ = i κ′/κ, these invariants resemble the classical invariants of curves in

Euclidean 3-space. We associate in section 3 with any null curve an orthonormal moving

frame and prove an analogue of Frenet’s system of differential equations, showing that π

and κ form a complete set of invariants of null curves with respect to the right and left

action of Sl(2, C).

We compute these invariants for the representation formulas listed above, i.e., if E is

the space of functions E corresponding to one of these formulas, we derive formulas for

the compositions π′2 ◦ R : E → LΣ ⊗ LΣ and κ ◦R : E → AΣ.

In the appendix we show examples illustrating some commands of a Mathematica-

package cmc1.m that arose from the necessity to collect the great amount of formulas

and operations concerning null curves in electronic code. This package is still unfinished.

It will be completed and improved. It contains some more material than is discussed

here, for instance integral representation formulas for curves with preassigned natural

parameter, but also much of technical commands related to cmc-1-surfaces and plotting

utilities that produce pictures of the surfaces (in the ball model as well as in the upper

half space model of H3) with least time needed, depending on the complexity of the

parametrization of the corresponding null curve. Still, a manageable formula producing

curves with preassigned curvature is missing.

2. The biinvariant conformal metric of Sl(2, C). The group Sl(2, C) carries a natural

biinvariant conformal metric, i.e., a field 〈., .〉 of symmetric, nondegenerate C-bilinear

forms on the tangent bundle, defined by left-translation of 1/8 of the Killing form B

of the Lie algebra sl(2, C) to the points of Sl(2, C). Explicitly, for X, Y ∈ sl(2, C) and

g ∈ Sl(2, C):




B(X, Y ) = tr(adX ◦ adY ) = 8 x11y11 + 4 x12y21 + 4 x21y12,

〈
l∗gX, l∗gY

〉
=

B(X, Y )

8
, where X =

(
x11 x12

x21 −x11

)
, Y =

(
y11 y12

y21 −y11

)
,

(2.1)

i.e., B(X, X) = −8 Det(X), and 〈t, s〉 = −B
(
(l−1

g )∗t, (l−1
g )∗s

)
/8 for any two tangent

vectors t, s ∈ Tg(sl(2, C))

The complex metric 〈., .〉 induces a complex connection ∇ on the tangent bundle of

Sl(2, C) by the usual formula defining the Levi-Civita connection in the Riemannian case,

namely, for arbitrary meromorphic vector fields X, Y, Z on Sl(2, C) the scalar product

2 〈X,∇ZY 〉 is given by the Koszul formula

Z 〈X, Y 〉 + Y 〈X, Z〉 − X 〈Y, Z〉 + 〈Z, [X, Y ]〉 − 〈X, [Y, Z]〉 + 〈Y, [X, Z]〉 .(2.2)

We use the Iwasawa decomposition of Sl(2, C) to define local coordinates. The follow-

ing rational map is a parametrization of an open dense part U ⊂ Sl(2, C).
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



x :




a

b

c


 ∈ C3 → 1

2 a b

( (
1 + a2

)
b2 i + b2 c + a2

(
−i + b2 c

)

i
(
−1 + a2

)
b2 1 − i b2 c + a2

(
1 + i b2 c

)
)

=

(
cos(i log a) − sin(i log a)

sin(i log a) cos(i log a)

)( b 0

0
1

b

)(
1 c

0 1

)
.

(2.3)

Local inverses of x can be expressed in terms of square roots. One has

x−1(F) =




±
√

A − i C/
√

A + i C

±
√

A − i C
√

A + i C

i + A B + i B C − i A D + C D

A2 + C2


 for F =

(
A B

C D

)
∈ Gl(2, C),(2.4)

i.e., x−1 is defined as a meromorphic map on Gl(2, C). If F ∈ Sl(2, C) then the third

component of x−1(F) becomes (A B + C D)/(A2 + B2).

In terms of these coordinates the metric tensor of 〈., .〉 is given by

(gij)
3
i,j=1 =

1

2 a2 b2




2 b2 0 i a b4

0 2 a2 0

i a b4 0 0


 ,(2.5)

while the matrices
(
Γ1

ij

)
,
(
Γ2

ij

)
,
(
Γ3

ij

)
of the Christoffel symbols are




−1

a

1

b
0

1

b
0 0

0 0 0




,




0 0
−i b3

2 a

0
−1

b
0

−i b3

2 a
0 0




,




0
2 i

a b3
0

2 i

a b3
0

1

b

0
1

b
0




(2.6)

respectively.

3. Null curves in Sl(2, C). Let Σ be a Riemannian surface. A null curve γ : Σ →
Sl(2, C) is a nonconstant meromorphic map of Σ into C3 whose tangent vector has length

0 with respect to the conformal metric 〈., .〉. For a holomorphic curve γ(z) in Sl(2, C)

define the sequence of higher order tangent vectors by

T1 = γ′, Tn+1 = ∇T1
Tn.

If γ is a null curve, then 〈∇T1,∇T1〉 can be regarded as a biquadratic differential on

Σ. We define the infinitesimal natural parameter π of γ by π′(z) = 4

√
〈∇T1,∇T1〉. If γ is

a full curve, i.e., if T1,T2,T3 are linearly independent, then π(z) is locally well defined

by choosing a definite branch of the square root function and integrating.

Definition 3.1. The natural parameter π and the null curvature κ of a null curve γ in

Sl(2, C) are given by

π =

∫
4

√
〈T2,T2〉, κ(π) =

√
〈T3(π),T3(π)〉,(3.1)

where in the second case it is assumed that γ is parametrized by its natural parameter.
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Similar to arc length, curvature and torsion in the case of curves in Euclidean space

R
3, the functions π and κ form a complete system of invariants, i.e., a null curve is

uniquely determined by them up to transformation with elements of Sl(2, C) from the

right and left.

Proposition 3.1. Let γ be a full null curve parametrized by its natural parameter p,

T1,T2, . . . the infinite sequence of it’s higher order tangent vectors, and Mn = (µij)
n
i,j=1

a finite part of the matrix of the scalar products µij(π) = 〈Ti(π),Tj(π)〉. Then M5 is the

following matrix:



0 0 −1 0 κ2

0 1 0 −κ2 −3 κ κ′

−1 0 κ2 κ κ′ κ′2 + κ κ′′ − κ4

0 −κ2 κ κ′ κ4 2 κ3 κ′

κ2 −3 κ κ′ κ′2 + κ κ′′ − κ4 2 κ3 κ′ κ2
(
κ4 + 7 κ′2 − 2 κ κ′′

)




.(3.2)

Moreover, the 4-th order tangent vector is expressed in terms of the vector fields

T1,T2,T3 as follows:

T4(π) = −κ(π) κ′(π)T1(π) − κ2(π)T2(π).(3.3)

Proof. Successive differentiation of the equations 〈T1,T1〉=0, 〈T2,T2〉=1 and 〈T3,T3〉
= κ2 yields the entries µij for 1 ≤ i, j ≤ 4, except µ44. Assuming that T1,T2,T3

are linearly independent, scalar multiplication of an ansatz T4 = aT1 + bT2 + cT3

with T1,T2, T3 respectively gives 3 equations from which a, b, c can be computed, to

obtain (3.3). Next, from (3.3) and the entries computed until now we obtain the entry

µ44 = 〈T4,T4〉 = κ4. The other entries are obtained by continuing in this way.

Next, we will discuss an analogue of the system of Frenet equations. Let γ be a null

curve in natural parametrization, defined on C, i.e., we assume that 〈γ′′(z), γ′′(z)〉 = 1.

Choosing locally a branch of the square root we define κ(z) =
√
〈γ′′′(z), γ′′′(z)〉 and an

orthonormal moving frame (T,N,B) along γ by

T = T2, N =
1

κ
T3, and B = i

(
κT1 +

1

κ
T3

)
.(3.4)

Proposition 3.2. With these notations, the following analogue of Frenet’s equations of

R
3 holds:

∇T = κN, ∇N = −κT +
i κ′

κ
B, ∇B = − i κ′

κ
N.(3.5)

The proof is straightforward, using the matrix (3.2) of scalar products and (3.3).

Choose a local chart on Sl(2, C), assume that z = π is the natural parameter and

combine the tangent vectors T(z),N(z),B(z) to an orthogonal matrix M(z). Then (3.5)

becomes a linear system of ordinary differential equations whose solution gives T(z) and

by another integration F. In a similar way one could proceed with the vectors T1,T2,T3,

using equation (3.3) to obtain T1 and in turn F. Therefore, the following existence and

uniqueness theorem holds.
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Theorem 3.1. A null curve F in Sl(2, C) is completely determined by its natural param-

eter π, its curvature κ and an initial value F(z0). Any two null curves F1, F2 with the

same invariants are congruent under the two-side action of Sl(2, C) on itself.

Given a null curve F =

(
A B

C D

)
: Σ → Sl(2, C), consider its Maurer-Cartan deriva-

tive N = F−1dF. Since the determinant and the trace of N are zero, there exist a function

g and a 1-form ω such that

N =

(
g −g2

1 −g

)
ω.(3.6)

we infer from N = F−1dF that



ω =N21 = A dC − C dA and

g(z) =
N11

N21
=

D dA − BdC

A dC − C dA
=

N12

N22
=

D dB − BdD

A dD − C dB
.

(3.7)

Conversely, given a meromorphic function g and a meromorphic differential ω on Σ,

we obtain a null curve F by solving the system N = F−1dF. In general, F will be defined

only locally, or on a covering space of Σ. We call the pair (g, ω) the Bryant data of F.

The relation between classes [F] = {L F|L ∈ Sl(2, C)} of left translates of null curves

and their Bryant data (g, ω) is Sl(2, C)-equivariant, if the action of Sl(2, C) given by

(R, [F]) →
[
FR−1

]
, R ∈ Sl(2, C), is considered. Namely, if R =

(
a b

c d

)
, the Bryant

data of FR−1 are (g̃, ω̃) given by

(g, ω) → (g̃, ω̃) =

(
a g + b

c g + d
, (c g + d)2ω

)
(3.8)

and the assignment (R, (g, ω)) → (g̃, ω̃) of (3.8) is a left group action of Sl(2, C) on the

space of all such pairs (g, ω).

Proposition 3.3. The natural parameter π and the curvature κ of a null curve γ(z) =

Bg,ω(z) given by Bryant’s formula (1.1) in terms of a meromorphic function g and a

meromorphic 1-form ω are




π′4(z) =ω(z)2 g′(z)2and

κ(z)=−2 ω(z)
3
g′(z)

3
+ 4 g′(z)

2
ω′(z)

2
+ ω(z)

2
g′′(z)

2−
=2 ω(z) g′(z) (−2 ω′(z) g′′(z) + g′(z) ω′′(z)) .

(3.9)

If the parametrization of γ(z) is the natural one, i.e., if ω(z) g′(z) = 1, the null curvature

is given by

κ(z) = −2 − 3 g′′(z)2

g′(z)
2 +

2 g(3)(z)

g′(z)
= −2 − (S(g)(z))

2
,(3.10)

where S(g)(z) =

√
3g′′2 − 2g′g(3)

g′2
is the Schwarzian derivative of g.

4. Representation formulas containing integrations only. There exist several pos-

sibilities to change the input data g, ω of the Bryant formula so that the corresponding

null curve is given by integrals of the new data. We discuss two of them here.
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First, we consider the parametrization x defined in (2.3) and the pull back h(., .) =

x∗ 〈., .〉 of the invariant metric of Sl(2, C) to C
3. Considering an arbitrary curve

γ(z) = (a(z), b(z), c(z))⊤ in C
3, the infinitesimal arc length of γ can be computed as

h(γ′(z), γ′(z)) = − 1
8Det(N (z)), where N (z) = F−1(z) F′(z) : C → sl(2, C) is the Maurer-

Cartan derivative of the curve F(z) = x(γ(z)). The resulting expression is

〈N (z),N (z)〉 = h (γ′(z), γ′(z)) = −
(

a′2(z)

a2(z)
+

b′2(z)

b2(z)
+

i b2(z) a′(z) c′(z)

a(z)

)
.(4.1)

We solve the equation h (γ′(z), γ′(z)) = 0 for c′(z). Integration yields

c(z) =

∫
i a(z)

b2(z) a′(z)

(
a′2(z)

a2(z)
+

b′2(z)

b2(z)

)
dz.(4.2)

In this way we obtain an integral representation formula (a, b) → Iwaa,b(z) =

x(a(z), b(z), c(z)), where a, b are arbitrary meromorphic functions and c is given by (4.2).

Its explicit form is




Iwaa,b(z) =
1

2 a b

( (
a2 + 1

)
b2 −i

(
a2 − 1

)
+
(
a2 + 1

)
b2
∫

µ(z) dz

i
(
a2 − 1

)
b2 a2 + 1 + i

(
a2 − 1

)
b2
∫

µ(z) dz

)
,

where µ is the differential form µ =
i da

a b2
+

i a db2

b4 da
.

(4.3)

The Bryant data of this curve are

g =
−i a(z) b′(z)

b3(z) a′(z)
−
∫

µ(z)dz, ω =
i b2 da

a
(4.4)

In section 8.2 it will be shown how the formula Iwaa,b is encoded with Mathematica.

Also, the results of the above for the Bryant data g, ω, the natural parameter and the

null curvature of Iwaa,b are computed there. The relevant Mathematica commands can

be used to derive the following purely algebraic representation formula.

In order to derive a second integral formula let F =

(
A B

C D

)
be a solution of

dF = FN , where N =

(
g −g2

1 −g

)
ω and g and ω are a meromorphic function and a

meromorphic 1-form respectively on a Riemannian surface Σ. A second integral repre-

sentation formula is obtained by expressing the Bryant data g and ω in terms of the

functions A, B. Rewrite dF = FN as
(

d A d B

d C d D

)
=

(
A B

C D

)
N =

(
A g + B −g (A g + B)

C g + D −g (C g + D)

)
ω.,(4.5)

We infer from (4.5) that

g = −dB

dA
= −dD

dC
and ω = AdC − CdA.

Altogether, a list of various expressions for ω can be derived, of which we show the

following samples:

ω = AdC − CdA =
dA2

B dA − AdB
=

dC2

D dC − CdD
=

dA dC

D dA − CdB
.(4.6)
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Considering now the functions A and B as independent variables, replacing g = −dB/dA

and ω = AdC − CdA in N , we see that the vector (A, B) is a solution of the system

(dA, dB) = (A, B)Bg,ω. A second linearly independent solution is obtained by the re-

duction of order of d’Alembert (see for instance [12]). This gives the following integral

representation formula:

Bg,ω =




A B

−A

∫
α

1

A
− B

∫
α


 , where α =

dA2

A2 (A dB − B dA)
.

We simplify the 1-form α by substituting

a = −1/A and b = −B/A(4.7)

to obtain the simpler expression

Bg,ω = Moda,b =
1

a




−1 −b
∫

β b

∫
β − a2


 , where β =

da2

db
.(4.8)

Proposition 4.1. Let a, b be meromorphic functions on a Riemannian surface Σ such

that the differential β of (4.8) can be integrated, i.e., there exist a meromorphic function f

on Σ such that df = β. The formula (4.8) defines an operator (a, b) → Moda,b mapping

pairs of meromorphic functions on Σ to null curves in Sl(2, C) whose Bryant data are

g = −a db − b da

da
, ω =

da2

a2 db
.(4.9)

In terms of a local coordinate z on Σ, the derivative of the natural parameter of the curve

Moda,b is obtained by

(π′(z))
2

=
b′(z) a′′(z) − a′(z) b′′(z)

a(z) b′(z)
.(4.10)

This formula for π′ follows from (4.9) and (3.9). One can obtain it also indepen-

dently using the parameterization x of Sl(2, C) and the Christoffel symbols (2.6). As

a consequence of this the natural parametrization of Moda,b is obtained if we choose

bcan(z) =
∫

a′e−
∫

a/a′dz dz. For the null curvature κ(z) of Moda,b a large differential ex-

pression in a and b is obtained, which becomes simpler in natural parametrization π(z),

using the function bcan:

κ(π) =
8 a(π) a′2(π)a′′(π) + a2(π)(a′′2(π) − 2a′(π) a(3)(π)) − a4(π) − 8a′4(π)

a2(π) a′2(π)
.(4.11)

Let us note that given an arbitrary function π0(z) as prospective infinitesimal natural

parameter, the differential equation π2
0(z) = b′(z) a′′(z)−a′(z) b′′(z)

a(z) b′(z) can be solved for b(z)

by integrations. Inserting the resulting expression in (4.8) gives the following integral

representation formula for null curves with prescribed natural parameter.
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



Moda,π0
=

1

a

(−1 −ν0

ν2 ν0 ν2 − a2

)
, where ν0(z) =

∫ z

0

eµ(t)dt,

ν2(z) =

∫ z

0

a′2(t) eµ(t) dt, µ(t) =

∫
a′′(t) − a(t) π0(t)

a′(t)
dt

(4.12)

5. A family of algebraic representation formulas for null curves in Sl(2, C). One

can try to remove integration from any representation formula like (1.1), (4.3), or (4.8)

by replacing integrands by differential expressions in other functions such that the in-

tegrals become explicit. So, for instance, replacing in the Weierstraß formula (1.2) the

differential form ω by g(3)(z), where g(z) is the local representative of g with respect to a

local coordinate z on Σ, gives integrals that can be made explicit by partial integration.

A more refined and flexible method turning the Weierstraß formula into an algebraic

one was studied in our paper [7], where we introduced differential operators Pn(g,h),

(n = 3, 4, . . .), mapping pairs (g,h) consisting of a meromorphic function g and a mero-

morphic vector field h on a Riemannian surface Σ to exact forms ω on Σ. Moreover, also

gω,g2ω, . . . ,gn−1ω are exact and functions Gn,k(g,h) such that dGn,k(g,h) = gkω,

(k = 0, 1, 2, . . . , n−1), can be expressed as linear combinations of the operators Pn(g,h),

as will be explained below.

Replacing in (1.2) ω,gω,g2ω by dGn,0(g,h), dGn,1(g,h), dGn,2(g,h), respectively,

yields an algebraic representation formula. It is shown that the operator Vn can be

inverted without integrations by elementary operations and that it is Sl(2, C)-invariant.

A slightly different version of V3 was introduced in ([9]) by another method turning

Bryant’s formula into an algebraic one. We call it the Bianchi-Small formula in the next

section (see formula (6.1)).

We are now going to show how the operators Gn,k of [7] can be applied to turn (4.8)

into an algebraic formula. Let Σ be a connected Riemannian surface, AΣ the set of

non-constant meromorphic functions, XΣ the space of meromorphic vector fields, LΣ the

space of meromorphic 1-forms, and

(AΣ × LΣ)∗n =
{
(f , ω) ∈ AΣ × LΣ

∣∣ ω, f ω, f2 ω . . . , fn−1 ω are exact
}

.

A sequence Pn : AΣ × XΣ → LΣ of nonlinear differential operators such that

(f ,Pn(f ,h)) ∈ (AΣ × LΣ)∗n for n ≥ 3 and (f ,h) ∈ AΣ ×XΣ is given by:

P0(f ,h) = 〈df ,h〉 df and Pn(f ,h) = d

(
Pn−1(f ,h)

df

)
.(5.1)

Showing that (f ,Pn(f ,h)) ∈ (AΣ × LΣ)∗n for all (f ,h) ∈ AΣ × XΣ is a simple induction

argument (see [7]). The first three members of the sequence Pn(f, h) are




P1 = f ′ h′ + h f ′′,

P2 =
f ′ h′ f ′′ − h f ′′2 + f ′2 h′′ + h f ′ f (3)

f ′2
, and

P3 =−3 f ′ h′ f ′′2 + 3 h f ′′3 + 2 f ′2 h′ f (3)4 h f ′ f ′′ f (3) + f ′3 h(3) + h f ′2 f (4)

f ′4
.

In the local setting, the operators h → Pn(f, h) can be inverted by integration:
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Proposition 5.1. If ω = Pn(f, h) then

h =
1

df

(
1

(n − 1)!

n−1∑

i=0

{
(−1)i

(
n

i

)
fn−i

∫
f iω

}
+

n−1∑

i=0

cif
i

)
,

where c0, c1, . . . , cn−1 are constants of integration.

In addition to this property, the integrals of f i Pn(f ,h) can be expressed explicitly in

terms of f and Pn−k−1(f ,h),Pn−k(f ,h), . . . ,Pn−1(f ,h). To this end we define a double

sequence Gk,n : AΣ × XΣ → AΣ, n = 3, 4, 5, . . . , 0 ≤ k < n, of nonlinear differential

operators recursively by



G0,1(f ,h) = 〈df ,h〉 , G0,n(f ,h) =
Pn−1(f ,h)

df
and

Gk,n(f ,h) = fk Pn−1(f ,h)

df
− k Gk−1,n−1(f ,h).

(5.2)

Then, dGk,n(f ,h) = fk Pn(f ,h), as can be proved by induction. From the recursion

rule (5.2) the following explicit expression of Gk,n is derived:

Gk,n(f ,h) =

k∑

j=0

(−1)k−j k!

j!
f j Pj+n−k−1(f ,h)

df
.(5.3)

Local expressions of Gk,3(f, h) for k = 0, 1, 2 are

G0,3 =
1

f ′3
(f ′ h′ f ′′ − h f ′′2 + f ′2 h′′ + h f ′ f (3)),

G1,3 =
1

f ′3
(f f ′2 h′′ + f h f ′ f (3) − f ′3 h′h f ′2 f ′′ + f f ′ h′ f ′′ − f h f ′′2),

G2,3 =
1

f ′3
(2 h f ′4 − 2 f f ′3 h′ − 2 f h f ′2 f ′′

+ f2 f ′ h′ f ′′ − f2 h f ′′2 + f2 f ′2 h′′ + f2 h f ′ f (3)).

Another useful property of the operators Gk,n is the following:

Theorem 5.1. For any natural numbers n, k, l with

n > 2, k ∈ {0, 1, . . . , n − 1} and l ∈ {0, 1, . . . , Min{k, n − k − 1}}
we have

dGk,n dGk,n = dGk−l,n dGk+l,n.(5.4)

The proof follows trivially from the fact that dGk,n(f ,h) = fk Pn(f ,h) and

dGk±l,n(f ,h) = fk±l Pn(f ,h).

By means of the operators dGk,n, the integral
∫

β =
∫

da2/db occurring in (4.8)

can be made explicit. Putting a = Gk,n(f ,h) and b = Gk−l,n gives
∫

da2/db = Gk+l,n

by (5.4).

Corollary 5.1. Let n, k, l be integers as above. For any Riemannian surface Σ the op-

erator M(n,k,l), defined below, maps AΣ ×XΣ into the space NΣ of null curves.

(f ,h) ∈ AΣ ×XΣ → M
(n,k,l)
f ,h =

1

Gk,n

(
−1 −Gk−l,n

Gk+l,n Gk−l,n Gk+l,n − G2
k,n

)
.(5.5)
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For the following let us confine ourselves to the case l = 1 and denote M
(n,k)
f ,h =

M
(n,k,1)
f ,h . The operator M

(n,k)
f ,h can be inverted by integrations in the following way:

Proposition 5.2. Let F be a null curve in Sl(2, C) and denote the entries of its first row

by A = F1,1 and B = F1,2. Then a function f ∈ AΣ and a vector field h ∈ XΣ such that

F = M
(n,k)
f ,h are obtained as

f =
dA

B dA − A dB
,

and

h =
1

df

1

(n − 1)!

n−1∑

i=0

{
(−1)i

(
n

i

)
fn−i

∫
f iω

}
+

1

df

n−1∑

i=0

cif
i, where ω =

1

fk
d

(−1

A

)
.

Proof. Start from (5.5) with A = −1/Gk,n(f ,h), B = −Gk−1,n(f ,h)/Gk,n(f ,h). We

obtain {
d (−1/A) = dGk,n(f ,h) = fk Pn(f ,h) and

d (−B/A) = dGk−1,n(f ,h) = fk−1 Pn+1(f ,h).
(5.6)

Therefore:
d (−1/A)

d (−B/A)
=

dA

B dA − A dB
=

fk Pn(f ,h)

fk−1 Pn(f ,h)
= f .

This gives f in terms of A and B. In order to obtain h it is sufficient to divide the first

of the equations (5.6) by fk . One obtains the equation ω = f−k d (−1/A) = Pn(f ,h).

The inversion formula of proposition (5.1) gives an expression of h in terms of ω as

announced.

In a similar way, the Bryant data of M
(n,k,l)
a,b can be computed using (4.6):

Proposition 5.3. Let f and h be a meromorphic function and a meromorphic vector

field on Σ respectively and let a null curve F : Σ → Sl(2, C) be given as F(z) = M
(n,k)
f ,h (z)

for n − 1 > k > 0. Then F(z) = Bg,ω(z), where the Bryant data (g, ω) of F(z) are

g = f−l Gk,n(f ,h) − Gk−l,n(f ,h), ω = − fk+l Pn(f ,h)

G2
k,n(f ,h)

.(5.7)

Equation (5.7) gives dg = −l f−l−1 Gk,n(f ,h) df . Therefore, the squared infinitesimal

natural parameter is

ω dg =
l fk−1Pn(f ,h) df

Gk,n(f ,h)
.

This is also the Hopf differential of the cmc-1-surface corresponding to Bg,ω(z).

6. An invariant version of the representation formula of A. J. Small. In this

section we consider a modified version of an algebraic representation formula for null

curves in Sl(2, C) that will be called the Bianchi-Small formula here. It was developed

by A. J. Small in [11] with techniques of algebraic geometry. However, in implicit form

it can be found in the classical book [2] of L. Bianchi where its derivation was based on

geometric ideas concerning congruences of spheres and the rolling of pairs of isometric
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surfaces in R3 on each other (see also [10]). The following algebraic formula is quoted

from [11]:

BSf =
1

2 (f ′)3/2

(
2f ′2 − ff ′′ f (2f ′ + zf ′′) − 2zf ′2

−f ′′ 2f ′ + zf ′′

)
.(6.1)

Its Bryant data are g(z) = z and ω(z) = (S(f)(z))2 /4, where S(f)(z) is the Schwarzian

derivative of f , i.e., the system (1.1) becomes

d

dz
BSf (z) =

3f ′′2 − 2f ′f (3)

4 f ′2
BSf (z)

(
z −z2

1 −z

)
.(6.2)

Let Σ be a Riemannian surface. In order to turn BSf into a globally defined differential

operator BSf : AΣ ×AΣ → NΣ mapping pairs (f ,g) of meromorphic functions on Σ to

null curves in Sl(2, C) let us define a partial operation of muliplication on the set NΣ . Let

g and ω be a meromorphic function and a meromorphic 1-form on C respectively. Here

we denote by Fg,ω the null curve with Bryant data (g, ω), and by Ag,ω, Bg,ω, Cg,ω, Dg,ω

the entries of the matrix Fg,ω, i.e.,

Fg,ω =

(
Ag,ω Bg,ω

Cg,ω Dg,ω

)
with F′

g,ω = Fg,ωXg,ω and Xg,ω =

(
g −g2

1 −g

)
ω.

Two null curves Fg,ω1
and Fg,ω2

whose pairs (g, ω1), (g, ω2) of Bryant data agree in

their first member can be combined as Fg,ω1
F−1

g,ω2
to form a new null curve, namely

Proposition 6.1. For any meromorphic function g and any meromorphic 1-forms ω1, ω1

Fg,ω1
F−1

g,ω2
= Fg̃,ω̃ where

ω̃ = (ω1 − ω2) (Cg,ω2
g + Dg,ω2

)
2

and g̃ =
Ag,ω2

g + Bg,ω2

Cg,ω2
g + Dg,ω2

.(6.3)

Proof. Put F = Fg,ω1
F−1

g,ω2
. From dFg,ω1

= Fg,ω1
Xg,ω1

, dFg,ω2
= Fg,ω2

Xg,ω2
it follows

that

F−1dF = Fg,ω2
F−1

g,ω1

(
Fg,ω1

Xg,ω1
F−1

g,ω2
− Fg,ω1

F−1
g,ω2

Fg,ω2
Xg,ω2

F−1
g,ω2

)

= Fg,ω2
(Xg,ω1

− Xg,ω2
) F−1

g,ω2
= Fg,ω2

Xg,ω1−ω2
F−1

g,ω2
.

The last matrix is

(ω1 − ω2)

(
Ag,ω2

Bg,ω2

Cg,ω2
Dg,ω2

)(
g −g2

1 −g

)(
Dg,ω2

−Bg,ω2

−Cg,ω2
Ag,ω2

)

= (ω1 − ω2) (Cg,ω2
g + Dg,ω2

)2
(

g̃ −g̃2

1 −g̃

)
= Xg̃,ω̃.

The Bryant data of any two null curves of the form BSf1
and BSf2

agree in their

first entries: g1(z) = z. Therefore, a new algebraic representation formula, denoted by

the same symbol but depending on two meromorphic functions, is obtained as

BSf,g = BSf BS−1
g .(6.4)

A direct computation gives:
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Proposition 6.2. The derivative of BSf,g is

dBSf,g(z)

dz
=

(S(f)(z))2 − (S(g)(z))2√
f ′(z)

√
g′(z)

(
f(z) −f(z) g(z)

1 −g(z)

)
.(6.5)

Therefore, an inversion formula and the Bryant data of BSf,g are obtained immediately.

Proposition 6.3. If

BSf,g(z) =

(
A B

C D

)
then f =

dA

dC
, g = −dD

dC
.(6.6)

BSf,g can be expressed by the Bryant formula as BSf,g = Bg,ω, where

ω =
(S(f)(z))

2 − (S(g)(z))
2

4 g′(z)
.(6.7)

Since the difference of the squares of the Schwarzian derivatives of two meromorphic

functions is a quadratic form, we conclude that if Σ is a Riemannian surface and f ,g are

two meromorphic functions on Σ, f, g the local expressions of f ,g in some holomorphic

chart then the operator (f ,g) → BSf ,g := BSf,g is well defined on Σ and yields an

algebraic representation formula for null curves.

Proposition 6.4. Let Σ be a Riemannian surface, f ,g ∈ AΣ, and f(z), g(z) local repre-

sentatives of f ,g respectively. The quadratic differential dπ2 of the squared infinitesimal

parameter of BSf ,g is dπ2 = dg ω = ((S(f)(z))2 − (S(g)(z))2)/4. For the null curvature

of BSf ,g we obtain with the help of Mathematica the following local expression:

κ2
f,g(z) =

5 ∆′(z)2

4 ∆(z)
3 − ∆′′(z)

∆(z)
2 − (S(g)(z))2

∆(z)
− 2(6.8)

where ∆(z) = ((S(f)(z))2 − (S(g)(z))2)/4 is the local expression of dπ2, i.e., dπ2 =

∆(z)dz2.

We note that (6.8) has global meaning by definition. It does not depend on the local

variable z, i.e., if w = τ (z) is an arbitrary parameter transformation then κ2
f◦τ,f◦τ (z) =

κ2
f,g(τ (z)). A Mathematica verification of this and derivation of (6.8) are given in sec-

tion 8.2.

Occurrence of Schwarzian derivatives in (6.7) suggests that BSf ,g should be invariant

with respect to the action of Sl(2, C) by fractional linear operations on functions f ,g ∈
AΣ. In fact, let R =

(
a b

c d

)
be an Sl(2, C)-matrix and

f̃ =
a f + b

c f + d
, g̃ =

ag + b

cg + d
and, consequently, dg̃ = (cg + d)−2dg.

A direct computation with (6.6) gives:

Proposition 6.5. If R, f , g, f̃ , g̃ are as above then BS
f̃ ,g̃ = RBSf ,g R−1.

Finally, let us note that, up to sign, the operator (f ,g) → BSf ,g coincides with a

representation formula of Small-type derived in [9] by elementary operations as
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(g, G) → F =

(
G p − a G q − b

p q

)
, a =

√
dG

dg
, b = −g a, p =

da

dG
, q =

db

dG
.(6.9)

Conversely, given a null curve as above, g and G are reobtained from F as the hyperbolic

Gauss map G = dA/dC = dB/dD and the secondary Gauss map g = −dB/dA =

−dD/dC.

7. Mathematica implementations. From any Mathematica window the package

cmc1.m can be loaded by typing <<cmc1.m, provided it is contained in one of the directo-

ries specified in the path variable $Path of the Mathematica installation, for instance in

the actual working directory. All commands come with a usage information, accessed by

typing ?command and telling something on functionality, meaning and format (functions,

matrices, numbers, etc.) and arrangement of the arguments.

Bryant data, squared infinitesimal natural parameter and null curvature of an

arbitrary null curve F are obtained by the commands nullcurveToBryantdata,

nullcurveCanParameterPrime and nullcurveCurvature respectively. The first one is a

Mathematica version of formulas like (3.7) or (4.6). The latter are obtained by inverting

the operator Moda,b of (4.8). By (4.7), functions a and b such that Moda,b is the given

null curve F are a = −1/A and b = −B/A where A = F1,1 and B = −F1,2/F1,1. Having

a and b, π′2 and κ are obtained with Mathematica versions of the formulas (4.10) and

the general, more involved case of (4.11) related to arbitrary parametrization of F.

7.1. Null curves of constant curvature. Curves with constant curvature are analogues of

helices in R3. The command Sl2CFrameModified[a,b][z] of cmc1.m is the Mathematica

counterpart of the integral representation formula Moda,b(z) (see (4.8)). Choosing a(z) =

em z and b(z) = en z as arguments for this operator gives null curves of constant curvature.

Null curves with prescribed values π′(z) = a and κ = b, a, b ∈ C, are obtained for

m =
a
√√

b2 − 4 − b√
2

, n =
a
(√

b2 − 4 − b − 2
)

√
2
√√

b2 − 4 − b
.

The corresponding curve is

Fa,b(z) = Modem z,en z (z) =




−e−(m z) −e(−m+n) z

em z−n z m2

2 m n − n2

em z (m − n)
2

(2 m − n) n


 .(7.1)

This can be seen by typing

ff[m_,n_][z_]=Sl2CFrameModified[Exp[m#]&,Exp[n#]&][z]

nullcurveToBryantdata[ff[m,n]][z]

ncpp=nullcurveCanParameterPrime[ff[m,n]][z]

nckappa=nullcurveCurvature[ff[m,n]][z]

{ncpp,nckappa}/.Solve[{ncpp==a^2,nckappa==b},{m,n}]//FullSimplify

m z - n z 2 m z 2
-(m z) (-m + n) z E m E (m - n)

{{-E , -E }, {-------------, -------------}}
2 (2 m - n) n

2 m n - n

n z 2 2 2
E (-m + n) m 2 m - 2 m n + n
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{{-------------, -(------)}, m (m - n), -----------------}
m n z 2

E n -m + m n

2 2 2 2
{{a , b}, {a , b}, {a , b}, {a , b}}

We show plots of the corresponding cmc-1-surfaces in the ball model of H
3 for several

values of a and b:

a = π′ = i, κ = 1 + 2i a = π′ = i, κ = 2 + i a = π′ = 1, κ = 1− i

Curves with constant curvature can also be produced with Bryant’s formula. Let us

put g(z) = z2, ω(z) = a z. The null curve Bg,ω is obtained with the command

ff[a_][z_]=Sl2CFrameBR2[#^2&,a#&][z]//FullSimplify

producing the response
2

Sqrt[a] z
2 2 Sqrt[2] Sinh[----------]

Sqrt[a] z 2 Sqrt[a] z Sqrt[2]
{{Cosh[----------], -(z Cosh[----------]) + ------------------------},

Sqrt[2] Sqrt[2] Sqrt[a]

2 2
Sqrt[a] z 2 Sqrt[a] z

Sqrt[a] Sinh[----------] 2 Sqrt[a] z Sinh[----------]
Sqrt[2] Sqrt[a] z Sqrt[2]

{------------------------, Cosh[----------] - ---------------------------}}
Sqrt[2] Sqrt[2] Sqrt[2]

The natural parameter and the null curvature of this curve are:

{nullcurveCanParameterPrime[ff[a]][z],nullcurveCurvature[ff[a]][z]}

2
{2 a z , -2}

By theorem 3.1, since for b = −2 the curvatures agree this curve must be a right

translate of a reparametrization of the curve Fa,b = Modem z,en z given in 7.1.

By proposition 6.1 two curves Bz2,a z and Bz2,b z can be combined to give a new null

curve

F(z) = Bz2,a z

(
Bz2,b z

)−1
=




ca cb −
sa sb

√
b√

a

√
2

(
cb sa√

a
− ca sb√

b

)

cb sa
√

a − ca sb

√
b√

2
ca cb −

sa sb
√

a√
b



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where cb = cosh(
√

b z2/
√

2), ca = cosh(
√

a z2/
√

2), sb = sinh(
√

b z2/
√

2), sa =

sinh(
√

a z2/
√

2). This curve has constant infinitesimal natural parameter and constant

null curvature, namely, its Bryant data, infinitesimal natural parameter and curvature

are the following:

ff[z_]=ff[a][z].Inverse[ff[b][z]]//FullSimplify;

nullcurveToBryantdata[ff][z];

{nullcurveCanParameterPrime[ff][z]//Sqrt,nullcurveCurvature[ff][z]}

2
Sqrt[b] z

Sqrt[2] Tanh[----------] 2
Sqrt[2] Sqrt[b] z 2

{------------------------, (a - b) z Cosh[----------] }
Sqrt[b] Sqrt[2]

2 -2 (a + b)
{Sqrt[2] Sqrt[(a - b) z ], ----------}

a - b

7.2. Implementations of Bryant’s formula and cmc-1-cousins of minimal surfaces. Try-

ing to attack the system (1.1) directly with Mathematica command NDSolve will be

unsuccessful even for simplest input data (g, ω). However, NDSolve is more successful if

fed with Riccati or ordinary linear equations. The package cmc1.m contains two programs

Sl2CFrameBR[g,omega][z] and Sl2CFrameBR1[g, omega][c1, c2][z] that reduce the

integration of (1.1) to that of two (different) Riccati-equations and several integrations.

A third program Sl2CFrameBR2[g, om][c1, c2][z] tries to find algebraic solutions by

reducing the system to a homogeneous second order linear equation. Often, the output

is highly involved, containing huge expressions in special functions. It should be taken

with some care and checked with other methods. We could observe that Sl2CFrameBR2 in

Mathematica version 4.1 produced incorrect results and found that the error was caused

by fake solutions that NDSolve returned to differential equations x2 y′′ + a x y′ + b y = 0

of Euler type with integer coefficients a, b.

Let (g, ω) be the pair of Bryant data of a null curve F(z) = Bg,ω(z) in Sl(2, C). The

same pair produces a null curve Φ(z) = Wg,ω(z) in C3 by the Weierstraß formula (1.2).

The two curves F(z) and Φ(z) are called cousins of each other. They share many prop-

erties. We mention only that the corresponding minimal surface in R3 and cmc-1-surface

H3 are isometric. The construction of explicit expressions of cmc-1-cousins of a minimal

surface is not possible in most cases. In other cases some efforts and elaborated techniques

lead to interesting results. In [3] explicit but involved expressions for the cousins of the

trinoid are obtained.

We show here an example, where the command Sl2CFrameBR finds the cmc-1-cousin

of a minimal surface considered in [14] in connection with examples of cmc-1-surfaces

with irregular ends. The Weierstraß data of this surface are

g(z) =
e2 z (−1 + z)

1 + z
, ω(z) =

2 (1 + z)
2

e2 z z2
.(7.2)

These are used as input data for the Bryant formula. Below are some Mathematica

commands producing the explicit parametrization (7.3) of this curve curve and the final

curve. The output of the command Sl2CFrameBR[g,omega][z] is a huge expression that
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0
2.5

5
7.5

-5
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0
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-5

-2.5

0

2.5

On the left the minimal surface in R
3 corresponding to the Weierstraß data (7.2). Its

cmc-1-cousin displayed in the upper half space model of H
3 on the right.

is simplified with the commands PowerExpand and FullSimplify. The evaluation takes

a few minutes. For a check we compute the Bryant data of the resulting expression.

{omega[z_]=(2*(1+z)^2)/E^(2*z)*z^-2,g[z_]=E^(2*z)*(z-1)/(1 + z),

lc:=(ZuhuanYuNullCurve0[z_]=Sl2CFrameBR[g,omega][z];

ZuhuanYuNullCurve1[z_]=ZuhuanYuNullCurve0[Sqrt[5]*z]//Simplify;

ZuhuanYuNullCurve[z_]=ZuhuanYuNullCurve1[z/Sqrt[5]]//FullSimplify)//Timing;

ZuhuanYuNullCurve[z]//PowerExpand//FullSimplify

{bryantdata=nullcurveToBryantdata[ZuhuanYuNullCurve][z]//FullSimplify,

F(z) =
1

5
√

2 z ez

( √
5 τ z + σ (4 + 5 z) e2 z

(
σ (4 − 5 z) +

√
5 τ z

)

−5 σ z −
√

5 τ (4 + 5 z) e2 z
(√

5 τ (5 z − 4) − 5 σ z
)
)

,(7.3)

with σ = sinh(
√

5 z), τ = cosh(
√

5 z).

In general, it is easier to start with a null curve in Sl(2, C), determine its Bryant

data and from these the corresponding null curve in C3. Next, we discuss an example

based on the formula (4.3). In the special case a(z) = eb(z) the 1-form µ of (4.3) becomes

µ = i
(
1 + b2

)
b−4 db and Iwaa,b turns into the following purely algebraic formula:

Iwaeb,b =




b cosh b
cosh b + 3 b (b cosh b + sinh b)

3 i b2

i b sinh b sinh b +
3 b cosh b + sinh b

3 b2


 .(7.4)

The differential invariants of this curve can be computed with the methods of section 8.2.

For the special choice b(z) →
√

b(z) + 2 we obtain the following simple expressions: Put
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Ĩwab = Iwaa,c(z) with a(z) = e
√

b(z)+2 and c(z) =
√

b(z) + 2. The infinitesimal natural

parameter and the null curvature of Ĩwab are

π′ =

√
b db

2 (b + 2)
and κ(z) = −2 − 28

b(z)3
+

4

b(z)2
.(7.5)

Note that for all choices of the function b(z) these curves are reparametrizations of one

of them, obtained for b(z) = 1.

The following commands produce a 3-parameter family of null curves depending on

3 complex parameters k, l, m and the output of the last gives the curve (7.4).

a1[z_] = m*Exp[k*a[z]]; b1[z_] = l*a[z];

ff[a_][k_, l_, m_][z_] = Sl2CFrameIwasawa[a1, b1][z] // FullSimplify;

ff[a][1, 1, 1][z] // FullSimplify;

We compute the Bryant data g and ω of this curve. A suitable code for the Weierstraß

formula (1.2) returns the minimal cousin:

wei[om_, g_][z_] := Integrate[{(1-g[z]^2)/2,(I/2)*(1+g[z]^2),g[z]}*om[z],z];

g[z_] = nullcurveToBryantdata1[ff[a][k, l, m]][z] // Simplify;

om[z_] = nullcurveToBryantdata2[ff[a][k, l, m]][z] // Simplify;

phi[a_][k_, l_, m_][z_] = wei[om, g][z] // Simplify

I 2 2 4 4 2 4 6
-- (-4 + 36 k a[z] + 27 k a[z] + 9 k l a[z] )
54
{---------------------------------------------------,

2 3
k l a[z]

2 2 4 4 2 4 6 2 2
-4 + 36 k a[z] + 27 k a[z] - 9 k l a[z] -3 k a[z] + 4 Log[a[z]]
----------------------------------------------, -------------------------}

2 3 6
54 k l a[z]

8. Mathematica examples: plots and algebraic computations

8.1. Two surfaces obtained with the Bianchi-Small formula BS. The Lorentzian model

{(x0, x1, x2, x3) ∈ R4| − x2
0 + x2

1 + x2
2 + x2

3 = −1} of H3 is bijectively mapped by

(x0, x1, x2, x3) →
(

x0 + x3 x1 + i x2

x1 − i x2 x0 − x3

)
to the set of all Hermitean matrices of de-

terminant 1. A null curve F(z) is projected to a cmc-1-surface in this Hermitean model of

H3 by x(u, v) = F(u + i v)F(u + i v)∗, where F∗ denotes the conjugate of the transposed

matrix. The term directPlotBallmodelDisplay[ff][u0,u1,v0,v1,pu,pv] of cmc1.m

is a quick command generating plots of corresponding cmc-1-surfaces in the ball model

of H
3 for the parameter ranges u0 ≤ u ≤ u1, v0 ≤ v ≤ v1 with pu and pv being the

number of plot points in u- and v-direction respectively. This is done by computing the

coordinates of the plot points of x(u, v) and transforming the numerical values directly

to the ball model, avoiding in this way time consuming algebraic transformations of huge

expressions. Several versions of this command, also related to the upper half space, are

available. Options of Mathematica’s ParametricPlot3D can be added at the end of the

list of variables of directPlotBallmodelDisplay.
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The cmc-1-surface corresponding to the functions (8.1) under BS in the upper half space
model of H

3

BianchiCaloSmallDouble[f,g][z] is our code for the Bianchi-Small formula (6.4).

Let us consider the null curve corresponding under BSf,g to the functions

f(z) = (z4
(
2 i + i z2

)2
)−1 and g(z) = z

(
z2 + i z + 2

)−1
.(8.1)

A plot of the corresponding cmc-1-surface in the upper half-space model is shown above.

The surface shows interesting symmetries. The commands that generate this plot and

the parametrization of the null curve are given below.

{g[z_]=z/(2 + I*z + z^2),f[z_]=1/(z^4*(2*I + I*z^2)^2)}

ff[z_]=BianchiCaloSmallDouble[g,f][z]//FullSimplify//PowerExpand//FullSimplify;

directPlotUpperhalfSpacePolar[ff][1/3,4/3,-Pi,Pi,33,103,Axes->True,

ViewPoint->{0,1,2}];

gwei[z_]=nullcurveToBryantdata1[ff][z]//FullSimplify

omwei[z_]=nullcurveToBryantdata2[ff][z]//FullSimplify

phi[z_]=wei[gwei,omwei][z];

ParametricPlot3D[phi[u+I*v]//Re//Evaluate,{u,0.3,0.45},{v,r=-1.6,-r},

PlotPoints->{17,193},PlotRange->All,ViewPoint->{3,0,-3.8}];

Next, we choose the input data f[z] and g[z] as shown below, compute the null curve

ff[z] and generate the plot. The differential invariants of this curve are computed. We

show here the latter ones and the plot only.

{f[z_]=Integrate[Sin[z]^-2,z],g[z_]=Integrate[Cos[z]^4,z]};

ff[z_]=BianchiCaloSmallDouble[f,g][z]//PowerExpand//FullSimplify;

directPlotBallmodelDisplay[ff][s=-0.7,0.7,-3,3,43,73,ViewPoint->{0,-1,-3}];

nullcurveToBryantdata[ff][z]

BianchiCaloSmallDoubleCanParameterPrime[f,g][z]

BianchiCaloSmallDoubleCurvature[f,g][z]//Simplify
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12 z + 8 Sin[2 z] + Sin[4 z]
{----------------------------,

32

6
3 (-3 + Cos[2 z]) Sec[z]
-------------------------}

2

2
12 - 24 Sec[z]
---------------

4

-374 + 363 Cos[2 z] - 90 Cos[4 z] + 5 Cos[6 z]
----------------------------------------------

3
6 (-3 + Cos[2 z])

8.2. Bryant data, natural parameter and curvature. In this section we give two examples

of curvature calculations. First we evaluate a Mathematica term defining a command

Sl2FrameIwasawa[a,b][z] for the integral representation formula (4.3). We suppose

that Mathematica is already instructed with a command Sl2CIwasawaPar for the Iwasawa

parametrization (2.3).

ff[z_]=Sl2CIwasawaPar[a[z],b[z],c[z]];

nn[z_]=Inverse[ff[z]].ff’[z]//Simplify;

gl=nn[z]//Det//Simplify

op[a_,b_][z_]=c’[z]//.Flatten[Solve[gl==0,c’[z]]]

opint[a_,b_][z_]:=Integrate[op[a,b][zz],zz]//.zz->z

Sl2FrameIwasawa[a_,b_][z_]:=

Sl2CIwasawaPar[a[z],b[z],opint[a,b][z]]//Simplify

Next we compute the Bryant data, the squared infinitesimal natural parameter and the

null curvature. The output of nullcurveCurvature[Sl2FrameIwasawa[a,b]][z]/ is a

huge expression that cannot be displayed here.

nullcurveToBryantdata[Sl2FrameIwasawa[a,b]][z]

nullcurveCanParameterPrime[Sl2FrameIwasawa[a,b]][z]

nullcurveCurvature[Sl2FrameIwasawa[a,b]][z]//Timing;

2 2 2
a’[z] b’[z] I b[z] a’[z] c’[z]

-(------) - ------ - -------------------
2 2 a[z]

a[z] b[z]

2 b[z] b’[z] a’’[z]
2 -2 b’[z] - ----------------- + b[z] b’’[z]

a’[z] a’[z] b’[z] a’[z]
Sqrt[------ + ----------- + -------------------------------------------]

2 a[z] b[z] 2
a[z] b[z]

As a second example let us show the derivation of (6.8). We are using a utility

toSchwarzian[n][f,sf][z] of cmc1.m producing a rule that replaces the derivatives
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of order 3, . . . , 3 + n of a function f(z) by corresponding derivatives of the expression

(3 f ′′2(z) − (S(f)(z))
2

f ′2(z))/2 f ′(z) obtained by solving the formula defining S(f)(z)

for f ′′′(z). The following evaluation lasts a few minutes and will finally return the ex-

pression (6.8).

BianchiCaloSmallDoubleCurv:=(Clear[f,g,ff,bcsNC,bcsNCx];

ff[z_]=BianchiCaloSmallDouble[f,g][z];

deltaRule=Module[{rs=Sqrt[sg[z]^2+4delta[z]]},

Table[D[sf[z],{z,i}]->Simplify[D[rs,{z,i}]],{i,0,2}]];

bcsNC[z_]=nullcurveCurvature[ff][z];

SchwarzianRule={toSchwarzian[3][f,sf][z],toSchwarzian[3][g,sg][z]}//Flatten;

bcsNCx=(bcsNC//.SchwarzianRule)//Simplify;

(bcsNCx//.deltaRule)//Simplify//Expand)

2 2
sg[z] 5 delta’[z] delta’’[z]

-2 - -------- + ------------ - ----------
delta[z] 3 2

4 delta[z] delta[z]

The command BianchiCaloSmallDoubleCurvatureFORMAL[sf,sg][z] encodes the

formula (6.8) in formal terms sf[z], sg[z] that stand for the Schwarzians and

schwarzderbr[f][z] encodes the Schwarzian. An evidence of the parameter invariance

of (6.8) is obtained with

BianchiCaloSmallDoubleCurvatureFORMAL[

schwarzderbr[f[t[#]]&],schwarzderbr[g[t[#]]&]][z]-

BianchiCaloSmallDoubleCurvatureFORMAL[

schwarzderbr[f],schwarzderbr[g]][t[z]]//Simplify

8.3. A cmc-1-surface established with the algebraic formula Mf,g. The following surface

is produced by the formula M
(n,k,l)
a,b (see (5.5)) for n = 3, k = l = 1, (a(z) = ez, b(z) =

ez/z (Mathematica code Sl2CFrameMeromorphic):
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ff[z_]=Sl2CFrameMeromorphic[Exp[#]&,Exp[#]/#&][z]

directPlotBallmodelDisplay[ff][-1,1.5,-2,2,67,97,ViewPoint->{3,0,2}];

3 z 2 z
z -(E (-2 + z)) -(2 - 3 z + 2 z ) E (-3 + 2 z)

{{-------------, --------------}, {-----------------, -------------}}
z 2 (-1 + z) z 2 (-1 + z) z

E (-2 + 2 z) 2 E (-1 + z)
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