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Abstract. We study associative ternary algebras and describe a general approach which allows

us to construct various classes of ternary algebras. Applying this approach to a central bimodule

with a covariant derivative we construct a ternary algebra whose ternary multiplication is closely

related to the curvature of the covariant derivative. We also apply our approach to a bimodule

over two associative (binary) algebras in order to construct a ternary algebra which we use

to produce a large class of Lie algebras. We study the calculus of cubic matrices and use this

calculus to construct a matrix ternary algebra with associativity of second kind.

1. Introduction. In this paper we consider a concept of ternary algebra taking as un-
derlying space one of the following structures: a complex vector space, a bimodule over
a commutative unital ring, a central bimodule over an associative unital algebra and a
bimodule over two associative unital algebras. We propose a general scheme to construct
a class of ternary algebras and apply this scheme to construct a ternary algebra based
on a covariant derivative on a central bimodule and its curvature. Bianchi’s identities
for curvature give us the properties of this ternary algebra. Applying the same general
scheme we construct a ternary algebra by means of a bimodule over two associative alge-
bras and we use this ternary algebra to construct a class of Lie algebras. It is well known
that a large class of associative binary algebras can be constructed by means of square
matrices and their multiplication. In section 3 we develop a calculus of space or cubic
matrices and use this calculus to construct ternary algebras of cubic matrices. We find
four different totally associative ternary multiplications of second kind of cubic matrices
and prove that these are the only totally associative ternary multiplications of second
kind in the case of cubic matrices. It is worth mentioning that our search for associative
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ternary multiplications of cubic matrices has shown that there is no totally associative
ternary multiplication of first kind in the case of cubic matrices.

2. Ternary algebras and noncommutative geometry. In this section we consider
a notion of ternary algebra taking as underlying structure one of the following: a complex
vector space, a bimodule over a commutative unital ring and a central bimodule over an
associative unital complex algebra. We begin this section by reminding reader a concept of
associative ternary algebra and describing a general structure which allows us to construct
a class of ternary algebras. This class of ternary algebras contains the ternary algebra of
vector fields on a smooth finite dimensional manifold and a ternary algebra of rectangular
matrices. We show that the curvature of an affine connection induces the structure of a
ternary algebra on the module of vector fields on a smooth manifold. We also propose
a generalization of the approach given in [2, 3] for constructing ternary algebra based
on two modules over the algebras with involutions. Then this ternary algebra is used to
construct a Lie algebra.

Let us begin with a notion of a ternary algebra in the case where the underlying
structure is a complex vector space. A pair (V, τ) is said to be a ternary C-algebra or a
triple C-system if V is a complex vector space, and τ : V ×V ×V → V is a V-valued
C-trilinear form which will be referred to as a ternary law of composition or ternary
multiplication. A ternary C-algebra (V, τ) is said to be lr-partially associative if its
ternary law of multiplication satisfies

τ(τ(v, w, s), r, t) = τ(v, w, τ(s, r, t)), (1)

where v, w, s, r, t ∈ V. A ternary C-algebra (V, τ) is said to be lc-partially associative of
first kind if

τ(τ(v, w, s), r, t) = τ(v, τ(w, s, r), t), (2)

and lc-partially associative of second kind if

τ(τ(v, w, s), r, t) = τ(v, τ(r, s, w), t). (3)

A lr-partially associative ternary C-algebra (V, τ) will be referred to as a totally as-
sociative ternary C-algebra of first kind if it is lc-partially associative of first kind, i.e.
its ternary multiplication τ satisfies the relations (1) and (2). Similarly a lr-partially
associative ternary C-algebra (V, τ) will be referred to as a totally associative of second
kind if it is lc-partially associative of second kind, i.e. its ternary multiplication satisfies
(1) and (3).

Several important examples of ternary C-algebras are based on one and the same
structure which can be described as follows: suppose we are given a pair (V, T ), where V

is a C-vector space, T is a C-multilinear mapping T : V×V×V×V∗ → C and V∗ is the
dual space. We construct a ternary C-algebra (V, τT ) by defining a ternary multiplication
τT as follows:

θ(τT (v, w, s)) = T (v, w, s, θ), (4)

where v, w, s ∈ V, θ ∈ V∗. This rather general scheme for constructing ternary C-algebras
has a few particular cases. One of them is a pair (V, R), where V is a C-vector space, R is
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a C-bilinear mapping R : V×V→ LinC(V) and LinC(V) is the algebra of endomorphisms
of a vector space V. Indeed if we are given a pair (V, R) then we define

TR(v, w, s, θ) = θ(R(v, w) · s), (5)

and making use of (4) we get the ternary C-algebra (V, τR) whose ternary multiplication
τR can be described implicitly by the formula

τR(v, w, s) = R(v, w) · s, v, w, s ∈ V. (6)

The second particular case is a triple (V, L, p), where V is a complex vector space, L
is a C-linear mapping L : v ∈ V → Lv ∈ LinC(V), and p is a finite polynomial in two
variables with complex coefficients, i.e.

p(x, y) =
∑
m,n

λmnx
m yn, λmn ∈ C.

In this case we define

R(v, w) = p (Lv, Lw) =
∑
m,n

λmnL
m
v L

n
w

and construct the ternary multiplication by means of (6).
Now we consider a notion of ternary algebra in the case where its underlying structure

is a bimodule over a commutative unital ring. Let K be a commutative unital ring and M

be a K-bimodule where we assume that the left K-module structure of M coincides with
its right K-module structure, i.e. am = ma for any a ∈ K and m ∈ M. In this case a
ternary K-algebra or a triple K-system is a pair (M, τ), where τ : M⊗K M⊗K M→M

is a homomorphism of K-bimodules. Analogously with the case of a ternary algebra
with underlying vector space we can construct a ternary K-algebra by means of (4) or
(6). Indeed if M is a K-bimodule, M∗ is its dual module and T : M ⊗K M ⊗K M ⊗K
M∗ → K then (M, τT ) is the ternary algebra with the ternary multiplication defined
by (4). Similarly given a K-bimodule M and a mapping L : M ⊗K M → EndK(M),
we obtain the ternary algebra (M, τL) with the ternary multiplication τL defined by (6).
This construction can be applied in differential geometry to construct a ternary algebra
on a smooth manifold M whose underlying structure is the bimodule of vector fields of
M over the commutative unital ring of smooth functions. Indeed identifying K with the
commutative unital ring of smooth functions C∞(M), M with the bimodule of vector
fields D(M), and assuming we are given a (1,3)-type tensor field T (in local coordinates
of M its components are T lijk(x), x ∈ U ⊂M), we construct the ternary C∞(M)-algebra
of vector fields (D , τT ) where the ternary product of vector fields is defined by

ω(τT (X,Y, Z)) = T (X,Y, Z, ω), X, Y, Z ∈ D(M), (7)

and ω is a differential 1-form on M . The formula (7) written in local coordinates takes
the form

τ lT (X,Y, Z) = T lijkX
iY jZk.

A notion of ternary algebra in the case where the underlying structure is a central
bimodule over an associative unital complex algebra can be defined as follows: Let A be
an associative unital complex algebra with the unit 1, Z(A ) is the center of A , M be a
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central A -bimodule, i.e. M is a A -bimodule satisfying z m = mz for any z ∈ Z(A ),m ∈
M, then a pair (M, τ) is said to be a ternary Z(A )-algebra if τ : M⊗A M⊗A M→M is
a homomorphism of Z(A )-bimodules. It is worth mentioning that A is a complex vector
space containing complex numbers {α·1 : α ∈ C} as the subalgebra. Hence this subalgebra
induces a complex vector space structure on M and under this structure of complex vector
space we can consider the algebra of linear endomorphisms EndC(M). Consequently in
this case a ternary A -algebra (M, τ) is also a ternary C-algebra since τ is a C-trilinear
mapping. Making use of (4) and (6) we can construct several examples of ternary algebras
with underlying central bimodule. One of these examples is very important because it is
closely related to the noncommutative geometry of modules. Let Der(A ) be the left A -
module of derivations of A . A connection or covariant derivative on a central A -bimodule
M [4] is a homomorphism of left Z(A )-modules ∇ : X ∈ Der(A ) → ∇X ∈ EndC(M),
i.e. ∇zX(m) = z∇X(m) for any z ∈ Z(A ), X ∈ Der(A ), satisfying

∇X(amb) = a∇X(m) b+X(a)mb+ amX(b), a, b ∈ A .

The curvature of the connection ∇ is the mapping R : Der(A )⊗C Der(A )→ EndC(M)
defined by

RX,Y = ∇X∇Y −∇Y∇X −∇[X,Y ],

where [X,Y ] is the commutator of two derivations of A equipping it with the structure
of Lie algebra. It can be proved that the curvature R is a Z(A )-bilinear mapping from
Der(A )×Der(A ) to the Z(A )-module EndA (M) of A -endomorphisms of the bimodule
M.

Proposition 2.1. The pair (Der(A ), T ) is the ternary Z(A )-algebra with the ternary
multiplication T (X,Y, Z) = RX,Y (Z). The ternary multiplication of this Z(A )-algebra
satisfies

T (X,Y, Z) + T (Y,Z,X) + T (Z,X, Y ) = 0, (8)

∇XT (Y,Z,W ) +∇Y T (Z,X,W ) +∇ZT (X,Y,W )

= T (Y,Z,∇XW ) + T (Z,X,∇YW ) + T (X,Y,∇ZW )

+T ([X,Y ], Z,W ) + T ([Y, Z], X,W ) + T ([Z,X], Y,W ). (9)

The first property (8) of ternary multiplication T follows from the first Bianchi’s
identity for curvature and the second (9) from the second Bianchi’s identity. It should
be mentioned that the second property of ternary multiplication can be viewed as an
analog of Leibniz rule for ternary multiplication. An important example of ternary al-
gebra described in Proposition 2.1 can be constructed within the framework of classical
(commutative) differential geometry as follows: Let π : E →M be a vector bundle over a
smooth finite dimensional manifold M , A = C∞(M) be the algebra of smooth functions
on a smooth manifold M , and M = Γ(E) be the module of smooth sections of E. Given
a C∞(M)-multilinear mapping T : Γ(E)×Γ(E)×Γ(E)×Γ(E∗)→ C∞(M), where E∗ is
the dual bundle, we obtain the ternary algebra (Γ(E), τ) of smooth sections of a vector
bundle E with the ternary multiplication θ(τ(ξ, η, χ)) = T (ξ, η, χ, θ), where ξ, η, χ are
sections of E, and θ ∈ Γ(E∗). Particularly if M is a smooth manifold, E = TM is the
tangent bundle, E∗ = T ∗M is the cotangent bundle, Γ(E) = D(M) is the module of
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vector fields, Γ(E∗) = Ω1(M) is the module of 1-forms, ∇ is an affine connection on M ,
and

RX,Y = ∇X ∇Y −∇Y ∇X −∇[X,Y ], X, Y ∈ D(M)

is the curvature of ∇ then we have the C∞(M)-multilinear mapping

T : D(M)×D(M)×D(M)× Ω1(M)→ C∞(M),

induced by the curvature

T (X,Y, Z, ω) = ω (RX,Y (Z)),

and this mapping induces the structure of the ternary algebra (D(M), τ) on the module
of vector fields with the ternary multiplication

T (X,Y, Z) = RX,Y (Z).

Our next aim in this section is to construct a ternary algebra in a more general
situation when we have a bimodule whose left module structure is determined by one
associative unital algebra and the right module structure by another. Let A ,B be unital
associative algebras over C with involutions respectively a → a? and b → b∗, where a ∈
A , b ∈ B. Suppose we are given two bimodules M,M where M is an (A ,B)-bimodule
and M is a (B,A )-bimodule. We also assume that these bimodules are isomorphic as
Abelian groups, i.e. there is an isomorphism m ∈M→ m ∈M satisfying

am = ma?, m b = b∗m, ∀m ∈M, a ∈ A , b ∈ B.

In these settings a pair (M, τ) is said to be a ternary (A ,B)-algebra with ternary
multiplication τ if τ : M ×M ×M → M defined by τ(m,n, p) = ρ(m,n, p), where
ρ : M⊗B M⊗A M→M, is a homomorphism of (A ,B)-bimodules. Let us mention that
τ is a C-trilinear mapping with regard to vector space structures of M,M,A ,B hence
considering M as a complex vector space we have the ternary C-algebra (M, τ).

Now our aim is to construct an important example of a ternary (A ,B)-algebra which
can be used to construct a class of Lie algebras. For this purpose we assume that there
are two homomorphisms

m⊗ n ∈ M⊗B M→ 〈m,n〉 ∈ A , m⊗ n ∈M⊗A M→ 〈m,n〉 ∈ B

respectively of A -bimodules and B-bimodules which satisfy

〈m,n〉? = 〈n,m〉, 〈m,n〉∗ = 〈n,m〉, 〈m,n〉p = m〈n, p〉,

where m,n, p ∈M.

Proposition 2.2. The pair (M, τ), where

τ(m,n, p) = 〈m,n〉p, m, n, p ∈M, (10)

is an lr-partially associative ternary (A ,B)-algebra.

Proof. Indeed for any five elements m,n, p, q, r of M we have

τ(τ(m,n, p), q.r) = τ(〈m,n〉p, q, r)
= 〈〈m,n〉p, q〉r = 〈m,n〉〈p, q〉r.
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On the other hand
τ(m,n, τ(p, q, r)) = 〈m,n〉〈p, q〉r,

and this ends the proof.

Note that the ternary product (10) follows the general scheme based on (6). Making
use of ternary multiplication τ we can construct a new ternary multiplication by setting
σ(m,n, p) = 〈m,n〉p+ p〈n,m〉, where m,n, p ∈M.

Proposition 2.3. The ternary A ,B-algebra (M, σ) is the ternary algebra of Jordan
type, i.e. σ(m,n, p) = σ(p, n,m), and the ternary multiplication σ satisfies the identity

σ(m,n, σ(p, q, r))− σ(p, q, σ(m,n, r)) + σ(σ(p, q,m), n, r)− σ(m,σ(q, p, n), r) = 0,

where m,n, p, q, r ∈M.

As mentioned before, the ternary (A ,B)-algebra (M, σ) is an important example of
ternary (A ,B)-algebras because it may be used to construct a class of Lie algebras as
follows: Given elements m,n ∈M, a ∈ A , b ∈ B we form the square matrix

A =
(
a m

n̄ b

)
.

and denote the vector space of all such matrices by M . Given two matrices of this kind
we define their product by(

a m

n b

)(
a′ m′

n′ b′

)
=
(
a a′ + 〈m,n′〉 am′ +mb′

na′ + b n′ b b′ + 〈n,m′〉

)
. (11)

Proposition 2.4. The vector space M endowed with the product (11) is a complex unital
associative algebra with the unity element

E =
(
e 0
0̄ e′

)
,

where e is the unity element of A and e′ is the unity element of B.

Introducing notations

Lm =
(

0 m

0 0,

)
, Ln =

(
0 0
n 0

)
, Kmn =

(
〈m,n〉 0

0 −〈n,m〉

)
,

and denoting by L ⊂ M the vector subspace generated by the matrices Lm, Ln,Kmn

we prove

Proposition 2.5. L is the Lie algebra with commutation relations

[Lm, Ln] = Kmn, [Kmn, Lp] = Lσ(m,n,p),

[Kmn, Lp] = −Lσ(n,m,p), [Kmn,Kpq] = Kσ(m,n,p) q −Kp σ(n,m,q).

3. Calculus of cubic matrices. In this section we consider a vector space of cubic
matrices, where by cubic matrix we mean a quantity A = (Aijk) with three subscripts
i, j, k each running over some set of integers. We use this vector space to construct a
ternary algebra by means of a triple product of cubic matrices. A triple product or ternary
multiplication of cubic matrices is constructed in analogy with the classical product of
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two rectangular matrices by means of summation which is taken over a certain system of
subscripts of three cubic matrices.

Our aim is to find all totally associative ternary multiplications of first or second
kind, and we prove that there are four ternary multiplications of cubic matrices each
yielding a totally associative ternary algebra of second kind. We also mention a ternary
multiplication of cubic matrices, which is neither partially nor totally associative and can
be used to construct a ternary analog of the algebra of Pauli matrices [1, 5, 6, 7].

Let A = (Aijk) be a quantity with three subscripts i, j, k, where Aijk ∈ C and i, j, k

are integers running from 1 to N . We will call A a space matrix of order N or cubic
N -matrix provided that its entries Aijk are arranged in the vertices of a 3– dimensional
lattice. Particularly the structure of a cubic matrix of order three is shown in the figure.
Let us denote the set of cubic N -matrices by CMatN (C), i.e.

CMatN (C) = {A = (Aijk) : Aijk ∈ C, i, j, k = 1, 2, . . . , N}.

The set of cubic N -matrices CMatN (C) is the vector space if we define the addition of
cubic matrices and multiplication by complex numbers as usual

A+B = (Aijk +Bijk), λA = (λAijk), λ ∈ C. (12)

The above figure shows that we can slice a cubic matrix of third order by fixing a value
of one of subscripts i, j, k. For instance, if we fix a value of subscript k letting i, j to range
from 1 to 3 then the obtained slice of cubic matrix A is a square matrix of order 3. Hence
in this case we have three slices of cubic matrix A which are square matrices of order 3.
Thus a cubic matrix of third order can be represented as a set of square matrices of order
3 as follows

A = (Aijk) =

∥∥∥∥∥∥
a111 a121 a131 a112 a122 a132 a113 a123 a133

a211 a221 a231 a212 a222 a232 a213 a223 a233

a311 a321 a331 a312 a322 a332 a313 a323 a333

∥∥∥∥∥∥ .
We can construct various subspaces of the vector space CMatN (C) by means of cubic
N -matrices with symmetries based on the representation of Z2 by (−1, 1) or based on
the representation of Z3 by (1, j, j2), where j is a cubic root of unity. The former gives
a notion of a skew-symmetric (with respect to a pair of subscripts) cubic N -matrix
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[8], and this kind of cubic N -matrices may be viewed as an analog of skew-symmetric
square matrices. However, in the case of cubic matrices we have one more less classical
possibility to construct matrices with certain symmetries and these symmetries are based
on the representation of the group Z3 by (1, j, j2). Indeed a cubic matrix A = (Aikl) has
three subscripts and the permutations of these subscripts generated by action of Z3 and
accompanied by multiplication of a corresponding factor give us various symmetries of
the cubic matrix. Making use of this peculiar property of cubic matrices we define a
j-skew-symmetric cubic N -matrix A = (Aikl) by

Aikl = j Akli = j2Alik.

Similarly a cubic matrix A = (Aikl) of order N is said to be j2-skew-symmetric if its
entries satisfy

Aikl = jAkli = j2Alik.

The subspaces of j-skew-symmetric or j2-skew-symmetric cubic N -matrices are spanned
by the cubic matrices shown in the following figure.

Now our aim is to construct an associative ternary algebra by equipping the vector
space of cubic N -matrices with an associative ternary multiplication. Given three cubic
matrices of order N we have in total nine subscripts, and because the number of possible
combinations of subscripts is finite we can use the methods of computer algebra to find
all associative ternary multiplications either of first or second kind. Summarizing the
results obtained with the help of computer algebra we can state that there is no totally
associative ternary multiplication of first kind of cubic N -matrices which means that it
is not possible to construct a totally associative ternary algebra of first kind by means of
the vector space of cubic N -matrices. As to a totally associative ternary multiplication of
second kind we have found four different multiplications of this kind of cubic N -matrices
and the methods of computer algebra we have used guarantee that these are the only
ternary multiplications satisfying the requirement of total associativity of second kind.



TERNARY ALGEBRAS AND CALCULUS OF CUBIC MATRICES 17

Theorem 3.1. There are only four different triple products of complex cubic matrices of
order N which obey the totally ternary associativity of second kind. These are

1) (A�B � C)ijk =
∑
l,m,nAilmBnlmCnjk, A�B � C → A B C•◦◦ ◦◦◦ ◦••

2) (A�B � C)ijk =
∑
l,m,nAilmBnmlCnjk, A�B � C → A B C•◦◦ ◦◦◦ ◦••

3) (A�B � C)ijk =
∑
l,m,nAijlBnmlCmnk, A�B � C → A B C••◦ ◦◦◦ ◦◦•

4) (A�B � C)ijk =
∑
l,m,nAijlBmnlCmnk, A�B � C → A B C••◦ ◦◦◦ ◦◦•

where we use the diagrams containing • which stands for free subscript (no summation)
and pairs of ◦ (joint by an arc) which stand for contraction with respect to corresponding
subscripts. Thus there are four different totally associative ternary algebras of second kind
which can be constructed by means of the vector space of cubic N -matrices.

The ternary multiplication of cubic N -matrices defined by the formula

(A}B } C)ikl =
∑
p,q,r

ApiqBqkrCrlp, A}B } C → A B C◦•◦ ◦•◦ ◦•◦ , (13)

where A, B, C are cubic matrices of order N , has been studied in the papers [1, 5, 6, 7],
where it is shown that this multiplication can be used to construct a ternary analog of
Pauli matrices by means of the ternary j-commutator defined by

[A,B,C] = A}B } C + j B } C }A+ j2 C }A}B.

It can be checked that ternary multiplication (13) is neither partially nor totally as-
sociative. It is worth mentioning that the ternary product (13) has certain symmetric
properties with respect to cyclic permutations of its factors. Indeed if we perform a cyclic
permutation of cubic N -matrices A,B,C and the same cyclic permutation of subscripts
i, k, l in (13) then the product does not change, i.e.

(A}B } C)ikl = (B } C }A)kli = (C }A}B)lik. (14)

It is well known that the notion of trace of a square matrix plays an important role
in the matrix calculus. We end this section by giving the definition of trace of a cubic
N -matrix and describing some of its properties with respect to ternary multiplication
(13) and ternary multiplications given in Theorem 3.1. In analogy with the trace of a
square matrix we define the trace of a cubic N -matrix A = (Aijk) as the sum of entries
of its main diagonal, i.e.

Tr (A) =
N∑
i

Aiii = A111 +A222 + . . .+ANNN .

It is easy to check that the trace of a cubic N -matrix is a linear function with respect
to addition of cubic matrices and multiplication by scalars (12), i.e. for any two cubic
N -matrices A,B and a complex number λ we have

Tr (A+B) = Tr (A) + Tr (B), Tr (λ ·A) = λ · Tr (A).
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The trace of the product of two square matrices does not change if we rearrange the
matrices. The trace of a cubic N -matrix has the same property in the case of non-
associative ternary multiplication (13). Indeed it immediately follows from (14) that the
trace of the product of three cubic N -matrices (13) is invariant under a cyclic permutation
of matrices, i.e. for any three cubic N -matrices we have

Tr (A}B } C) = Tr (B } C }A) = Tr (C }A}B).

Proposition 3.2. For any five cubic N -matrices A,B,C,D,E and any totally associa-
tive ter-nary multiplication of second kind given in Theorem 3.1 the trace satisfies the
relations

Tr ((A� B� C)�D� E) = Tr (A� (D� C� B)� E) = Tr (A� B� (C�D� E)).

For any five cubic N -matrices A,B,C,D,E and non-associative ternary multiplication
defined by (13) the trace satisfies

Tr ((A } B } C) } D } E) = Tr (E } (A } B } C) } D) = Tr (D } E } (A } B } C)).

Acknowledgements. The authors gratefully acknowledge the partial financial support
of their research by the Estonian Targeted Financing Project SF0180039s08 and the
Estonian Science Foundation under the research grant ETF 7427.

References

[1] V. Abramov, R. Kerner, O. Liivapuu, and S. Shitov, Algebras with ternary law of compo-

sition and their realization by cubic matrices, J. Gen. Lie Theory Appl. 3 (2008), 1–18.

[2] I. Bars and M. Günaydin, Construction of Lie algebras and Lie superalgebras from ternary

algebras, J. Math. Phys. 20 (1979), 1977–1993.

[3] I. Bars and M. Günaydin, Dynamical theory of subconstituents based on ternary algebras,

Phys. Rev. D 22 (1980), 1403–1413.

[4] M. Dubois-Violette and P. W. Michor, Connections on central bimodules in noncommuta-

tive geometry, J. Geom. Phys. 20 (1996), 218–232.

[5] R. Kerner, Graduation Z3 et la racine cubique de l’équation de Dirac, Comptes Rendus

Acad. Sci. 312 (1991), 191–196.

[6] R. Kerner, Z3-graded algebras and the cubic root of supersymmetry translations, J. Math.

Phys. 33 (1992), 403–411.

[7] R. Kerner, The cubic chessboard, Class. Quantum Grav. 14, 1A (1997), A203–A225.

[8] N. P. Sokolov, Space Matrices and their Applications, Moscow, 1960 (in Russian).

Received March 5, 2010; Revised February 7, 2011

http://dx.doi.org/10.1063/1.524309
http://dx.doi.org/10.1103/PhysRevD.22.1403
http://dx.doi.org/10.1016/0393-0440(95)00057-7
http://dx.doi.org/10.1063/1.529922

	Introduction
	Ternary algebras and noncommutative geometry
	Calculus of cubic matrices

