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Abstract. In this paper we give a review on δ-structurable algebras. A connection between

Malcev algebras and a generalization of δ-structurable algebras is also given.

1. Introduction. The history of nonassociative algebras, the subject of this paper,
started with Hamilton, Cayley and Hurwitz and further with Artin and Zorn, who stud-
ied alternative and nearly associative algebras. Thereafter Freudenthal, Tits ([51]), I.L.
Kantor ([32]-[34]) and Koecher ([36]) studied constructions of Lie algebras from nonasso-
ciative algebras and triple systems, in particular Jordan algebras, while B.N. Allison ([1],
[2]) defined the concept of structurable algebras, containing Jordan algebras. Recently,
we have studied constructions of Lie superalgebras as well as Lie algebras from triple
systems ([23], [25], [27]-[28]). Hence within the general framework of (ε, δ)-Freudenthal
Kantor triple systems, ε, δ = ±1, (for short (ε, δ)-FKTSs) and the standard embed-
ding Lie (super)algebra construction studied in [6], [7], [12]-[14], [25] (see also references
therein) we defined δ-structurable algebras ([27]) as a class of nonassociative algebras
with involution which coincides with the class of structurable algebras for δ = 1 as intro-
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duced and studied in [1], [2]. Structurable algebras are a class of nonassociative algebras
with involution that include Jordan algebras (with trivial involution), associative algebras
with involution, and alternative algebras with involution. They are related to generalized
Jordan triple systems (for short GJTSs) of 2nd order, or (−1, 1)-FKTSs, as introduced
and studied in [32], [33] and further studied in [3], [4], [31], [40]-[43], [49] (see also refer-
ences therein). Their importance lies with constructions of five graded Lie algebras. For
δ = −1 the anti-structurable algebras ([27]) are a new class of nonassociative algebras
that may similarly shed light on the notion of (−1,−1)-FKTSs hence (by [6], [7], [29],
[30]) on the construction of Lie superalgebras and Jordan algebras. Specially, nonasso-
ciative algebras such as Jordan and Lie (super)algebras ([11]) play an important role
in many mathematical and physical subjects ([5], [8]-[12], [14], [24], [26], [35], [45], [46],
[53]). We also note that the construction and characterization of these algebras can be
expressed in terms of the notion of triple systems ([21], [22], [47]) by using the standard
embedding method ([20], [37], [39], [48]). As a final comment of this section, we notice
that our subject will be applied to normed algebras, in particular to the case of normed
triple systems containing Jordan and Banach algebras.

2. Preliminaries

2.1. (ε, δ)-Freudenthal Kantor triple systems, δ-Lie triple systems, Lie (su-
per)algebras. We are concerned in this paper with triple systems which have finite
dimension over a field Φ of characteristic 6= 2 or 3, unless otherwise specified.

Definition 2.1. A vector space V over a field Φ endowed with a trilinear operation
V × V × V → V , (x, y, z) 7→ (xyz) is said to be a GJTS of 2nd order if

(ab(xyz)) = ((abx)yz)− (x(bay)z) + (xy(abz)) (1)

K(K(a, b)x, y)− L(y, x)K(a, b)−K(a, b)L(x, y) = 0 (2)

where L(a, b)c := (abc) and K(a, b)c := (acb)− (bca).

Definition 2.2. A Jordan triple system (for short JTS) satisfies (1) and (abc) = (cba).

We can generalize the concept of GJTS of 2nd order as follows ([12], [13], [16], [52]).

Definition 2.3. For ε = ±1 and δ = ±1 a triple product that satisfies the identities

(ab(xyz)) = ((abx)yz) + ε(x(bay)z) + (xy(abz)) (3)

K(K(a, b)x, y)− L(y, x)K(a, b) + εK(a, b)L(x, y) = 0 (4)

where
L(a, b)c := (abc), K(a, b)c := (acb)− δ(bca) (5)

is called an (ε, δ)-FKTS.

Remark. We note that K(b, a) = −δK(a, b).

Let U be an (ε, δ)-FKTS and Vk, k = 1, 2, 3, be subspaces of U . We denote by
(V1, V2, V3) the subspace of U spanned by elements (x1, x2, x3), xk ∈ Vk, k = 1, 2, 3.
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Definition 2.4. A subspace V of U is called an ideal of an (ε, δ)-FKTS U if the following
relations hold (V,U, U) ⊆ V, (U, V, U) ⊆ V, (U,U, V ) ⊆ V .

U is called simple if (, , ) is not a zero map and U has no non-trivial ideal.

We denote triple products by (xyz), {xyz}, [xyz] and 〈xyz〉 depending on the case.

Remark. We note that the concept of GJTS of 2nd order coincides with that of (−1, 1)-
FKTS. Thus we can construct the simple Lie algebras by means of the standard embed-
ding method ([6], [12]-[25], [34], [52]).

For an (ε, δ)-FKTS U and L(a, b) defined by (5) we denote

S(a, b) := L(a, b) + εL(b, a), A(a, b) := L(a, b)− εL(b, a).

Remark. We note that S(a, b) = εS(b, a).

S(a, b) (respectively A(a, b)) is a derivation (respectively anti-derivation) of U ([28]).

Definition 2.5. For δ = ±1, a triple system (a, b, c) 7→ [abc], a, b, c ∈ V is called a δ-Lie
triple system (for short δ-LTS) if the following identities are fulfilled

[abc] = −δ[bac],
[abc] + [bca] + [cab] = 0,
[ab[xyz]] = [[abx]yz] + [x[aby]z] + [xy[abz]],

where a, b, x, y, z ∈ V . An 1-LTS is a LTS, while a −1-LTS is called an anti-LTS, by [13].

Proposition 2.6 ([13], [20]). Let U(ε, δ) be a (ε, δ)-FKTS. If J is an endomorphism of
U(ε, δ) such that J〈xyz〉 = 〈JxJyJz〉 and J2 = −εδId, then (U(ε, δ), [xyz]) is a LTS (if
δ = 1) or an anti-LTS (if δ = −1) with respect to the product (6).

[xyz] := 〈xJyz〉 − δ〈yJxz〉+ δ〈xJzy〉 − 〈yJzx〉 (6)

Corollary 2.7. Let U(ε, δ) be a (ε, δ)-FKTS. Then the vector space T (ε, δ) = U(ε, δ)⊕
U(ε, δ) becomes a LTS (if δ = 1) or an anti-LTS (if δ = −1) with respect to the product[ (

a

b

) (
c

d

) (
e

f

) ]
=

(
L(a, d)− δL(c, b) δK(a, c)
−εK(b, d) ε(L(d, a)− δL(b, c))

) (
e

f

)
. (7)

Remark. Thus we can obtain the standard embedding Lie algebra (if δ = 1) or Lie
superalgebra (if δ = −1), L(ε, δ) = D(T (ε, δ), T (ε, δ)) ⊕ T (ε, δ), associated to T (ε, δ)
where D(T (ε, δ), T (ε, δ)) is the set of inner derivations of T (ε, δ), i.e.

D(T (ε, δ), T (ε, δ)) :=
{(

L(a, b) δK(c, d)
−εK(e, f) εL(b, a)

)}
span

,

T (ε, δ) :=
{(

x

y

) ∣∣∣∣x, y ∈ U(ε, δ)
}
span

.

Remark. L(ε, δ) = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 is the 5-graded Lie (super)algebra such
that L−1⊕L1 = T (ε, δ), D(T (ε, δ), T (ε, δ)) = L−2⊕L0⊕L2 and [Li, Lj ] ⊆ Li+j . This Lie
(super)algebra construction is one of the reasons to study nonassociative algebras and
triple systems.
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2.2. δ-structurable algebras. Throughout the section it is assumed that (A,− ) is
a finite dimensional nonassociative unital algebra with involution (involutive anti-auto-
morphism, i.e. x = x and xy = y x for x, y ∈ A) over Φ. The identity element of A is
denoted by 1.

Remark. A = H⊕ S, where H = {a ∈ A|a = a} and S = {a ∈ A|a = −a}, by [1].

Put [x, y] := xy − yx, [x, y, z] := (xy)z − x(yz), x, y, z ∈ A. Note that (8) is valid.

[x, y, z] = −[z, y, x]. (8)

Let Lx, Rx be defined by Lx(y) := xy,Rx(y) := yx, x, y ∈ A. For δ = ±1 define:
δVx,y := LLx(y) + δ(RxRy −RyRx), (9)

δBA(x, y, z) :=δ Vx,y(z) = (xy)z + δ[(zy)x− (zx)y], x, y, z ∈ A. (10)

Definition 2.8. +BA(x, y, z) is called the triple system obtained from the algebra (A,− ).
We call −BA(x, y, z) the anti-triple system obtained from the algebra (A,− ).

We shall write for short Vx,y := δVx,y, BA := (δBA,A).

Remark. The upper left index notation is chosen in order not to be mixed with the
upper right index notation of [1] which has a different meaning.

Definition 2.9. A unital non-associative algebra with involution (A,− ) is called a δ-
structurable algebra if the following identity is fulfilled

[Vu,v, Vx,y] = VVu,v(x),y − Vx,Vv,u(y). (11)

(A,− ) is called a structurable algebra ([1]) if the identity (11) is fulfilled for Vu,v =
+Vu,v, Vx,y = +Vx,y, u, v, x, y ∈ A, and we will call (A,− ) an anti-structurable algebra if
the identity (11) is fulfilled for Vu,v =−Vu,v, Vx,y =−Vx,y.

Remark. If (A,− ) is structurable then, in the terminology of [33], the triple system BA
is called a GJTS and by [8], BA is a GJTS of 2nd order, i.e. satisfies (3) and (4).

Definition 2.10. If (A,− ) is anti-structurable then we call BA an anti-GJTS.

Put Tx := Vx,1, x ∈ A. Then, by (9), Tx = Lx+δRx−x for x ∈ A thus Th = Lh, h ∈ H.

Remark. (i) If u = h ∈ H and x, y ∈ A, (11) becomes

[Lh, Vx,y] = Vhx,y − Vx,hy. (12)

(ii) Suppose − is the identity map and hence A is commutative. If (A,− ) is δ-
structurable then A is a Jordan algebra, by [27]. Conversely, by [36]§3, any Jordan algebra
satisfies (12) if Vx,y = +Vx,y for x, y ∈ A, hence it is structurable. By [27], any Jordan
algebra is anti-structurable if ((hx)y)z−h((xy)z) = (x(yh))z−(xy)(hz), for h, x, y, z ∈ A.

Clearly, the last identity is fulfilled by an associative algebra.

Definition 2.11. For s ∈ S and h ∈ H we say that (A,− ) is S skew-alternative if
[s, x, y] = −[x, s, y] while (A,− ) is H skew-alternative if [h, x, y] = −[x, h, y] for x, y ∈ A.

Remark. If (A,− ) is S skew-alternative then by [1], [s, x, y] = −[x, s, y] = [x, y, s],
s ∈ S, x, y ∈ A. If (A,− ) is H skew-alternative then by (8), [h, x, y] = −[x, h, y] =
[x, y, h], h ∈ H, x, y ∈ A.
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Proposition 2.12 ([27]). If (A,− ) is structurable, then (A,− ) is S skew-alternative. If
(A,− ) is anti-structurable, then (A,− ) is H skew-alternative.

Remark. Let (A,− ) be a δ-structurable algebra and let Der(A,− ) be the set of deriva-
tions of A that commute with −. By [27], TA ∩Der(A,− ) = 0 and so we may define the
structure algebra Str(A,− ) := TA ⊕ Der(A,− ). This algebra plays an important role in
the structure study of structurable algebras ([1]) and may play a role in the structure
study of anti-structurable algebras, a theory to be presented elsewhere.

2.3. Examples. For examples of structurable algebras we refer to [1] and [2].
LetMm,n(Φ) denote the vector space of m×n matrices over Φ and for x ∈Mm,n(Φ)

denote by x> the transposed matrix.

Lemma 2.13 ([27]). (Mm,n(Φ), {x, y, z}) is a (−1, δ)-FKTS, where {x, y, z} is defined by

{x, y, z} := xy>z + δ(zy>x− zx>y), x, y, z ∈Mm,n(Φ) (13)

Theorem 2.14 ([27]). Mn,n(Φ) with the involution x 7→ x> is a δ-structurable algebra.

Example 2.15. (Mm,n(C), {x, y, z}) is a (−1, δ)-FKTS, where {x, y, z} is defined by

{x, y, z} := xy>z + δ(zy>x− zx>y), x, y, z ∈Mm,n(C) (14)

Indeed, it is straightforward calculation to show that the identities (3) and (4) hold.
Hence Mn,n(C) with the involution x 7→ x> is a δ-structurable algebra.

Remark. By [25], the following construction of Lie superalgebras is obtained by the
standard embedding method. If U(−1,−1) :=M2n,m(Φ) with the product (13) then the
corresponding standard embedding Lie superalgebra is osp (2n|2m) = D(n,m) (as defined
by [11]), hence the standard embedding Lie superalgebra of the anti-structurable alge-
bra M2n,2n(Φ) is osp (2n|4n). Similarly, if U(−1,−1) :=M2n+1,m(Φ) with the product
(13) then the corresponding standard embedding Lie superalgebra is osp (2n + 1|2m) =
B(n,m) (as defined by [11]), hence the standard embedding Lie superalgebra of the
anti-structurable algebra M2n+1,2n+1(Φ) is osp (2n+ 1|4n+ 2).

3. Malcev algebras and generalized quasi δ-structurable algebras. We give in
this section a connection between Malcev algebras ([38], [50]) and a generalization of
δ-structurable algebras ([17], [18]).

Definition 3.1. An algebra (A,− ) over Φ is called quasi δ-structurable if it is a δ-
structurable algebra with no assumption of existence of identity element.

Definition 3.2. An algebra A over Φ is called generalized structurable ([17]) if it is a
nonassociative algebra equipped with a non-trivial derivation D(x, y), x, y ∈ A, such that
the following conditions are fulfilled:

(i) D(x, y) = D(y, x),
(ii) D(xy, z) +D(yz, x) +D(zx, y) = 0, x, y, z ∈ A.

Remark ([17]). A structurable algebra (A,− ) is a generalized structurable algebra.
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Proof. Put D(x, y)z := 1
3 [[x, y] + [x, y], z] + [z, y, x] − [z, x, y], where [x, y] = xy − yx,

[x, y, z] = (xy)z − x(yz), x, y, z ∈ A. Then, by [17], the identities (i) and (ii) of definition
3.2 are fulfilled.

Definition 3.3. An algebra A with multiplication [x, y], x, y ∈ A over a field of arbitrary
characteristic, is called a Malcev algebra ([44]) if it satisfies the anticommutative law

[x, x] = 0, (15)

and
J(x, y, [x, z]) = [J(x, y, z), x], x, y, z ∈ A, (16)

where J(x, y, z) := [[x, y], z] + [[y, z], x] + [[z, x], y] is the Jacobian.

Remark ([17]). A Malcev algebra A is a generalized structurable algebra.

Proof. Put
D(x, y) := [Lx, Ly] + Lxy, (17)

where [x, y] = xy − yx, Lx(y) := xy, x, y ∈ A. Then, by [17], the identities (i) and (ii) of
definition 3.2 are fulfilled.

Proposition 3.4. Let A be a Malcev algebra with involution defined by x := −x, x ∈ A.
Then A is a quasi structurable algebra.

Proof. By (10), for δ = 1, we have
+BA(x, y, z) =+ Vx,y(z) = (xy)z + (zy)x− (zx)y = −(xy)z − (zy)x+ (zx)y, x, y, z ∈ A,

(18)
since x := −x, x ∈ A. Thus +Vx,y = −([Lx, Ly] + Lxy)(z) = −D(x, y), by (18) and (17),
hence the identity (11) is fulfilled.

Corollary 3.5. Let A be a Lie algebra with involution defined by x := −x, x ∈ A. Then
A is a quasi structurable algebra.

Proposition 3.6. Let A be a Lie algebra with involution defined by x := −x, x ∈ A.
Then A is a (trivial) quasi anti-structurable algebra.

Proof. By (10), for δ = −1, we have
−BA(x, y, z) =− Vx,y(z) = (xy)z − (zy)x+ (zx)y = −(xy)z + (zy)x− (zx)y, x, y, z ∈ A,

(19)
since x := −x, x ∈ A. Now, it follows −BA(x, y, z) = −(xy)z − (yz)x − (zx)y, by anti-
symmetry and (19), hence −BA(x, y, z) ≡ 0, by Jacobi identity.

Remark. From the last proposition and corollary it follows that Lie algebras are quasi
δ-structurable algebras.

Proposition 3.7. A quasi anti-structurable algebra (A,− ) with involution defined by
x := −x, x ∈ A is a (−1,−1)-JTS.

Proof. Indeed, K(x, y) ≡ 0, x, y ∈ A, where K(x, y) is defined by (5), for δ = −1. Then
clearly the identities (3) and (4) are fulfilled, for ε = δ = −1.
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Remark. If the assumption of finite dimensionality on algebras and triple systems is not
required it seems that our concept can be generalized to Banach and Jordan algebras as
well as to JB∗ algebras and JB∗ triples. In future work, we will discuss nonassociative
normed algebras and triple systems containing Banach algebras.
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[45] E. Neher, Jordan Triple Systems by the Grid Approach, Lect. Notes Math. 1280, Springer-

Verlag, Berlin, 1987.

[46] S. Okubo, Introduction to Octonions and Other Non-associative Algebras in Physics, Mon-

troll Memorial Lecture Series in Mathematical Physics 2, Cambridge University Press,

Cambridge, 1995.

[47] S. Okubo and N. Kamiya, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Alge-

bra 198 (1997), 388–411.

[48] S. Okubo and N. Kamiya, Quasi-classical Lie superalgebras and Lie supertriple systems,

Commun. Algebra 30 (2002), 3825–3850.

[49] S. Okubo, Symmetric triality relations and structurable algebras, Linear Algebra Appl. 396

(2005), 189–222.

[50] A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426–458.

[51] J. Tits, Une classe d’algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Acad.
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