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Abstract. New Q-conditional symmetries for a class of reaction-diffusion-convection equations

with exponential diffusivities are derived. It is shown that the known results for reaction-diffusion

equations with exponential diffusivities follow as particular cases from those obtained here but

not vice versa. The symmetries obtained are applied to construct exact solutions of the relevant

nonlinear equations. An application of exact solutions to solving a boundary-value problem with

constant Dirichlet conditions is presented.

1. Introduction. In this paper we deal with equations of the form

ut = (enuux)x + λemuux + C(u), λ 6= 0, (1)

which form a special subclass of the general reaction-diffusion-convection (RDC) equa-
tion. Hereafter u = u(t, x) is the unknown function, C(u) is a given smooth function, n
and m are arbitrary constants with the restriction m 6= 0 (otherwise the convective term
is removable) while the subscripts t and x denote differentiation with respect to these
variables. The main purpose of the paper is to investigate nonlinear equations of the
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form (1), which involve three transport mechanisms: diffusion, convection and reaction
(dissipation). Thus, we consider the cases when these equations describe such complicated
processes that all the transport mechanisms must be taken into account, for example, in
population dynamics (see examples in [16, 17]). On the other hand, one may consider
this paper as a continuation of our work [7] (see its extended version in three preprints
at ArXiv.org), where the RDC equations of the form

ut = (unux)x + λumux + C(u) (2)

were examined.
At the present time, all Lie symmetries of the general RDC are completely described

[8, 9, 10] and the relevant Lie solutions are constructed for many equations which arise
in applications (see, for example, [10] and the papers cited therein). The time is there-
fore ripe for a complete description of non-Lie symmetries. However, this seems to be an
extremely difficult task because, firstly, several definitions of non-Lie symmetries have
been introduced (nonclassical symmetry [3], conditional symmetry [12, Section 5.7], gen-
eralized conditional symmetry [14, 15] etc.), secondly, a complete description of non-Lie
symmetries needs solving the corresponding systems of determining equations, which are
nonlinear and can be fully solved only in exceptional cases.

The most common and widely used symmetry among non-Lie symmetries is nonclas-
sical, which we will call Q-conditional symmetry following [12, Section 5.7]. It is well
known that the notion of Q-conditional symmetry plays an important role in investiga-
tion of the nonlinear RDC equations since, having such symmetries in the explicit form,
one may construct new exact solutions, which are not obtainable by the classical Lie
machinery. A number of papers have been devoted to this topic during the last 20 years
(see, e.g., [21, 13, 12, 18, 1, 11, 2, 19, 20]). However, a few of them only were devoted to
the equations involving three transport mechanisms mentioned above [8, 5, 6, 7].

The paper is organized as follows. In the second section, we present the theorem giving
a complete description of Q-conditional symmetries of the form

Q = ∂t + ξ(u)∂x + η(u)∂u, (3)

where ξ(u) and η(u) are yet-to-be determined functions, for the class of the nonlinear
RDC equations (1). In the third section, we apply the Q-conditional symmetries obtained
to construct new exact solutions of the relevant nonlinear RDC equations. It should be
stressed that exact solutions in explicit form have been constructed for all the operators
obtained. An application of the exact solution obtained to solve a boundary-value problem
with the constant Dirichlet conditions is presented and its biological interpretation is
discussed. The main results of the paper are summarized in the last section.

2. Q-conditional symmetry operators of the class of equations (1). Here we
present the main result of the paper. Note that we search for Q-conditional symmetry
operators which cannot be reduced to Lie symmetry operators described completely in [9].

Theorem 2.1. A RDC equation from the class (1) is Q-conditional invariant under
operator (3) if and only if it and the relevant operator (up to its equivalent representations)
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have the following forms:

(i) ut = (euux)x + λeuux + λ0 + λ1e
u + λ2e

−u (4)

Q1,2 = ∂t+
(λ0 ±

√
D

2
+ λ2e

−u
)
∂u, D = λ2

0 − 4λ1λ2; (5)

Q3,4 = ∂t +
−λ±

√
P

2
eu∂x +

(
λ0 + λ1e

u + λ2e
−u) ∂u, P = λ2 − 4λ1; (6)

(ii) ut = (euux)x + λe2uux +
1
9
λ2e3u + λ0 + λ1e

u + λ2e
−u, (7)

Qa = ∂t + aeu∂x +
(
−λa

3
e2u − a2eu+

(λλ2

3a
+ λ0

)
+ λ2e

−u
)
∂u, a 6= 0, (8)

where the parameter a is a root of the algebraic equation

9a4 + 9λ1a
2 + 3λλ0a+ λ2λ2 = 0. (9)

Proof. The proof is based on the known algorithm for finding Q-conditional symmetry
operators (see, e.g., [12, 8, 7]). Firstly, we apply simple local substitutions to simplify
equation (1). In the case n = 0, the substitution

u =
1
m
v (10)

reduces this equation to the form

vxx = vt − λevvx + F (v), (11)

where F (v) = −mC( 1
mu) while in the case n 6= 0, the substitution

u =
1
n

ln v (12)

reduces one to the form
vxx = v−1vt − λvqvx + F (v), (13)

where q = m
n − 1 6= −1, F (v) = −nC(u). Obviously, both substitutions do not change

the structure of operator (3) therefore it takes the form

Q = ∂t + ξ(v)∂x + η(v)∂v. (14)

The system of determining equations to find Q-conditional symmetry operators of the
most general form

Q = ∂t + ξ(t, x, v)∂x + η(t, x, v)∂v (15)

for the general RDC equation

Vxx = F0(V )Vt + F1(V )Vx + F2(V ),

Fi(V ), i = 1, 2, 3 being arbitrary functions, has been obtained in [8] (see p. 535).
In the case of equations (11) and (13), this system takes the forms

ξvv = 0,
ηvv = −2ξv(λev + ξ) + 2ξxv,
3ξvF − λ(η + ξx)ev + ξxη − ξt − 2ξξx + 3ξvη − 2ηxv + ξxx = 0,
ηFv + (2ξx − ηv)F − ληxev − ηxx + ηt + 2ξxη = 0,

(16)
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and

ξvv = 0,
ηvv = −2ξv(λvq + ξv−1) + 2ξxv,
3ξvF − λξxvq − λqηvq−1 − (ξt + 2ξξx − 2ξvη)v−1 + ξηv−2 − 2ηxv + ξxx = 0,
ηFv + (2ξx − ηv)F − ληxvq − η2v−2 + (ηt + 2ξxη)v−1 − ηxx = 0,

(17)

respectively. It can be noted that systems (16) and (17) are nonlinear and their general
solutions cannot be derived in a simple way. However, they are integrable in the case
when operator (15) reduces to the form (14), i.e., ξ = ξ(v), η = η(v).

Consider system (16). The first and second equations of this system don’t contain the
function F therefore they can be easily integrated:

ξ = av + c1, (18)

η = −2λaev − 1
3
av3 − ac1v2 + c2v + c3, (19)

where ci, i = 1, 2, 3 and a are arbitrary constants. Now one easily checks that the 3-rd and
4-th equations of system (16) are incompatible if a 6= 0. So, we should set a = 0. Substi-
tuting (18) and (19) with a = 0 into the 3-rd equation of (16), we obtain λ(c2v+c3)ev = 0
so that c2 = c3 = 0 (we recall the restriction λ 6= 0). It means that operator (14) takes
the form

Q = ∂t + c1∂x, (20)

but it is nothing other than a Lie symmetry operator for arbitrary RDC of the form (11).
Thus, system (16) does not lead to any Q-conditional symmetry operators (14).

In the case of system (17), the result is different. The first equation of system (17)
leads again to (18), while the second one produces the formula

η = 2λa ln(v)− 2ac1v(ln(v)− 1)− a2v2 + c2v + c3

if q = −2 and the formula

η = − 2λa
(q + 1)(q + 2)

vq+2 − 2ac1v(ln(v)− 1)− a2v2 + c2v + c3

if q 6= −2. Thus, we need to examine separately two subcases: a = 0 and a 6= 0.
In the subcase a = 0, the general solutions of two equations from (17) have the form

(18) and (19) with a = 0. Substituting these expressions into the third equations of (17),
we obtain the algebraic condition (c2v+ c3)(λqvq−1− c1v−2) = 0. If c2 = c3 = 0 then we
immediately arrive at the Lie symmetry operator (20). If q = c1 = 0 then we obtain the
equation

vxx = v−1vt − λvx + (c2v + c3)(µ− v−1), (21)

which is Q-conditionally invariant under the operator

Q = ∂t + (c2v + c3)∂v. (22)

Applying substitution (12) and the notations λ0 = c2−µc3, λ1 = −µc2, λ2 = c3, we arrive
at the RDC equation (4) and the corresponding Q-conditional symmetry operator (5).
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Let us consider the subcase a 6= 0. Then the 3-rd equation of system (17) is equivalent
to

F =
η

3a
(λqvq−1 − 3av−1 − c1v−2). (23)

Substituting (23) into the last equation of (17), we arrive at the expression

η2(λq(q − 1)vq−2 + 2c1v−3) = 0.

Since η 6= 0 (otherwise λa = 0) we obtain c1 = 0, q(q − 1) = 0, q 6= −1. If c1 = q = 0
then the equation

vxx = v−1vt − λvx + a(a+ λ)v − c2 − c3v−1 (24)

and the corresponding Q-conditional symmetry operator

Q = ∂t + av∂x − (a(a+ λ)v2 − c2v − c3)∂v (25)

are obtained. If c1 = 0, q = 1 then we find the equation

vxx = v−1vt − λvvx −
(
λ

3a
− v−1

)(1
3
λav3 + a2v2 − c2v − c3

)
(26)

and the operator

Q = ∂t + av∂x−
(1

3
λav3 + a2v2 − c2v − c3

)
∂v. (27)

Finally, taking into account substitution (12) and using the notations λ0 = c2, λ1 =
−a(a+λ), λ2 = c3, equation (24) and operator (25) are reduced to those of the form (4)
and (6), respectively. Dealing in the same way with equation (26) and operator (27) and
using the notations λ0 = − λ

3ac3 + c2, λ1 = − λ
3ac2 − a

2, λ2 = c3, equation (7), operator
(8) and condition (9) are obtained.

The proof is now completed.

3. Exact solutions of RDC equations with exponential nonlinearities. Here we
construct exact solutions of equations (4) and (7) using the Q-conditional symmetry
operators found above and show that they are non-Lie solutions, i.e. cannot be obtained
using Lie symmetry operators. As it follows from the proof presented in section 2, the Q-
conditional symmetry operators have essentially simpler structure if one uses substitution
(12). So we will map equations (4) and (7) and the corresponding operators to the simpler
forms using (12) and construct exact solutions for the equations obtained.

Substitution (12) reduces equation (4) and operator (5) to the forms

vxx = v−1vt − λvx − λ0 − λ1v − λ2v
−1 (28)

and

Q1,2 = ∂t +

(
λ0 ±

√
D

2
v + λ2

)
∂v, (29)

respectively. To construct the corresponding solutions one needs to solve the overdeter-
mined system consisting of (28) and

Q1,2(v) ≡ vt −
λ0 ±

√
D

2
v − λ2 = 0, (30)
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which is compatible because Q1,2 are the operators of Q-conditional symmetries. So,
extracting vt from (30) and substituting into (28), we arrive at the linear ODE (with
respect to the variable x)

vxx + λvx + λ1v =
−λ0 ±

√
D

2
, (31)

which possesses the general solution

v(t, x) =



α1(t)e−λx − λ0∓|λ0|
2λ x+ α2(t), λ1 = 0,

e−
λ
2 x
(
α1(t) + xα2(t)

)
− 2(λ0∓

√
D)

λ2 , λ1 6= 0, P = λ2 − 4λ1 = 0,

e−
λ
2 x
(
α1(t)e

√
P
2 x + α2(t)e−

√
P
2 x
)
− λ0∓

√
D

λ1
, λ1 6= 0, P > 0,

e−
λ
2 x
(
α1(t) cos(

√
−P
2 x) + α2(t) sin(−

√
P
2 x)

)
− λ0∓

√
D

λ1
, λ1 6= 0, P < 0,

where αi(t), i = 1, 2 are arbitrary smooth functions at the moment. Substituting the
expressions obtained above into (30), we obtain four systems of first-order ODEs to
find the functions αi(t), i = 1, 2 depending on λ1 and P . These systems are integrable
therefore their solutions v(t, x) have been found in explicit form. Applying substitution
(12) to them the following exact solutions of equation (4) have been constructed.

If λ1 = 0 then the exact solutions are

u = ln
(
eλ0t(C1e

−λx + C2)− λ2

λ0

)
, λ0 6= 0.

u = ln
(
C1e

−λx − λ0

λ
x+ λ2t+ C2

)
;

if λ1 6= 0 then the exact solutions are

u = ln

(
b(x) exp

(λ0 ±
√
D

2
t
)

+
−λ0 ±

√
D

2λ1

)
, (32)

where

b(x) =


e−

λ
2 x (C1 + C2x) , P = 0,

e−
λ
2 x
(
C1 exp

(√
P
2 x
)

+ C2 exp
(
−
√
P
2 x
))
, P > 0,

e−
λ
2 x
(
C1 cos

(√
−P
2 x

)
+ C2 sin

( √
−P
2 x

))
, P < 0.

(33)

In a quite similar way exact solutions of equation (4) were constructed using operator
(6). Finally, the exact solutions

u = ln
(
λ2t( t2 + C1)− x

λ

t+ C1

)
, λ0 = 0

and

u = ln
(
λ0x− C1λ2e

−λ0t − λλ2t

C1λ0e−λ0t − λ

)
, λ0 6= 0,

were found if λ1 = 0. If λ1 6= 0 then the corresponding exact solutions are

u = ln
(

C2

t+ C1
exp
(1

2
(λ0t− (λ±

√
P )x)

)
− 1
λ1(t+ C1)

− λ0

2λ1

)
, D = 0;
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u = ln

C1 exp
(

1
2 ((λ0 ±

√
D)t− (λ±

√
P )x)

)
1− exp(±

√
Dt)

±
√
D(1 + exp(±

√
Dt))

2λ1(1− exp(±
√
Dt))

− λ0

2λ1

 , D>0;

u = ln
(
C1 sec(

√
−D
2

t) exp
(1

2
(λ0t− (λ±

√
P )x)

)
+
√
−D

2λ1
tan(
√
−D
2

t)− λ0

2λ1

)
, D<0.

The most cumbersome structure of the conditional symmetry operator occurs in case
(ii) of Theorem 2.1. As a consequence, essential difficulties arise if one applies operator
(8) to find exact solutions of equation (7). We again use substitution (12) to simplify
calculations. The corresponding overdetermined system takes the form

vxx = v−1vt − λvvx −
1
9
λ2v3 − λ0 − λ1v − λ2v

−1, (34)

Qa(v) ≡ vt + avvx +
λ

3
av3 + a2v2 −

(
λλ2

3a
+ λ0

)
v − λ2 = 0. (35)

Extracting vt from (35) and substituting into (34), we arrive at a nonlinear ODE
(with respect to the variable x), which reduces to the form

v∗yy + 3v∗v∗y + (v∗)3 + 3pv∗ + 2q = 0 (36)

by the substitution v = v∗ − a
λ , y = λ

3x (hereafter p = 1
λ2 (2a2 + 3λ1), q = − 1

2λ3a (7a4 +
9λ1a

2 + 3λ2λ
2)).

Following [6], we use now the known substitution v∗ = wy
w to linearize equation (36):

wyyy + 3pwy + 2qw = 0. (37)

Equation (37) is a linear third order ODE, hence its general solution can be easily con-
structed. Four different cases occur depending on p and q. Corresponding calculations
are rather cumbersome but very similar to those presented in [7] (see P.10063-7). Here
we present only the final results.

Case 1: p = q = 0. The exact solutions of equation (7) are

u = ln
(

3
a2t+ λx+ C1

− a

λ

)
(38)

and

u = ln
(

6(a2t+ λx+ C1)
(a2t+ λx+ C1)2 + 6aλt+ C2

− a

λ

)
,

where the coefficient restrictions

λ0 = − 8a3

9λ
, λ1 = −2a2

3
, λ2 = − a4

3λ2

are assumed.
Case 2, p3 = −q2 6= 0, leads to the exact solutions

u = ln
(
α(−2C1e

βt−αx + 1)
λ(C1eβt−αx + 1)

− a

λ

)
, (39)

u = ln
(
−2αC1e

βt−αx + α(γt+ C2 + λx) + 3λ
λ(C1eβt−αx + γt+ C2 + λx)

− a

λ

)
,

where α = ±
√
−2a2 − 3λ1, β = aα

λ (α∓ a), γ = a(a± 2α).
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In this case the coefficient of equation (7) must satisfy the restrictions: 2a2 + 3λ1 < 0,
λ2 = − 3

λ2 (3a4 + 3λ1a
2 + λ0λa) and ∆ ≡ 4(2a2 + 3λ1)3 + (20a3 + 9λλ0 + 18λ1a)2 = 0.

Case 3: p3 + q2 < 0. The corresponding exact solution involves three different expo-
nents and has the form:

u = ln
(
α1C1e

β1t+γ1x + α2C2e
β2t+γ2x + α3e

β3t+γ3x

C1eβ1t+γ1x + C2eβ2t+γ2x + eβ3t+γ3x
− a

λ

)
,

where βi = aαi
3 (a+λ(α1+α3)), γi = αiλ

3 , and the parameters αi, i = 1, 2, 3 are calculated
by the known Cardano formulae:

α1 = −2
√
−p cos

(
1
3 arctan

(√
−p3−q2
q

))
,

α2,3 = 2
√
−p cos

(
1
3 arctan

(√
−p3−q2
q

)
± π

3

)
,

if q > 0;

α1 = 2
√
−p cos

(
1
3 arctan

(√
−p3−q2
q

))
,

α2,3 = −2
√
−p cos

(
1
3 arctan

(√
−p3−q2
q

)
± π

3

)
,

if q < 0, and
α1 = 0,
α2,3 = ±

√
−3p

if q = 0.
In this case the coefficient of equation (7) must satisfy the restrictions: λ2 = − 3

λ2 (3a4+
3λ1a

2 + λ0λa) and ∆ < 0.
Finally, Case 4, p3 + q2 > 0, leads to the exact solutions

u = ln
(
C1ae

−λ0t+
a
2 x − a cos(αx)− 6α sin(αx)

λ(C1e−λ0t+
a
2 x + 2 cos(αx))

− a

λ

)
,

where α = ±
√

3a2+4λ1

2 , 3a2 + 4λ1 > 0, λ0 = − 3a(a2+λ1)
λ , and

u = ln
(
−2αC1e

γt−αλx + α sin(λβx+ δt) + 3β cos(λβx+ δt)
C1eγt−αλx + sin(λβx+ δt)

− a

λ

)
,

where α = − 1
2

(
3

√
−q +

√
p3 + q2 − 3

√
q +

√
p3 + q2

)
, γ = a(λ(α2 + 3β2)− αa),

β = 1
2
√

3
( 3

√
−q +

√
p3 + q2 + 3

√
q +

√
p3 + q2), δ = aβ(a+ 2αλ).

The restrictions on the coefficients are following: 2a2 + 3λ1 < 0, λ2 = − 3
λ2 (3a4 +

3λ1a
2 + λ0λa) and ∆ > 0.

It should be noted that the solutions found are not obtainable by using Lie symmetries,
excepting the cases when they are plane wave solutions (see (38) and (39)). We have also
checked that solution (32)–(33) with λ = 0 produces the solutions obtained in [2] (see
formulae (3.11a), (3.11b), (3.11c) therein) for the reaction-diffusion equation, which is a
particular case of (4). Finally, we show how to apply the exact solution (32) with P > 0
to solve a boundary-value problem.
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Example 3.1. Let us consider the following reaction-diffusion equation with exponential
nonlinearities:

ut = (emuux)x + λemuux + λ0 + λ1e
mu + λ2e

−mu, m 6= 0 (40)

This equation can be applied to describe processes in population dynamics, when the
diffusion and convection coefficients and the reaction term exponentially depend on the
population density. One notes that this equation reduces to the form

ut = (euux)x + λeuux + λ0 + λ1e
u + λ2e

−u (41)

by renaming mu→ u, λi → λi/m, i = 0, 1, 2. In the general case, equation (41) possesses
two steady-state points. If one of them is u0 = 0 then the second point can be put u1 = 1
without losing generality. This assumption leads to the conditions λ0 + λ1 + λ2 = 0 and
λ2 = eλ1. Hence we consider the nonlinear RDC equation

ut = (euux)x + λeuux + λ1(eu + e1−u − (1 + e)), λ1 6= 0, (42)

possessing the steady-state points u0 = 0, u1 = 1. Now one notes that solutions (32) with
P > 0 and the coefficients arising in equation (42) take the forms

u = ln
((
C1e

−λ+
√
P

2 x + C2e
−λ−

√
P

2 x
)
e−λ1t + e

)
, (43)

and
u = ln

((
C1e

−λ+
√
P

2 x + C2e
−λ−

√
P

2 x
)
e−λ1et + 1

)
. (44)

Thus, the exact solution of the boundary-value problem for the nonlinear equation
(42) with the zero Dirichlet conditions

u(t, 0) = 0, u(t,+∞) = 0, (45)

and the initial condition

u(0, x) = ln
(
C1e

−λ+
√
P

2 x − C1e
−λ−

√
P

2 x + 1
)
, (46)

is given in the domain (t, x) ∈ [0,+∞)× [0,+∞) by the formula (43), where C2 = −C1

and P = λ2 − 4λ1 > 0.
The similar boundary-value problem, however, with the non-zero Dirichlet conditions

u(t, 0) = 1, u(t,+∞) = 1 (47)

and the initial condition

u(0, x) = ln
(
C1e

−λ+
√
P

2 x − C1e
−λ−

√
P

2 x + e
)
, (48)

possesses the exact solution (44) with the coefficient restrictions listed above. Moreover,
both solutions are bounded and non-negative in the given domain if C1 > 0, λ1 > 0.

Remark. Solutions (43)–(44) are not valid for λ = 0. The similar problem for equation
(42) with λ = 0 has been solved in [4].

We remind the reader that (42) possesses two steady-state points u0 = 0 and u1 = 1
what is common for many equations arising in population dynamics, including the famous
Fisher equation. Solutions (43)–(44) give the space-time distribution of population for
the situation when the population density on the boundary is equal to the steady-state
point. In the case u0 = 0, we note that the solution is vanishing if t→ +∞, therefore the
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population dies. In the case u1 = 1, the solution tends to 1 and this predicts an optimistic
scenario for the population.

4. Conclusions. In this paper, Theorem 2.1 giving the full description of theQ-conditio-
nal symmetry operators of the form (3) for the class of equations (1) is proved. It should be
stressed that all the Q-conditional symmetry operators listed in Theorems 2.1 contain the
same type of nonlinearities with respect to the dependent variable u as the relevant RDC
equations. Analogous results were earlier obtained for single reaction-diffusion equations
in [2]. We have checked that many Q-conditional (i.e. non-classical) symmetries obtained
in [2] can be derived from those presented in Theorem 2.1 (note some symmetries, for
instance cases 3 and 6 from table 1 [2], which are treated as new non-classical symmetries,
are equivalent to the Lie symmetries). On the other hand, we point out that there is an
essential difference between the class of equations (1) and the relevant reaction-diffusion
equation investigated in [2]: there are two different RDC equations, (4) and (7), admitting
different Q-conditional symmetries, while one reaction-diffusion equation only possesses
this kind of symmetries (in fact, equations (4) and (7) with λ = 0 are identical).

All the Q-conditional symmetries presented in Theorem 2.1 have successfully been
applied to construct new exact solutions in explicit form. However, we noted that some
of them have been obtained earlier in [4] using the method of additional generating
conditions. This is another confirmation of the known hypothesis that any exact solution
can be obtained by the relevant Lie or conditional symmetry operator.

The solutions obtained above can be used to solve the relevant boundary-value prob-
lems. In the particular case, solution (32) was used to solve the boundary-value problem
with the constant Dirichlet conditions for the nonlinear RDC equation (40) and a possible
biological interpretation was presented.

The work is in progress to solve the overdetermined systems (16) and (17) in the
general case. It should be stressed that this is a highly non-trivial problem because there
are no general methods for solving such systems.
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