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Abstract. We obtain some matrix elements of basis transformations in a representation space
of the unimodular pseudo-orthogonal group. Using these elements, we derive some formulas for
special functions.

1. Introduction. Throughout this paper, special functions occur as matrix elements
of basis transformations and representation operators. We construct some elements of
the matrices which connect different bases for class 1 representations of the unimodular
pseudo-orthogonal group. These matrix elements are expressed in terms of Whittaker
functions for the case SO(2,2) and in terms of Vilenkin function for the general case.
In this way, some integral relations are obtained for Gauss, Whittaker and Macdonald
functions.
Let us assume that the linear space RPT¢ is endowed with the form

2 2 _ .2 2
V(r) =27+ Ty =Ty — = Ty

We denote by X the cone ¥(z) = 0 without the origin. By definition, the unimodular

pseudo-orthogonal group SO(p, q) consists of all linear transformations of RPT4 preserving
J(x). In the case p =1 or ¢ = 1, we have the special Lorentz group. If g € SO(p, q), then
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det g = 1 and the equation
T
9€p,a9 = Cpyq (1)

holds, where e, 4 := diag(1,...,1 —1,...,—1) and tr e, , = p — ¢. The group SO(p, q)
has 2 connected components. One of them consists of the matrices

=(c 3. )

where A is a p X p matrix such that sign det A = sign det D = 1. This coset contains the
identity element and will be under our consideration further. We denote this subgroup
by G. The fixed points g under the Cartan involution G — G, g — ep 49€p 4 form a
maximal compact subgroup K = SO(p) x SO(q).

Let us consider the K-orbit of the point (1,0,...,0,1) on X. It is a direct product of
two spheres; we denote it as I'x. The measure dw = Hp 9 dz; in RPTY is invariant with
respect to SL(p + ¢,R), the generalized function

5(@/x%+...+x%—1)~5<\/:z:127+1+ +xp+q 1)

is invariant with respect to K, and the polynomials 1‘ and )/
symmetric. This leads to the following K-invariant measure on I'k:

p+q

i—pt1 x are both

_ doqy - dop-ydop+) - - - doprg-1)
|x9(p)| |x19(p+q)|

where 6 is any permutation of the set {1,...,p} and ¥ is any permutation of the set
{p+1,...,p+ ¢}. In the spherical coordinate system

(dz)x

)

z1 =singy...singp_1,
To =singy...sing,_ocosgp_1,

Tp—1 = Sin @y cos @2,

Zp = COS @1,

Tpt1 = sinyy ...sing_q,

Tpyo = siny .. .sin1Yg_o cosy_1,

Tptq—1 = SNy cos g,
Tptq = COSY,

we obtain
p—2 q—2
x=[]sin" gidgs - [[ sin?™ " ¢ dehi - A1 dipg -,
i=1 i=1

if p > 2,q > 2 Here ¢1,¢1 € [0;27) and 2,12, ¢3,%3,... € [0;7). So we have the
following corollary for the G-invariant measure on X:

do - W - dTepeg-1) 3)
¢+l
where ¢ € Sp,4.
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Let us introduce the binary relations €y on the set {1,...,p} and 5 on the set
{p+1,...,p+q} by the condition that (i, j) € € is equivalent to i < j. Let us consider now
a rotation r(7,7,t) through angle ¢ on the (x;,x;) plane, where the condition (7,5) €
or (i,7) € Q9 holds. Let k(4,7) be the infinitesimal matrix of r(4,4,¢). Then its matrix
elements are

1, if (s,t) = (i,5),
k(ivj)st = _1a if (S’t) = (],l),
0, if (s,t) # (4,4) and (s,t) # (4,4).
The system of vectors k(i, j), (z j) € Q1 Uy, is linearly independent; the dimension of

P+

their linear span ¢ is equal to M Moreover, ¢ is a Lie algebra because

0, if 5“6” =
B 0, if (i — 1)(j ;z(j —j)#0,
W) RG] = kG, =,
k(i,4), if j =7,
fk(z',j), if j =1.

Let 7(i,7,t) be a hyperbolic rotation through angle ¢ on the (z;,z;) plane, where
(i,5) € {1,...,p} x{p+1,...,p+ q}. If the infinitesimal matrix h(¢, j) corresponds to
the rotation 7(i, j, t), then its matrix elements are

1, if (,7) = (s, 1),
h(i,j)st = 1, if ('Laj) = (t,S),
0, if (4,7) # (s,t) and (4,7) # (¢, s).
These infinitesimal matrices are linearly independent and generate a linear space b, and
dim b = pq.

It is not hard to prove that det A # 0 for A in . From and , we have
B = (A~Y)TCTD. This means that any matrix g € G depends on (’H'q) = M
parameters. Therefore, £ @ f is the tangent space of G. It is easy to verify that [, h] ch
and [h, h] C €. We denote the group exph by H.

It is clear that K acts transitively on I'x. Let us note that, first, G is generated by
the subgroups K and H [M] and, second, #~1(i,4,¢)(1,0,...,0,1) = (e7%,0,...,0,e7%).
L2 of the group G is transitive on X. Let ¢ € C and
D, be a linear subspace in C°°(X) consisting of s-homogeneous functions. We define
the representation T, in D, by left shifts: T,,(g)[f(z)] := f(¢~'=). This representation is
irreducible if o ¢ Z [M], [Ve].

For any pair (D,, Dg), we define the bilinear functional

This means that the action = +— g~

p+q 1
F: (Dtﬂfo)_)(Cv (flan) p+q 1 /fl f2 d«rl“

Here T is a variety of X intersecting all or almost all generatrices. The words almost all
mean here all generatrices except one of them. Every point x € ' can be represented as
{z; = Fi(&1,...,p+q—2), i=1,...,p+¢. So we can write every point z € X as

{zi:tﬂ(fla--~a§p+q—2)a Z:1>7p+Q7 (4)
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and, consequently,

de = tPT973 de d¢, (5)

where G is a subgroup of G, which acts transitively on T, and d¢ is the G-invariant
measure on I'.

LEMMA 1.1. If 6 = —0 —p—q+ 2, then F does not depend on T'.

Proof. It follows from homogeneity of the functions f; and fs and formulas and (3). =

2. Bases transforms and Vilenkin function. In addition to 'k, let us introduce
some other contours on X intersecting almost all generatrices.

We now denote as I'y the intersection of the cone X and the the cylinder 22 + ...+

%2)—1 = 1. The subgroup H; ~ SO(p — 1) x SO(1,q) acts transitively on I'y. The H;-

invariant measure

(d2) g, = dzy...dzp—2 dzp...dzpiq

‘xp—l‘ |xp+q|

on I'; follows from . In the cylinder coordinate system

xr, = singi)l ...sin ¢p—3 sin ¢p—27
Zg = sin ¢y ...sin ¢,_3cos p_a,

Tp—2 = Sin @1 cos Po,

Tp—1 = COs ¢17

x, = sinh a,

ZTpt1 = coshasiny ...siny_1,
Tpto = coshasinyy ...cosg_1,

Tptq = cosh acos Py,

we have

p—3 q—2

(dz)p, = [ sin? "% ¢s dgi - [ ] sin? """ ¢ de; - sinh? % avdgp 2 dipy 1 dav.
1=1 =1

Here a € [0;400), ¢1,%1 € [0;27) and ¢, ¥a, 3,3, ... € [0;7).

Let T'y be the intersection of X and the cylinder z7 + 27, —22,,; = 1. We denote
by Hs the subgroup acting transitively on I's. Thus, Hy ~ SO(p — 1,1) x SO(1,q — 1).
From , we have

(dz)m, = dry...drpy drpys... dxp+q.

|xp+1| |xp|
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In the cylinder coordinate system

21 = cosharsin gy ...sin¢,_3sin d,_o,
2o = cosharsin g ...sin¢,_3cos ¢,_»,

Tp—z = cosh asin ¢ cos ¢a,

2p—1 = cosh acos ¢1,

x, = sinh 3,

ZTpy1 = sinh a,

ZTppo = cosh Bsiney ... cosyq_2,

Zpt+q = cosh Fcosy,

we have

p—3 q—3
(de), = [ [ sin? "% ¢ dg - [ [ sin? =2 i dyy
i=1 =1

-sinh?~2 o sinh? ™2 Bdpp_2 dipy_o dadf.

Here o, 8 € [0; +00), ¢1,%1 € [0;27) and ¢, 92, ¢3,93, ... € [0;7).

We now define three bases in the space D,. These bases consist of continuations of
basis functions on ', I'1 and I's.

We denote as {f7} the basis in D, related to reduction G D K, where

o-vi—vph1 _
@) =@i+.. a2 7 Eh.(a")El.. (a)
and the function
1—2
El(yl,...,iyl,l)(x) = H(‘]ﬁ +...+ m?—l)yi_yﬂ—l
i=1

=i .

S+ ol s -

O ) (@ i)
i i+ + T

was defined in [Vi, 9.3.6.2].

In addition, let us introduce two bases {7} and {fg,;}, where

o—lita/2-1 1 —g—+1
fl@) = @i+ +ap) 2 FE)ER (),
ot+pta _q —_
@)= @i+ g —apy) B (@) B e (),

where

3—p_ Y1

PO =@+ + &) TP @) EE).

It is possible to unify the results about matrix elements c{,; and c7,, of basis trans-
formations. In order to do it, we introduce the function V' (21, 29, 23, 24, 25, 26). Let us call
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it the Vilenkin function.
26 -1
V (21, 22, 23, 24, 25, 26) i= 2~ 1 \/w—(ss+26) j 3 To-22—2-2 <Z5 * ;6 >
-1
.Fil(%—FZQ—l) ‘F(ZG2 +23+i24)‘

211 T (25 — 2)(221 + 25 — 2)24 cosh(mzy)
' (25 — 2)D(z5 + 21 — 2)

[21*22
2 0o

221 z9—28 )
> gt (B e )
=0 1=0°"" (22 — 25 — 25)!
o —323 — 21 1 1 ({0—3z3— 2=
. T f—ks—kt I (21 —22—5s)T f—ks

1 _
sin | (== iz ) 7| T Mf@fsft
2 2
_F<Z3—U—Z1—2’6+1
2
.F<23—a—,221—z6—|—1

2a+21273Z3 —zp—s—t41 -1 (32’3 —0—2
2

+2’2+8+t—i2’4>

—22+s+t+iz4)

+s+t+zz)

23—0—21—26+1

'3F2(2221+28+t, +Zg+8+t*i2’4,

2
z3—0—21— 26+ 1 . 323 —0— 2
3 21 6 —zz+s+t+1z4;%+s+t+22,
— g — 2 — 1 1
23— 0 —21— 2+ sttt li-
2 2
G (fF T AT N (2R s T a0
2 2
T @s otz )T (%Hg) P (‘”ZG—QMH
1 —21—0 — 1
5—i,247§—|—i,z'4;1—s—t—Zz—’—z‘3 ;1 7 ZGZ26+ 3,2>}

Here z; and 29 are both positive integers. Quadratic brackets mean the integer part of a
number.

THEOREM 2.1. c{,; = V(UI’UQaUp-‘rlv)\?p? q)-

Proof. Since
F p+q 1

= — / FH@) 77 (@) (de)
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and

(1]

=p—1 p—1
/£2+ 42 =1 H(llv---7lp—2)(x) (v2,...,vp_1)(x) (dz)x # 0
[ RS L

only for l; = v;41, then (see [Vi])

+oo p
o s o I4o—va—2v s+va—1 1-4
Yy~ /0 (isinh )2 PTEnCg L, (cotha)P_ %, (cotha)da.

2

Now we can use the formulas

[N

S Cpra )

2 (e —2))T(a—J)

Ca(a) =T71(b) (22)*%

and [E| 18.2.10]. m
THEOREM 2.2. ¢§,, = V(l1, 1", lpy1, lpy2,p — 1,0+ 1).

The formulas for c{,; and c§,,; lead to some relations for special functions. For exam-
ple, we derive the representation of the Gauss hypergeometric function.

THEOREM 2.3. I[f2—p—qg<reo <0 and o # 0 then

1 31 1—cosha
o Fy (—0’—2,0'+2§2+l;2)
= (=1)!"'27773 773 ¢~ sinh a sin(—7o)
PR

cosha +1
cosha —1
3 -2 -1 21 p*| —s
: g(—l) I2(s + 1) (s — 0) G2} (4‘ e ) dp.
Proof. Let ¢ =1 and let & belong to the hyperboloid #(&) = 1. Let ®(x) = (z1Z1 +...+
TpZp — Tpp1Tpi1 — -+ TpyqTpiq)”. Then

—o—p—q+2 —0—p—q+2 p—o—p—q+2
A € S A P €O
%

rw+1—wr0—§)/ T K ()
0

The equality
F(E””ﬂ”%@¢@»m@Hf=[‘§:@§”ﬂ”%vmmﬂ+%w¢uﬂmwK
1 K 4

leads to our formula. =

3. A formula for Meijer and Legendre functions. Since the groups SO(p,q) and
SO(q,p) are isomorphic, we can assume that p > ¢. Let us consider all p — 1 partitions
Q of the direct product {1,...,p} x {p+1,...,p+ ¢} into p classes

Ao ={(zi,p+ 1)}, ..., (g, p+ @) : ifs # tthenx;s # xi )}

The set of matrices h(m,n), where (4,j) € Aq,, generate a maximal R-diagonalizable
subalgebra Ag ; in bh. For different Ag; and Ag, ;, such subalgebras are conjugate under
Cartan involution. For any g € G, we have g = g1 9293, where ¢g1,93 € K and g» € Hq; =
exp Aq ;.
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LEMMA 3.1. If 6 = —0 — p — q + 2, then the functional F is invariant under the pair
(T5,T5), i. e. F(T6(9)(f1), T-o—p-q+2(9)(f2)) = F(f1, f2)-

Proof. Without loss of generality, let us prove this lemma for the simplest case p =
2,q = 1. In this case, we have the only partition € into two classes Aq1 = {(1,3)} and
Ao = {(2,3)}. We will deal with the class Ag 1. It is sufficient to argue separately for
restrictions of T, to K and Hgq ;. According to , we can write an arbitrary point x € X
as ¢ = (tcos @, tsin ¢, t), where the point (cos ¢,sin @, 1) belongs to T'k. If g € K, then

cosa  sina 0\ [tcos¢ tcos(¢d — ) t' cos ¢’
g )z = | —sina cosa 0 tsing | = | tsin(¢p—a) | = | ¢'sing’ (6)
0 0 1 t t t'.
If g € Hg,1 then
coshs 0 —sinhs tcos ¢
g ' (s)z = 0 1 0 tsin ¢
—sinhs 0 coshs t
t cosh s cos ¢ — tsinh s t' cos ¢’
= tsin ¢ =|¢sing’ |. (7)
—tsinh scos ¢ + tcosh s t.

We obtain immediately from @ that

tcosh scos¢ — tsinh s

cos ¢ = v ) (8)
tsi

gy = 10 .

t' = —tsinh s cos ¢ + t cosh s. (10)

Let us find the partial derivative of cos ¢’ with respect to ¢ from :

2 .
—sing' d¢/ = —%. (11)
Formulas @, and lead to
! /
dg =1 ‘j¢ . (12)

Therefore,

F(T5(9)(f1), T-o-1(9)(f2))

= fit' cos @' t'sing' ') |i=1 f2(t' cos @', t'sing’,t') [;=1 do
'k

:/ t'7 fi(cos ¢’ sing’, 1) "= fy(cos ¢/, sin¢’, 1) t' d¢’
'k

= fi(cos ¢’ sing’, 1) fa(cos @', sin @', 1) d¢’ = F(fy, fo).

'k
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Formula @ leads to t' = t, dt’ = dt, d¢’ = d¢. Thus,

F(T5(9)(f1), T-o-1(9)(f2))

= fi(t' cos ¢’ ¥/ sing’,t') |;=1 fa(t' cos @', t' sing’ 1) |s=1 do
I'x

= fi(cos ¢’ sing’, 1) fa(cos @', sin ¢’ 1) de’ = F(fy, f2). m

I'i

THEOREM 3.2. For —1 <re o <0,

“+o0 2 2t 2
¢ o1 (P71 0 o1 (€5p° | 0
L e d
/ JO(GP)G13<4 mo’o)Glg( : _0_1,070) )

= —23rosin (—no)sinh? (—B) T(—0 — 1)

. Z(—l)s (-0 —-3-5) P__f__%s(cosh 3), (13)

s=0

where cosh 8 = cosht + d22et .

Proof. Let p=1 and ¢ = 3. Then

o—v va+3 z : v
) a7 O (24 (ot i)™,
i(lyzg + laxs)

o _ o
fi(x) = (z1 4+ x4)7 exp Er—

Consider the restriction T of representation 7, to the subgroup N x H. Here the subgroup
N consists of the matrices

1+ g dcosT dsinT ‘12—2

dcosT 1 0 dcosT

dsinTt 0 1 dsinT
d? d?

-5 —dcosT —dsinT 1-%

and H consists of the matrices 7(1,4,t). According to lemma we obtain the matrix
elements 7% (g) of T, in the following way:

5% (n#*) = F(T,(nd) (f7, f777) = F(T,(A)(£7), T-o—2(n™)(F7772)).

Let us integrate over I'y. Further, let us derive the matrix elements t“’/vl(nf) and use
relation between 17 : (nf) and t7 . (n#). In this way, we obtain the relation containing
the Bessel function, the Legendre function, the Gauss hypergeometric function, and two
Meijer functions. The simplest form of this formula corresponds to V = (vy,v2) = (0,0)
and coincides with formula (13]). =
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4. Two formulas for Gauss, Whittaker, and Macdonald functions. Let us con-
sider the case p = ¢ = 2. We put here

—vy—

Fo(@) = (@} +2d) ™ F " (20 +iag)" (zg +izg)™2,
i(lll'l — l21’3)

FE(@) = (2 +20)7 exp L2

LEMMA 4.1. If |l;| < la, then

G, =23 (12135 r! <”1 + ;2 — U) r-! (”2 - ;1 - U)

- Wogto, LH(ZQ—h)WvQ—vl L«H(lQ“‘ll)
72 5,5

If|l2| < ll, then

2 2
N W_ vo+v] o41 (ll - l2) W'ug—ul o+1 (ZQ + ll).
2 2 2 2

gL =20 (2 —12) 10! (—“l ta ") p-! (”2 i ")

If Iy < 0 and |l2| < |l1], then

Q=27 (1) T <”1 T C’) r-! (”1 — ")

N W172+U1 L—H(127Z1)WU1*U2 L‘H(‘12+ll|)'
2 2 2 v T2

If iy < 0 and |l1| < |l2| then

& =230 (12— 13)"sir! <v1 + ;)2 + J) r-t (vl — ZZ — 0)

: W, vo+vy Lﬂ(ll - 12) Wkl—kz LH(UQ + ll|)
2 v 2 2 ’ 2

Proof. Let us choose the integration contour I' = I'y in formula ¢f,;, = F(f“},f;“”),
where the tangent space of the subgroup N is generated by the matrices

01 00 0 0 -1 0
-1 0 0 1 and 0 0 0
0 0 0O -1 0 1
01 00 0 0 -1 0

Let (¢, 1_t;+82,3, 1+t2_82) be a parametrization of I'y. We compute this integral by
formula [El 3.2.12]. =
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THEOREM 4.2. If 3> 0 and ls > |l1], then
l
o (1,0’ +2;2;1+ lltanhﬂ> =27'ro(c+1)7!
2

- (il2)° 2 (Iy — 1)~ % sin(o + 1) sinh™' 8 tanh ™" Be?

o0 U1
2 oy_etl 1 (V1 +V2—0O 1 [ V2—V1—O
. (AT R27%) pr (27709
> Y e oo (MERET) e (2T

v1=0 vo=—1v;
Wegser (o = 1) Weaoor o (I + 1) Ko ((vf +od)t e*ﬁ) .

Proof. Let u(x) := (w1 cosh 3 — x3sinh 3)7. Then F(u, f; 7 *)r.ery = F(u, f1 7 ?)riery -
In order to compute the corresponding integral along the contour 'y, we use

oo vl oo V1
—0—2 __ —0—2 p—0—2 __ o —o—2
fr *E E Cv v *E E, cyrfy” " om

v1=0vo=—v; v1=0v2=—v1

In the same way, we derive

THEOREM 4.3. If { > 1 and ly > |l1], then

+o0 +oo "
[ -t W - 1)

. L -1
. Wvg;'u17 o1 (lg—i—ll)gFl (1,—0,2,1+ E . @ dly dls
2 o+2 2 o+1
o 2 oyotl 1 C +1 C -1 V1 +v — 0O
Sty o (S0) (S0 p (mt e

— 1
- T <v2+v210> I'o+2)IT Y(~0)K_ 54 <2\/vf —I—v%) .
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