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Abstract. The n-dimensional (isotropic and non-isotropic) harmonic oscillator is studied as a

Wigner quantum system. In particular, we focus on the energy spectrum of such systems. We

show how to solve the compatibility conditions in terms of osp(1|2n) generators, and also recall

the solution in terms of gl(1|n) generators. A method is described for determining a spectrum

generating function for an element of the Cartan subalgebra when working with a representation

of any Lie (super)algebra. Here, the character of the representation at hand plays a crucial role.

This method is then applied to the n-dimensional isotropic harmonic oscillator, yielding explicit

formulas for the energy eigenvalues and their multiplicities.

1. Introduction. Wigner quantization is an algebraic alternative to canonical quantiza-
tion. For a Wigner quantum system described by a Hamiltonian Ĥ, given in terms of (gen-
eralized) position operators q̂j and momentum operators p̂j (j = 1, . . . , n), the canonical
commutation relations are not required. Instead, the compatibility between the Heisen-
berg equations and the operator form of Hamilton’s equations is required [15, 12, 6, 13].
This algebraic compatibility condition is used as quantization relation. As a consequence,
Wigner quantization includes canonical quantization as a special case. But in general,
Wigner quantization allows far more solutions than just the canonical one.

Since the compatibility conditions of Wigner quantization are described by algebraic
relations in terms of the operators q̂j and p̂j , one is led to an algebra (in fact a ?-
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algebra) and to the (unitary) representations of this algebra. So, the first task in Wigner
quantization consists of identifying this algebra (which is, for many examples, a Lie
superalgebra). The second task is to study appropriate representations of the algebra,
and finally determine the spectrum of physical operators in these representations.

In this contribution, we present this approach for the n-dimensional (isotropic and
non-isotropic) harmonic oscillator. We derive the compatibility conditions, and the cor-
responding algebra. It is shown that the Lie superalgebras osp(1|2n) and gl(1|n) are
realizations of this algebra [10]. For each of these Lie superalgebras, we describe a class of
unitary representations characterized by a parameter p. The spectrum of the Hamiltonian
Ĥ is given in these representations, and described by a spectrum generating function. It
is interesting to note that for osp(1|2n), the case p = 1 coincides with the canonical
solution; for p 6= 1 one obtains “deformations” of the canonical spectrum (but still an
infinite spectrum with equidistant energy levels). For gl(1|n) one obtains, interestingly, a
finite spectrum with equidistant energy levels.

Our approach here is primarily mathematical, but Wigner quantum systems are rel-
evant in a physical context. Wigner quantization belongs to the field of nonstandard
quantization, more particularly to the class of models of noncommutative quantum sys-
tems (since the operators q̂j do not commute). There is quite some interest in such models,
and more generally in theories with an underlying noncommutative geometry (see e.g. [2]
and references therein). This interest is not only purely theoretical, but also inspired by
e.g. the prediction of string theory that the geometry of space becomes noncommuta-
tive at very small distances [4]. Also q-deformations of canonical commutation relations
have drawn further attention to nonstandard commutation relations. In this context,
Wigner quantization has the advantage that deformations of commutation relations are
not “put in by hand”, e.g. by inserting some extra deformation parameters. On the con-
trary, in Wigner quantization the noncommutativity (or deformation of the canonical
commutation relations) simply follows from some other first principles, namely the ear-
lier mentioned compatibility conditions. Furthermore, Wigner quantization often leads
to solutions of the quantization conditions in a finite-dimensional Hilbert space. Also
here, there seems to be renewed interest in such systems [14]. The solutions discussed in
Section 4 offer examples of such finite-dimensional spaces.

We present only a brief overview of the problem and its solutions in this paper; for
more details, the reader is referred to [10].

2. Wigner quantization of the oscillator system. The Hamiltonian of the n-dimen-
sional harmonic oscillator with mass m is given by

Ĥ =
1

2m

n∑
j=1

p̂2
j +

m

2

n∑
j=1

ω2
j q̂

2
j .

We shall consider both the non-isotropic case (ωj ’s different) and the isotropic case (all
ωj ’s equal).

In order to treat this as a Wigner quantum system [15, 12], the position and momen-
tum operators are no longer required to satisfy the canonical commutation relations, but
one imposes the compatibility of the Heisenberg equations and (the operator form of)
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Hamilton’s equations. All other axioms of quantum mechanics are retained. In particular,
the usual self-adjointness should still hold:

p̂†j = p̂j , q̂†j = q̂j .

Under some mild conditions for Ĥ as a function of the q̂j and p̂j , the canonical commuta-
tion relations imply the compatibility of Heisenberg’s and Hamilton’s equations. In other
words, canonical quantization is a special case of Wigner quantization.

Let us now work out the compatibility conditions for the system under consideration.
The operator form of Hamilton’s equations reads

˙̂qj =
∂Ĥ

∂p̂j
=

1
m
p̂j , ˙̂pj = −∂Ĥ

∂q̂j
= −mω2

j q̂j (j = 1, . . . , n),

whereas the Heisenberg equations read

˙̂qj =
i

~
[Ĥ, q̂j ], ˙̂pj =

i

~
[Ĥ, p̂j ] (j = 1, . . . , n).

So the compatibility conditions are:

[Ĥ, q̂j ] = −i ~
m
p̂j , [Ĥ, p̂j ] = i~mω2

j q̂j (j = 1, . . . , n).

It is appropriate to introduce linear combinations of the operators q̂j and p̂j by

a∓j =
√
mωj
2~

q̂j ±
i√

2m~ωj
p̂j (j = 1, . . . , n).

In terms of these new operators, the expression of the Hamiltonian becomes

Ĥ =
~
2

n∑
j=1

ωj(a+
j a
−
j + a−j a

+
j ) =

~
2

n∑
j=1

ωj{a+
j , a

−
j },

and the new form of the compatibility conditions is
n∑
j=1

[
ωj{a+

j , a
−
j }, a

±
k

]
= ±2ωka±k (k = 1, . . . , n). (1)

The self-adjointness of q̂j and p̂j implies (a±j )† = a∓j for j = 1, . . . , n. So we are led to
the following definition:

Definition 2.1. Let A be the ?-algebra generated by 2n generators a±j (j = 1, . . . , n)
with ?-relations (a±j )? = a∓j and with defining relations (1).

The main questions to address here are: What is the structure of A? Can one give
realizations of A in terms of known algebras? What are the unitary Hilbert space rep-
resentations of A? Surprisingly, a complete answer to the first question is known only
for n = 1. For n > 1 certain realizations of A are known, and some (but not all) classes
of unitary Hilbert space representations have been studied [7, 10]. We shall discuss two
realizations of A in terms of Lie superalgebras in the following sections, and derive some
spectral properties in a class of representations.
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3. Solutions in terms of osp(1|2n). The Lie superalgebra osp(1|2n) can be defined as
an algebra with 2n generators b±j subject to certain triple relations in terms of commu-
tators and anti-commutators:

Theorem 3.1 (Ganchev, Palev [3]). The Lie superalgebra generated by 2n odd generators
b±j (j = 1, . . . , n) subject to the relations

[{bξj , b
η
k}, b

ε
l ] = (ε− ξ)δjlbηk + (ε− η)δklb

ξ
j ,

where j, k, l ∈ {1, . . . , n} and η, ε, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the above
algebraic relation) is the orthosymplectic Lie superalgebra osp(1|2n).

Now it is easy to verify that

a−j = σjb
−
j , a+

j = σ∗j b
+
j , with |σj | = 1

satisfy indeed (1), and that the ?-relations are equivalent with (b±j )† = b∓j . Thus osp(1|2n)
is a realization of A. Consequently, any unitary representation of osp(1|2n) is also a ?-
representation for A.

Note that, in this realization, the Hamiltonian takes the following form:

Ĥ =
~
2

n∑
j=1

ωj{a−j , a
+
j } =

~
2

n∑
j=1

ωj{b−j , b
+
j } = ~

n∑
j=1

ωjhj , (2)

where the hj = {b−j , b
+
j }/2 (j = 1, . . . , n) span the Cartan subalgebra of osp(1|2n).

The unitary representations of osp(1|2n) for which the relations (b±j )† = b∓j hold are
infinite-dimensional. The structure of all these representations is not known, but one
interesting class of unitary irreducible representations (unirrep) is known. These are the
paraboson Fock spaces V (p), labeled by a parameter p [9]. We shall consider this class of
representations here.

Theorem 3.2 (Lievens, Stoilova, Van der Jeugt [9]). The osp(1|2n) representation V (p)
with lowest weight (p2 , . . . ,

p
2 ) is a unirrep if and only if p ∈ {1, 2, . . . , n−1} or p > n−1.

For p > n− 1, the character of this representation is given by

charV (p) =
(x1 · · ·xn)p/2∏

i(1− xi)
∏
j<k(1− xjxk)

= (x1 · · ·xn)p/2
∑
λ

sλ(x1, . . . , xn),

where the sum is over all partitions λ and sλ is the common Schur symmetric function
in the variables x1, . . . , xn. For p ∈ {1, 2, . . . , n− 1}, the character of V (p) is

charV (p) = (x1 · · ·xn)p/2
∑

λ, `(λ)≤p

sλ(x1, . . . , xn)

where `(λ) is the length of the partition λ. So in this case, the sum is over all partitions
λ of length at most p.

For partitions, symmetric functions, Schur functions etc. we follow the standard no-
tation of Macdonald [11].
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Note that, in general, the character of a representation R is an expression (in this
case a series) in the variables x1, . . . , xn of the form

charR =
∑

r1,...,rn

dr1,...,rn
xr11 · · ·xrn

n ,

where (r1, . . . , rn) is a weight of the representation and dr1,...,rn
is the dimension of the cor-

responding weight space (in other words, the multiplicity of the weight). Since the action
of the Hamiltonian (2) on a vector v of weight (r1, . . . , rn) is given by Ĥ v = (

∑
~ωjrj) v,

it follows that the spectrum generating function for Ĥ in such a representation R is given
by

spec Ĥ =
∑

r1,...,rn

dr1,...,rn
tα1r1 · · · tαnrn .

In other words, to get the spectrum generating function, one should make the formal
substitution xj → t~ωj in the character of the representation.

Let us perform this procedure for the unirreps under consideration. This gives (in the
case p ∈ {1, 2, . . . , n− 1}; the other case is similar)

spec Ĥ = t~p(ω1+···+ωn)/2
∑

λ, `(λ)≤p

sλ(t~ω1 , . . . , t~ωn).

This expression simplifies a lot in the isotropic case, with

ω1 = · · · = ωn = ω.

It should be emphasized that in the remainder of this section we are dealing with this
isotropic case. Putting z = t~ω, all Schur functions appearing in the spectrum generating
function are of the form sλ(z, . . . , z), and for these there is a well known expression [11]:

sλ(z, . . . , z) = z|λ|sλ(1, . . . , 1) = z|λ|
(
n

λ′

)
,

this last symbol being the generalized binomial coefficient [11, I.3, example 4]. Thus one
obtains:

spec Ĥ = znp/2
∑

λ, `(λ)≤p

sλ(z, . . . , z)

=
∑
k≥0

∑
λ, |λ|=k, `(λ)≤p

sλ(1, . . . , 1)t~ω(np/2+k).

So we have [10]

Theorem 3.3. In the representations V (p) with p ∈ {1, 2, . . . , n− 1} described in Theo-
rem 3.2, the spectrum of the Hamiltonian consists of equidistant energy levels

E
(p)
k = ~ω(np/2 + k), k = 0, 1, 2, 3, . . .

with spacing ~ω and with multiplicities (degeneracies) given by

µ(E(p)
k ) ≡

∑
λ, |λ|=k, `(λ)≤p

sλ(1, . . . , 1) =
∑

λ, |λ|=k, `(λ)≤p

(
n

λ′

)
. (3)

In the representations V (p) with p > n−1, the expressions are the same, but the condition
`(λ) ≤ p should be dropped in (3).
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The multiplicities can be computed more explicitly, see [10] for more details. For
example, for p = 1:

µ(E(p=1)
k ) =

(
n

(k)′

)
= (−1)k

(
−n
(k)

)
= (−1)k

(
−n
k

)
=
(
n+ k − 1

k

)
.

Since p = 1 corresponds to the canonical case, we obtain here the well known energy
multiplicities. Next, for p = 2 one finds

µ(E(p=2)
2k ) =

(
n+ k − 1

k

)2

, µ(E(p=2)
2k+1 ) =

(
n+ k − 1

k

)(
n+ k

k + 1

)
.

In the generic case, for p > n− 1, one has

µ(E(p>n−1
k )) =

k∑
l=0

(−1)l
((n+1

2

)
+ k − l − 1
k − l

)((n
2

)
+ l − 1
l

)
.

Let us summarize these results in a table, for n = 3 (the 3-dimensional harmonic oscil-
lator), where we give for each of the relevant p-values the spectrum generating function
(GF) as a function of z = t~ω, the energy levels Ek (k = 0, 1, 2, . . .), and the corresponding
multiplicities (Table 1). More explicitly, let us also present the values of the multiplicities
for the first few energy levels in a table (Table 2).

Table 1. Spectrum generating functions (GF) for the 3-dimensional harmonic oscillator; energy
levels, and corresponding multiplicities (for different p-values)

p GF levels multiplicities

1
z1/2

(1− z)3 ~ω( 3
2

+ k) µ(E
(1)
k ) =

`
k+2
2

´
2

z3(1 + z + z2)

(1− z2)3(1− z)2 ~ω(3 + k) µ(E
(2)
2k ) =

`
k+2
2

´2
, µ(E

(2)
2k+1) =

`
k+2
2

´`
k+3
2

´
> 2

z3p/2

(1− z2)3(1− z)3 ~ω( 3p
2

+ k) µ(E2k) = 4k+5
5

`
k+4
4

´
, µ(E2k+1) = 4k+15

5

`
k+4
4

´

Table 2. Explicit multiplicities of some energy levels for the 3-dimensional harmonic oscillator

µ(E
(p)
0 ) µ(E

(p)
1 ) µ(E

(p)
2 ) µ(E

(p)
3 ) µ(E

(p)
4 ) µ(E

(p)
5 ) µ(E

(p)
6 )

p = 1 1 3 6 10 15 21 28

p = 2 1 3 9 18 36 60 100

p > 2 1 3 9 19 39 69 119

The conclusion of this osp(1|2n) type of solution for the Wigner quantization is clear:
the quantization involves an extra parameter p. When p = 1, the canonical quantization
is obtained. For other values of p, the spectrum itself is similar to that of canonical
quantization. The main difference is the lowest energy level (which is p-dependent), and
the multiplicities of the energy levels (which are also p-dependent).

4. Solutions in terms of gl(1|n). A second algebraic solution of the compatibility
conditions is obtained in terms of the general linear Lie superalgebra gl(1|n) (for n > 1).
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In the defining representation, gl(1|n) has a basis consisting of (n+ 1)× (n+ 1) matrices
eij (i, j = 0, 1, . . . , n) with (eij)kl = δikδjl. The odd basis elements (those of degree 1)
of gl(1|n) are e0j and ej0 (j = 1, . . . , n); all other basis elements are even (of degree 0).
The Lie superalgebra bracket (which can be a commutator or anti-commutator for basis
elements) is determined by

[[eij , ekl]] = δjkeil − (−1)deg(eij) deg(ekl)δilekj (i, j, k, l = 0, 1, . . . , n).

Now one can verify that

a−j =
√

2|βj |/ωj ej0, a+
j = sign(βj)

√
2|βj |/ωj e0j ,

with coefficients

βj = −ωj + (
n∑
k=1

ωk)/(n− 1)

also satisfy (1), and that the ?-relations are equivalent to (e0j)† = sign(βj)ej0. In other
words, gl(1|n) is a second realization of A, and all unitary representations of gl(1|n) are
?-representations of A. The choice of unitary representations depends on the choice of
the ?-relations, i.e. on the choice of the signs of the βj . It is appropriate to choose all
βj positive, because then a class of unitary representations is actually known: implicitly,
this means we are working with the compact form u(1|n) of gl(1|n). So from now on let
us assume that βj > 0 for all j.

In the present realization, the Hamiltonian can be rewritten as

Ĥ = ~
(
βe00 +

n∑
j=1

βjejj

) (
β =

n∑
j=1

βj

)
,

i.e. Ĥ is again an element of the Cartan subalgebra of gl(1|n), for which the elements ejj
(j = 0, 1, . . . , n) form a basis.

The unitary representations of u(1|n) are finite-dimensional, and they have been
classified [5, 8]. They consist of 3 classes: covariant tensor representations, contravari-
ant tensor representations, and certain typical representations (with a condition for
the highest weight). Let us consider here the class of covariant tensor representations;
these are characterized by a partition λ = (λ1, λ2, . . .) with λ2 ≤ n. The character of
this representation is known, and given by a so-called supersymmetric Schur function
sλ(x0|x) = sλ(x0|x1, x2, . . . , xn) [1]. Following the technique of the previous section, it is
now a matter of making the substitution x0 → t~β and xj → t~βj in this supersymmetric
Schur function in order to find the spectrum generating function. Once more, these Schur
functions simplify in the isotropic case, where ω1 = · · · = ωn = ω; then

βk =
ω

n− 1
, β =

nω

n− 1
.

In other words, one finds the spectrum generating function by means of the substitution

x0 → t~β = t
~ωn
n−1 =: zn, xk → t~βk = t

~ω
n−1 =: z (k = 1, . . . , n).
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As an example, consider the spectrum generating function in the case that the covariant
representation is typical (this means here λ1 ≥ n). This gives:

spec Ĥ = sλ(zn|z, z, . . . , z) (where z = e~ω/(n−1))

= t~ω(|λ|/(n−1)+λ1−n)(1 + t~ω)n
(

n

(λ2, λ3, . . .)

)
where the last symbol is again a generalized binomial [11, I.3, ex. 4]. The important
point to notice here is that this results once again in equidistant energy levels. However,
the spectrum is finite (after all, we are dealing with finite-dimensional unirreps). An
expression for the ground level and the highest level is [10]:

E
(λ)
0 = ~ω

(
|λ|
n− 1

+ λ1 − n
)
, E(λ)

n = ~ω
(
|λ|
n− 1

+ λ1

)
.

The multiplicity of the k-th energy level is given by

µ(E(λ)
k ) =

(
n

k

)(
n

(λ2, λ3, . . .)

)
.

We have presented here only the case of typical covariant representations; for more
information on the atypical covariant representations, see [10].

The conclusion of the gl(1|n) type of solution for the Wigner quantization is: this
quantization involves extra partition parameters λ1, λ2, . . .. The canonical quantization
does not belong to this class. The energy spectrum is equidistant (with distances ~ω)
but finite; the lowest and highest energy levels – and their multiplicities – depend on the
representation parameters λ.

Acknowledgments. S. Lievens acknowledges the support by project P6/02 of the In-
teruniversity Attraction Poles Programme (Belgian State – Belgian Science Policy).
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