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Abstract. Operadic Lax representations for the harmonic oscillator are used to construct the
quantum counterparts of three-dimensional real Lie algebras. The Jacobi operators of these
quantum algebras are explicitly calculated.

1. Introduction and outline of the paper. In Hamiltonian formalism, a mechanical
system is described by the canonical variables ¢, p; and their time evolution is prescribed
by the Hamiltonian equations

dq’ _OH  dp; _8H

U oy &t og (1)

By a Lax representation [3] of a mechanical system one means such a pair (L, M) of

matrices (linear operators) L, M that the above Hamiltonian system may be represented

as the Lax equation

dL
— =ML~ LM. 2
i (2)

Thus, from the algebraic point of view, mechanical systems may be represented by linear
operators, i.e by linear maps V' — V of a vector space V. In particular, representation
of the physical observables by linear operators is used in quantum mechanics and their
time evolution is described by the Heisenberg equations. As a generalization of this one

can pose the following question [4]: how can the time evolution of the linear operations
(multiplications) V®" — V be described?
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The algebraic operations (multiplications) can be seen as an example of the operadic
variables [I]. If an operadic system depends on time one can speak about operadic dynam-
ics [A]. The latter may be introduced by simple and natural analogy with the Hamiltonian
dynamics. In particular, the time evolution of the operadic variables may be given by the
operadic Lax equation. In [5] [6 8], the low-dimensional binary operadic Lax representa-
tions for the harmonic oscillator were constructed. In [7] it was shown how the operadic
Lax representations are related to the conservation of energy.

In [9], the operadic Lax representations were used to construct the quantum counter-
parts of the real three-dimensional Lie algebras in Bianchi classification over the harmonic
oscillator. In this paper, the Jacobi operators of these quantum algebras are explicitly
calculated.

2. Endomorphism operad and Gerstenhaber brackets. Let K be a unital asso-
ciative commutative ring, V' be a unital K-module, and £} := Endy, := Hom(V®™, V)
(n € N). For an operation f € £}, we refer to n as the degree of f and often write (when
it does not cause confusion) f instead of deg f. For example, (—1)/ := (=1)", 5"; =&
and oy := o,,. Also, it is convenient to use the reduced degree |f| := n — 1. Throughout
this paper, we assume that ® := Q.

DEFINITION 2.1 (endomorphism operad [I]). For f® g € E‘f, ® &7 define the partial
compositions

foigi=(~1)1fo (¥ wgidd=)y el 0<i<|f|.
The sequence &y := {&}} }nen, equipped with the partial compositions o;, is called the
endomorphism operad of V.

DEFINITION 2.2 (total composition [I]). The total composition o: 5{; Q&) — Eéﬂg‘ is

defined by
]

fog=> foige &l |o|=0.

i=0
The pair Com &y := {€y, o} is called the composition algebra of Ey .

DEFINITION 2.3 (Gerstenhaber brackets [I]). The Gerstenhaber brackets [, -] are defined
in Com &y as a graded commutator by

[£.91:=fog— (1) Mlgo f = —(-1)1¥lg, ], |[-, ]| =0.
The commutator algebra of Com &y is denoted as Com™ &y := {&v, [, |}. One can

prove (e.g. [1]) that Com™ &y is a graded Lie algebra. The Jacobi identity reads
(=1)IMLE, (g, )]+ (=)W [g, [, 1]+ (=), [£, 9] = 0.

3. Operadic Lax pair. Assume that K := R or K := C and operations are differen-
tiable. Dynamics in operadic systems (operadic dynamics) may be introduced by

DEFINITION 3.1 (operadic Lax pair [4]). Allow a classical dynamical system to be de-
scribed by the Hamiltonian system . An operadic Laz pair is a pair (u, M) of homo-
geneous operations u, M € &y such that the Hamiltonian system may be represented
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as the operadic Lax equation

d
di; = [M,p] := Moy — (=)Mo 01,

The pair (L, M) is also called an operadic Laz representations of/for Hamiltonian system

().

REMARK 3.2. Evidently, the degree constraints |M| = |L| = 0 give rise to ordinary Lax
equation [3]. In this paper we assume that |M| = 0.

The Hamiltonian of the harmonic oscillator (HO) is

1
H(q,p) = =(p* + w?¢?).

2
Thus, the Hamiltonian system of HO reads
dg OH _ dp _ OH

it~ op U a9 7 )

If i is a linear algebraic operation we can use the above Hamilton equations to obtain
di _opdg  Ondp o 0w
dt  Oqdt Opdt dq dp

Therefore, we get the following linear partial differential equation for u(q,p):

M, p].

O o _

dq dp
By integrating one can get collections of operations called [4] the operadic (Lax
representations for/of) harmonic oscillator.

(M, ] (4)

4. 3D binary anti-commutative operadic Lax representations for harmonic
oscillator.

LEMMA 4.1. Matrices

p wq O w 0 -1 0
L:=|wqg —-p 0], M:= 3 1 0 O
0 0 1 0 0 O

represent a 3D Lax representation for the harmonic oscillator.

DEFINITION 4.2 (quasi-canonical coordinates). For the harmonic oscillator define its
quasi-canonical coordinates A4 by

A% — A% =2p, A A =uwq. (5)

THEOREM 4.3 (see [§]). Let C, € R (v =1,...,9) be arbitrary real-valued parameters,
such that

C3+C5+C2+C5+C2+C3#0. (6)

Let M be defined as in Lemma and p: VRV — V be an anti-commutative binary
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operation in a 3D real vector space V with the structure functions
Wiy = by = pig = 15y = iy = pis = piy = 3y = pds =0
fiy3 = —py = Cop — Cswq — Cy

(s = —p31 = Cop — Cawq + Cy

3 = —piz = Cowqg + Cap — Cy

p153 = =39 = Cowq + Czp + Cy

fiy = —p3y = Cs A4 + Ce A

iy = —p3; = CsA- — Ce Ay

iy = —pd = CrAL + CsA_

(135 = =3y = CrA- — Cs Ay

(132 = —p3; = Co

Then (u, M) is an operadic Lax pair for the harmonic oscillator.

5. Initial conditions. Now specify the coefficients C, in Theorem [£.3] by the initial
conditions

flimo = Hs Pli—g =Pos  dly—o =0
Denoting E := H|;—o, the latter together with yield the initial conditions for A:

(A3 +A42)|,_, =2V2E po> 0 po <0
I R T A W
ApA g =0 Afig=0 AZ| Ly =m0

In what follows assume that pg > 0 and A |;—9 = v/2po. The other cases can be treated
similarly. Note that in this case pg = V2F. From we get the following linear system:

Cr=14 (s —ith), Co= o (is+ids). Cn= gk (is+ith)

Co=3 (i~ fthy), Cs = =i, Co = —A—ii%y (8)

_ 1 °3 _ 1 °3 __°3
= \/%leb Cg = — \/%MZZM Co = p7s

6. Bianchi classification of 3D real Lie algebras. We use the Bianchi classification
of 3D real Lie algebras [2]. The structure equations of the latter can be presented as
follows:

le1,e2] = —aes + nes, [ea, €3] = nleq, [es,e1] = n2es + aes.

The values of the parameters a, n',n?,n% and the corresponding structure constants are

presented in Table 1.

7. Dynamical deformations of 3D real Lie algebras. By using the structure con-
stants of the 3D real Lie algebras in the Bianchi classification, Theorem [£:3] and relations
one can propose that the time evolution of the 3D real Lie algebras is prescribed [7]
as given in Table 2.
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Table 1. 3D real Lie algebras in Bianchi classification. Here a > 0

Bianchi type « (nl, ”27 ng) 5%2 lot%2 /i% lot%s liga 13%3 /iél ﬁﬁl ﬁgl
I 0 (0,0,0) 0 0 0 0 0 0 0 0 0
II 0 (1,0,0) 0 0 0 1 0 0 0 0 0
VII 0 (1,1,0) 0 0 0 1 0 0 0 1 0
VI 0 (1,-1,0) 0 0 0 1 0 0 0 -1 0
IX 0 (1,1,1) 0 0 1 1 0 0 0 1 0
VIII 0 (1,1,-1) 0 0 -1 1 0 0 0 1 0
\% 1 (0,0,0) 0 1 0 0 0 0 0 0 1
v 1 (0,0,1) 0 -1 1 0 0 0 0 0 1
VIIL, a (0,1,1) 0 —a 1 0 0 0 0 1 a
Ila=1 1 (0,1,-1) 0 -1 -1 0 0 0 0 1 1
V21 a (0,1,-1) 0 —a -1 0 0 0 0 1 a

Table 2. Time evolution of 3D real Lie algebras. Here po = V2F

Dynamical :
Biaynchi type 112 pla  pla  pis ks 1133 pit o g3 ph
I 0 0 0 0 0 0 0 0 0
t p+p wq wq p—p
II 0 0 2poo 2po 0 2po 72118
VII 0 0 0 1 0 0 1 0
VIt 0 0 0 £ “4 0 “4 -2 0
PO PO PO PO
IX* 0 0 1 1 0 0 0 1 0
VIIT? 0 0 -1 1 0 0 0 1 0
L A_ —A, —A_ AL
v Ve va 00 0 &m0 0 %5
¢ A_ —A, —A_ AL
IV V2po V2po 1 0 0 V2po 0 0 2po
VIIt aA_ —aAy 1 P—po wgq —aA_ wq p+po aAy
@ 2po V2po —2po —2po V2po —2po 2po 2po
It A —A+ 1 p=po wgq —A_ wg  ptpo A4
a=1 V2P0 2o —2p0  —2p0 2P0 —2p0 2P0 2po
VIt @A ZeAy | p—po wgq —ad_ wq  ptpg A4
a7l V2po V2po —2pg  —2po V2po —2po 2po V2po

8. Quantum counterparts of 3D real Lie algebras. Let now the harmonic oscillator
be quantized, i.e its canonical coordinates satisfy the CCR

[¢,d] =0=1[p,pl, [p,q] = n/i.
Then the classical observables Ay (g,p) will be quantized as well and their quantum

counterparts are denoted by Ay := A1 (q,p). As a result, the quantum counterparts of
the 3D real Lie algebras can be listed as presented in Table 3.
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Table 3. Quantum counterparts of 3D real Lie algebras over the harmonic oscillator

uantum N A N A N N A N N
Bgnchi type fil it it fizs fizs i3 fis1 fi51 fi51
" 0 0 0 0 0 0 0 0 0

h P+p wq wq p—p
II 0 0 0 21900 2po 0 2po —2172 0
vIr' 0 0 0 1 0 0 0 1 0
h b wq wq _ P
VI 0 0 0 Po Po 0 Po PO 0
X" 0 0 1 1 0 0 0 1 0
v 0 0 -1 1 0 0 0 1 0
N A _A, _Ai_ A,
M 2p| 2po 0 0 0 V2po 0 0 2pg
n AL Ay —A_ A,
v Vi Ve L 0 0 A 0 0 T
VI ad_ —ady 1 P—Po wd —aA_ wq P+po aAy

@ V2po V2po —2po —2po V2po —2po 2po 2po

K A_ —Ay -1 P—=Po wq —A_ wq P+po Ay
a=1 V2P0 V2po —2pg  —2po \/2po —2po 2po 2po

VI ad_ —aAy -1 P—po wg —aA_ wg P+po ady
a#l V2P0 V2po —2po —2po V2P0 —2po 2po V2P0

One can easily check that 1"

the latter more compactly in a separate table.
Let 3,7, a, b be real-valued parameters from Table 4 and let A" denote an entry from

the first column of Table 3. Algebras V", TV" VII, IIT

presented as Table 5.

h
a=1»

, 117, v, VI, IX", VIII" are Lie algebras. Thus, in
what follows, we will only focus on the algebras V V" VII® 111"

A +1, and present

a=1>

VI, from Table 3 can be

Table 4. Values of 3,7, a, b for quantum algebras A". Here ¢ > 0

AP 8 5 a b

Vi 0 0 1 0

AV 0 0 1 1

VI 1 1 a 1

mr_, 1 1 1 1

A 1 1 a#1 -1

Table 5. A"

AR P T S S T SR - Y- N N N1
A" T e el pet oo el hm) s

Let Ago denote the state space of the quantum harmonic oscillator and {ey, e, ...}
be its basis. By using Table 5 we define the structure equations in Ago by
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[eia ej]h = ﬂfjesa

where the structure operators fif; for i, j, s < 3 are defined by Table 5 and £, := 0 for
1,7,8 > 3. For z,y € Ago, their quantum multiplication is defined by

[z, yln = ﬂzkxjykei = ,&}kxjykel + ﬂ?kxjyk@ + ﬂ?kxjyk%,

where we omitted the trivial terms, because ji%;, = 0 for i > 3.

9. Jacobi operators. For x,y,z € Ago, their quantum Jacobi operator is defined by
Jn(@y;2) = [, [y, 2lnln + [ [2, 2]nln + [2, [, 9]l
= Jh(w;y;2)er + Ji (w95 2)en + Jj (w595 2)es,
where we again omitted the trivial terms, because j,g =0 for ¢ > 3. In [9] the quantum

Jacobi operators were presented for all real three-dimensional Lie algebras. In this paper,
we present a calculation of the Jacobi operators. Denote

X X X
(z.y,2) = |yt y® 3|, &&= PwiAs £y(pFpo)As.
22 B

Then we have

THEOREM 9.1. The Jacobi operator components of A" read
z,Y,
(\/7 )§+7

alx ~
(z,y,2) a@y2)e
\/2p

A a2 x,Y, ~ ~
Jh(w;y;2) = %[AJHA*}

Ji(zyy;2) =

Ji(a5y;2) = —

Proof. As an example, calculate j,%(x,y,z) First find the products [z,yls, [y, z]r and
[z, 2] in A" Denote A := (x,y,2) and let AY be the cofactor (signed minor) of the
element of A in the i-th row and j-th column. Calculate

[z, yln = [z, ylhes = Qg ybe;
= (ﬂbASS — fi13A%% + M23A31) e+ (H12A33 — [i}3A%% + M23A31)
+ (bA% — 4F3A% 4 15;A%" ) eg

aA_ wq P=Po r:
_ ASS o 7A32 o ASI
( v2po & 2pg 7 2pg “

*‘“L— 33 P+Po 32 wq 31
+ | /=AY 4y ——A - [—A e
(\/2170 7 2po 2po

A aA_
+ bA33 + uA32 24— A8L
( V2Po V2po
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In the same way, we can see that

[y’ Z]fl = [yv Z]%ez = [Lé-kyjzkei

aA_ wj b — po
_ (8- £13_gWd a2 P P01
(\/ 2po ﬁ2po 7 2po ¢

_CLA+ 13 P+DPo ,12 wq 11
——FA — A - [3—A
* ( V2po A 2po ﬁ2po “
A aA_
pALS & 244 12 Al | e
- ( - V2po V2po s

and also

[z, @] = [z, 2lhe; = f27 e

_ (a/l A23—6w—(jA22 _Wﬁ—poAm) el

V2po 2po 2po
—af1+ 23 P+ Do o0 wq 21
——A A - [—A
* ( v2po M 2po ﬁon 2
. A aA_
+ bA2‘3+a + A2 A2 e..
( V2po V2po °

Now calculate the first component of the Jacobi operator:

jf%(l',yv Z) = [CE, [ya Z]h]fli + [ya [Zax]h]%i + [Za [.T, y]h]ili
= ﬂ}kl"] [y, 2] + ﬂ;ky] [z, 2]} + /ljl‘kz] ERTS
= fito (2'[y, 217 — 2®[y, 213) + Pas (¢ [y, 215 — 2°[y, 2]
+ /.1%3 (JTZ[y, Z}% - ‘Ts[y7 Z}%) + :a%Q (yl[zv LE]% - y2 [Z, I]
+ 13 (v [z 2lh — v [z, 2ln) + fing (P[22} — v°[2, 2]
+ fiig (2' [z, y)7 — 22[2,yls) + fds (2 [2, )5 — 2°[2, 9]
+ iz (2%[2,y]h — 2°[2,y]7)
_ aA 21 —aAy Al P+ Do g2 gd A1
V2po 2po 2po 2po
2 aA_ 13 wq 19 D—Do \11
—z° | —A" - [—A" —y——A
(\/2100 2po 7 2po
w(q 1 13 a/i+ 12 aA_ 11
+B—<z [ A" + —A"* — —A
2100{ < V2po V2po

_ 3 (af‘i— Al?)—g“’l&?_ ﬁ—poAu

V2po 2po i 2po

St
~—_— — ~—

St SN St
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_,yﬁ_po {x2 (bA13+ ady Al2 _ aA_ A11>

2po V2po V2po
N T R I wq 11
—2’ | —— A+ y——AF - [—A
( V2po 2po 2po
ad_ 1 —az‘h 23 D+ Do 2 wq 91
+ Y| — A+ y—A - A
m{ < Vo o7 00

2 aA_ 23 wq 90 D—P0 21
- ——— A" - A —y—A
Y (\/2100 52170 v 2po ) }

wq | o o3, @Ay o aAl
+ 08— bA™ + A% — A
/ 0 {y ( V2po V2po )

3 [ aA- o3 wq 22 D—1Po \21
— —— A - B—A¥ A
Y (\/2]?0 ﬂ2po 7 2po >}

P—DPo) o 23 C‘A+ 22 aA_ 21
— DA™ + —— A" — ——A
7 2po {y < V2po V2po )

3 _G’A+ 23 P+ Do ro2 wq o
— A+ A — —A
Y ( V2po 7 2po 2po ) }

I aA_ {21 <_GA+A33+723+P0A32 _5“)qAA31>

2po V2po 2po 2po
A wq P = po
_ 2 a A33 _ g9 AB2 _ A3l
V2po b 2po 7 2pg
wq | 4 33 a/l+ 32 aA_ 31
+ B—<2z" | bA®° + A% — A
A 2po { ( v2po v2po >

- A_ Q- qu . ﬁ — po
_ .3 a A33 _ gLd AB2 _ A3l
<\/ 2po ﬂ2po 7 2po

_713—170{22 (bA33 4 ady A32 _ aA_ A31>

2po V2po V2po
s [ —aAy ss  PH+P0 a0 wq 31
—2° | ——= A +y——A* - —A .
< V2po 2po 2po
Now open the parentheses and rearrange the terms. Then we have
afl, GA+

(1’1A13 + y1A23 + ZlA33)
0

GA_ PHDpo ;1 a2 1n22 L 1 a82
488 PEPO AT 1A A
V2po " 2po ( )

Jh(zy52) = —
h(x Y Z) v2po /2po

0
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aA_

_ 5210 ( LALL +y1A21 +2,1A31>

V2 0
(%,y,2)

WA ad_

. Al 2723 2 733
V2po /2po S Y Tz )

0

+ aA_ 5 ( 2712 +y2A22 + ZzAsz)

V2po' 2po

(z,y,2)

aA_ P—D0 / 2A11 2 A21 2 A 31
+ 5 22 AN 4 2A 4 22A
V2po "~ 2po ( )

0
_1_551 b( 1A13+y1A23+z1A33)
Do

0

wq aA
+/62p0 2;’ ($1A12 + y1A22 + ZlA32>
0
w(q aA_ LALL 1p21 1A31
ﬁon e (z +y +z )
(z,y,2)
w(q aA_ 3A13 3 A 23 3 A33
ﬁQPOF(xA +y A 4+ 2°A )
(%,y,2)
wq w
_1_52;)52 q ( 3p12 +y3A22 +Z3A32)

0

ﬂﬂ p—Po (x3A11+y3A21+23A31)
200 2po

0

_ 'y]%b (x2A13 + y2A23 + 22A33)
Po

0

P — Do aA+ 2 A 12 2 A 22 2 A 32
— — (A + y" AT 4 A
2po v2po ( )

(z,y,2)

P — Do aA_ 2A11 2 A21 2 A 31
AT+ ytAT + XA
v 2po \/2190( ‘ )

0

D—Do Ay | 515, 303 . 3 A33
- — (2 A+ yA* + 2°A
2po \/2190( )

(z:y,2)

L 5t ‘
i 729 Po,yp Po (;L'?’Am + y3A22 + Z3A32)
2pg 2pg

0
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L wi
_,yp Poﬂi (m3A11+y3A21+23A31)

2po  2po
0
a(z,y,z LA R -
== (7y3)(ﬂwqu + (B —po)As).
2pp

The remaining operators JE (z;y; 2) and JA,E;’ (z;y; z) can be calculated in the same way. =

REMARK 9.2. By the direct calculations one can see that the Jacobi operators of II" and
VI" turn out to be zero.
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