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Abstract. Among (conformal) quantum field theories, the rational conformal field theories
are singled out by the fact that their correlators can be constructed from a modular tensor
category C with a distinguished object, a symmetric special Frobenius algebra A in C, via the
so-called TFT-construction. These correlators satisfy in particular all factorization constraints,
which involve gluing homomorphisms relating correlators of world sheets of different topology.

We review the action of the gluing homomorphisms and discuss the implications of the fac-
torization constraints for boundary conditions. The so-called classifying algebra A for a RCFT
is a semisimple commutative associative complex algebra, which classifies the boundary con-
ditions of the theory. We show that the annulus partition functions can be obtained from the
representation theory of A.

1. Introduction. There are various physical motivations to study quantum field the-
ories on two-dimensional compact manifolds with a complex structure, possibly with
non-empty boundary. Applications appear e.g. in condensed matter physics and in string
theory. Such a surface is, by terminology inherited from string theory, called a world
sheet. The situation becomes particularly interesting for a (full, local) conformal field
theory (CFT), i.e. a two-dimensional QFT with conformal symmetry defined on world
sheets. In two dimensions, there are, apart from the global conformal transformations, an
infinite number of local conformal transformations giving rise to an infinite dimensional
symmetry algebra. In fact, as a consequence of the huge amount of symmetry, conformal
field theories can be studied in a fully non-perturbative manner. This is another reason
to study 2d CFT.
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We denote by X¢ a world sheet, possibly with boundary, and a number of field inser-
tions in the bulk or on the boundary. The correlation function Corr(X¢) for the world
sheet X ¢ associates to X¢ a map from the relevant space of fields to the complex num-
bers. Correlation functions are linear in the fields and satisfy a number of consistency
conditions. Among them are the factorization constraints, which can be thought of as a
concrete realization of the notion of inserting a complete set of states. Solving a CFT
amounts to giving the correlation function for any world sheet X¢. This paper concerns
a special class of CFT’s, the so-called rational CFT’s (RCFT), for which there is a nice
description of the construction in terms of modular tensor categories.

An important issue in CFT is the classification of conformal boundary conditions. A
priori this is a difficult problem, except for some simple models. In e.g. the Ising model, a
simple spin model, all boundary conditions can be described in terms of a fixed external
magnetic field applied to the spin variables at the boundary. This gives rise to a one
parameter family of boundary conditions, which renormalize to three different boundary
conditions in the continuum model. Two of them, spin up and spin down, correspond to
a non-zero external magnetic field, whereas the third one, the free boundary condition,
corresponds to taking the external magnetic field to be zero. However, it is far from ob-
vious that boundary conditions of this form exhaust the conformal boundary conditions.
E.g. in the three-states Potts model, there is one conformal boundary condition which
cannot be related in a simple way to the external magnetic field [3].

In [12] it was conjectured that the conformal boundary conditions for a specific class of
theories are classified by a semi-simple commutative associative complex algebra, the so-
called classifying algebra A. In [I3] we establish the existence of the classifying algebra for
any RCFT. The structure constants of A4 are obtained by comparing bulk and boundary
factorization of a disc with two bulk field insertions. The irreducible representations of
A are the so-called reflection coefficients. The reflection coefficients, which appear e.g. in
[0, 12], are collected in so-called boundary states. The boundary states contain essential
physical information regarding boundary conditions, such as ground state degeneracies
[1] and Ramond-Ramond charges of string compactifications [4]. Moreover it has been
shown, for some special classes of models, see e.g. |2, 5] [14], that the reflection coefficients
appears naturally in the annulus partition functions. In this paper we show, by applying
bulk factorization, that essential information concerning the annulus partition functions
for any RCFT is contained in A and its representation theory. Thus the appearance of
the reflection coefficients in the annulus coefficients of a RCFT is a generic phenomenon.

The symmetries of a CFT can be encoded in the mathematical structure of a con-
formal vertex algebra U, by physicists often referred to as the chiral algebra. A rational
CFT is distinguished by the property that the strictification of the category Rep(U)
of representations of U is a modular tensor category C. The correlation functions of a
rational CFT satisfy holomorphic factorization, e.g. the correlation function Corr(X¢)
is a vector in the space of conformal blocks on the double X¢. The double is obtained
from X ¢ by taking the orientation bundle over X¢ and pairwise identify points over the
boundary 0.X¢:

Xe:=or(X%) /~, (z,0r) ~ (z,—or) Vo € 9X°. (1)
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The double is in particular a complex curve, thus we can study the space of conformal
blocks on X¢.

The solution of a rational conformal field theory, with given chiral algebra 2, can be
split off into two separate parts, a complex-analytic and a purely algebraic part. The first
problem amounts to solving the chiral theory on )/(\C, i.e. to obtain the space of conformal
blocks of B on X¢. The second problem amounts to selecting, from the space of conformal
blocks, the particular vector Corr(X¢). This paper is concerned with the second problem.
As a consequence, we will be able to restrict to topological world sheets. A topological
world sheet X is obtained from X°¢ by suppressing the conformal structure.

This paper is formulated in the framework of the TFT-construction. The TFT-
construction provides all solutions to a rational CFT with given chiral algebra 2. A
rational CFT, with chiral algebra 2, is constructed from the modular tensor category
C, which is the strictification of Rep(0), and a distinguished object A in C, with the
structure of a symmetric special Frobenius algebra. In fact, the rational CFT’s with
chiral algebra U are classified by Morita classes of simple symmetric special Frobenius
algebras in C. We will not discuss vertex algebras explicitly, we will rather work in the
framework of an abstract modular tensor category. Thereby we cover all rational CFT’s
simultaneously.

A crucial tool in the TFT-construction is a topological field theory. A topological
field theory is a tensor functor tftc from the category 3-Cob(C) to the category Vectc
of finite-dimensional complex vector spaces. The morphisms of 3-Cob(C) are cobordisms,
i.e. three-manifolds with embedded ribbon graph. The TFT-construction provides the
correlator as the invariant of such a cobordism. The correlator of a topological world
sheet X is an element in a finite dimensional vector space. This space can be identified
with the space of conformal blocks on the world sheet X ¢, obtained by endowing X with
a complex structure. Thus the structure constants of the expansion of such a correlator
are the same as the ones for the correlation functionlT]

In section 2 we review some basic facts concerning modular tensor categories and the
TFT-construction. Section 3 describes how the factorization constraints are implemented
on a specific correlator. There are 2 types of factorization, bulk and boundary factor-
ization. Boundary factorization is covered only briefly since we do not need it for the
calculations in this paper. In section 4 we use bulk factorization to show how A and its
representation theory appear in the annulus partition functions.

2. Modular tensor categories and the tftc¢-functor. A modular tensor category
C is in particular an abelian, semisimple, C-linear, ribbon category. Thus any object is
a finite direct sum of simple objects. Since the ground field of C is C the notion of a
simple object is the same as a ”"scalar” object, meaning that End(U;) = C. We choose
representatives of isomorphism classes of simple objects and label them by a finite index

!The correlation function depends in general on the metric on X . However, a certain quotient
of correlators will only depend on the conformal equivalence class of the metric, see [10, section
6.1.4]. It is these quotients that can be obtained via the TFT-construction.
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set Z, i.e.
{UZ |Z € I}7

where we take Uy = 1 and k € Z such that Uy = U for all k € Z. Since C is ribbon
we make extensive use of graphical calculus, see e.g. [9] section 2]. Due to strictness lines
labeled by 1 are invisible. Among the structures defining a ribbon category is the twist.
We denote the twist of the object U by 0y. The twist of a simple object U;, which is
proportional to the identity morphism, is written as

Oy, = 0;idy,, 0, € C.

In a modular tensor category there is also a non-degenerate matrix S, cf. [9, egs. (2.21)
& (2.27)], which is part of a representation of the modular group. We will also use the
quantum dimension dim(U) of an object U, cf. [9] eq. (2.17)], which for a simple object
is related to the S-matrix:

Si0
dim(U;) == ——.
( Z) S070
2.1. Algebras in tensor categories. An algebra in a modular tensor category is an
object A, equipped with a product m € Hom(A®A, A) and a unit 7 € Hom(1, A) that
satisfy associativity and unit constraints:

mo (ida®m) =mo (m®idy) and mo (nRida) =idg = mo (Ids®n).
Similarly a coalgebra A in C is an object A, together with a coproduct A € Hom(A, A®A)
and a counit € € Hom(A, 1) satisfying coassociativity and counit constraints:

(ida®A) o A = (A®ida) oA  and (e®ida) o A =idy = (1da®e) o A.

A Frobenius algebra in a tensor category is an object A which is both an algebra and a
coalgebra, such that the product and coproduct obey the following compatibility condi-
tion
(ida®@m) o (A®id4) = Aom = (m®ida) o (Id4RA).
A left-module M = (M, p) over an algebra A in C is an object M, equipped with a
representation morphism p € Hom(A®M, M) satisfying
po(m®idy) =po (ida®p) and po (nRidar) = iday.

Similarly a right-module over A is an object M, together with a morphism
p € Hom(M®A, M), satisfying analogous relations. For two algebras A and B in a
tensor category, an A-B-bimodule X = (X, pr, pr) is an object X, such that (X, pr) is
a left A-module and (X, pr) is a right B-module, such that the two actions commute. A
simple module is a module that does not have a non-trivial subobject which is a module
itself. For any two left A-modules M and N, we define the subspace of left A-module
morphisms

Homy (M, N) :={f € Hom(M,N) | py o (ida®f) = fopm}.
Similarly, for any two A-B-bimodules X and Y, the space
Hom 4 p(X,Y)
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consists of all morphisms in Hom(X,Y) that commute with the left action of A and
the right action of B. For any two objects U and V in C we define the A-A-bimodule
UtAQ™V as
Ut A2V = (UoA®V, [(ildy@midy) o (c;'y®ida®idy )],
[(idy@meidy) o (idy®ida®c, ).

2.2. The TFT-construction. We review some aspects concerning the TFT-con-
struction. A detailed description can be found in [I0, section 3-4] or [I5], see also [13]
appendix A.1-A.5] for a shorter description.

A modular tensor category C serves as a decoration of a geometric category 3-Cob(C).
The objects of 3-Cob(C) are extended surfaces and the morphisms are cobordisms. An
ertended surface E is a compact closed oriented two-manifold, with marked points and
a choice of Lagrangian subspace A C H;(F,R). The data of a marked point contain in
particular an object in C. A cobordism M: E — E’ is a compact oriented three-manifold,
with boundary OM = (—E) U E’ and an embedded ribbon graph with one ribbon ending
at each marked point. The ribbon graph is colored by objects and morphisms in C.

Given a modular tensor category C we can construct a three-dimensional topological
field theory (3d TFT). A 3d TFT is a tensor functor from 3-Cob(C) to the category Vectc
of finite dimensional complex vector spaces. Thus tft¢(FE) = H(E) is a vector space and
tfte(M) = Z(M) is a linear map

Z(M): H(E) — H(E").

By projecting a ribbon graph locally to R? in a non-singular manner we can consider it
as a morphism in C and manipulate the ribbon graph locally by the rules of graphical
calculus. Transformations of this kind leave the linear map Z(M) invariant. Furthermore,
the linear map Z(M) is a topological invariant and we will refer to it as the invariant
of M. A particular extended surface is the double X of a topological world sheet X. For
the purposes of this paper we can identify the tftc-state space H()/(\') with the space of
conformal blocks on X¢.

The tfte-functor is central in the TFT-construction of rational CFT. The TFT-
construction takes as input a modular tensor category C and (a Morita clasﬂ of) a
symmetric special Frobenius algebra A in C. These data define a unique RCFT. The TFT-
construction provides the correlator of a world sheet X by giving the construction of a
cobordism Mx : ) — X , the connecting manifold. As a three-manifold, M x is constructed
by taking the interval bundle over X and identifying points over the boundary:

Mx =X x[-1,1]/~, (2,t)~ (z,—t) Vo € 0X  and Vt € [-1,1]. (2)

Thus OMx = X , cf. , and the world sheet is canonically embedded in Mx as all
points in (z,0) € Mx. Each field is indicated by a marked point on the world sheet
X. A bulk fields gives rise to two marked points on X , cf. , whereas due to the
identification of points over the boundary X in , a boundary field gives rise to a
single marked point on X. The structure on the world sheet appears in M x as parts of the

2Morita equivalent algebras give rise to equivalent RCFT’s.
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ribbon graph. The boundary conditions are given by left A-modules and each boundary
component appears as a ribbon, labeled by the corresponding A-module. We refer to a
boundary condition labeled by a simple A-module as an elementary boundary condition.
Field insertions appear as coupons, labeled by morphisms in Hom 44 (U ®TAR™V, A)
and Hom 4 (M®U, M), with appropriate objects U and V, for bulk and boundary fields
respectively. The correlator Corr(X) is obtained from the invariant of the connecting
manifold:

Corr(X) = Z(Mx) 1 € H(X). (3)

Since we identify H(X) with the space of conformal blocks on X¢, () indeed defines a
vector in the space of conformal blocks on X¢. For the rest of this paper we can and will
make the identification

Corr(X) = Z(Mx). (4)

3. The factorization constraints. Factorization constraints relate correlators of world
sheets of (possibly) different topology. Starting from one world sheet, we can cut it along
an embedded circle S, which results in two holes in the world sheet. A new world sheet
X'’ is obtained by gluing a half sphere, with one primary bulk field, to each hole. This
describes bulk factorization. Boundary factorization amounts to cutting the world sheet
along a line £ joining two boundary components, closing the gaps in the boundary by
gluing a half disc with a boundary field to each gap, and sum over all elementary boundary
fields.

The correlators provided by the TFT-construction satisfy all factorization constraints
[8]. We will restrict the discussion to orientable world sheets. The unorientable case works
in a similar manner. Factorization is described in detail in [8] section 2].

A factorization introduces extra field insertions on the world sheet X', obtained after
factorization. As a consequence, if the double X is marked by n points, the number of
marked points on the double X7 of the new world sheet will be n + 2 after boundary
factorization and n + 4 after bulk factorization. Thus H()/(\’ ) 2 H(X) and consequently,
the correlator of the factorized world sheet X’ is not in the same space as the correlator
of the original world sheet. The factorization constraints, satisfied by the correlators
of the TFT-construction, are stated in [8, theorem 2.9] (boundary factorization) and
[8, theorem 2.13] (bulk factorization). The theorems state first of all that there exists a
gluing homomorphism

G:H(X) — H(X).

The composition G o Corr(X') is thus in the same space as Corr(X). Second, the two

theorems show how these vectors are related. Schematically we can write this as
Corr(X) ~ Z G o Corr(X'), (5)

fields

where the summation is over primary boundary fields or primary bulk fields depending

on what kind of factorization we are considering. For the purposes of this paper we do

not need the gluing homomorphism explicitly. We rather need the action of the gluing

homomorphism on some specific correlator. Remember that the correlators are given
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by invariants of cobordisms. The gluing homomorphism G is also given as an invariant
of a cobordism

G X — X.
Let Mx/: 0 — X’ be the connecting manifold of the factorized world sheet. The tftc-
functor implies that there exists a cobordism MX/ G o My such that

Z(Mx:) = Z(G) 0 Z(Mx:) = G o Corr(X"). (6)

The proof of factorization is a local issue in the sense that it involves only the fibers
over a small neighborhood of the circle S or line ¢ along which the factorization is per-
formed. Thus, for the proof, the explicit form of Mx is not needed. This is also a strength
of the proof: The factorization constraints should be satisfied for any number of factoriza-
tions. Since the proof of factorization is a local consideration it treats an infinite number
of factorizations simultaneously. On the other hand, for actual calculations of the corre-
lator of the factorized world sheet we need to know Mx- explicitly. Below we review how
this manifold is constructed in the case of boundary and bulk factorization. We refer the
reader to [§] for the proof.

3.1. Boundary factorization. Boundary factorization is a local issue also on the level
of the connecting manifold. The cobordism My is obtained by applying an equality
of morphisms in C to Mx. Consider a strip of the world sheet with boundary condi-
tions labeled by the left A-modules M and N. The ribbon graph in this neighborhood
can be taken to be on a form that, when interpreted as a morphism in C, is a cer-
tain projector Pyvy € End(MY®N), cf. [15, eq. (4.7)]. The manifold My,s, playing
the role of Mx: in the case of boundary factorization, is then obtained by applying
[8, eq. (4.22)] to Pyvy, cf. [15, eq. (4.8)]. The labels v and ¢ label the two boundary
fields ¢, € Homa(N®U,, M) and ¢5 € Hom4 (M ®Uz, N) respectively. The invariant of
Myys is related to Z(Mx) by

Z E)\;I(Jiw,q 71 (qu?)- (7)

q€Z .0

The elements of the matrix (c'})\}“}w ) are the structure constants of the correlator of the

disc with two boundary fields ., and s, see [8 eq. (2.27)].

3.2. Bulk factorization. Bulk factorization is a more involved issue. The reason is
that the construction of Mx is a non-local problem. Bulk factorization is performed
along an embedding ¢(S) of a circle S in X. We will be interested in a millstone-shaped
neighborhood of Ny C My obtained as the fibers over a tubular neighborhood of +(5).
The preimage

Ys = 7T)_{1(L(S)) S Mx,

of ¢(S) under the canonical projection 7x from Mx to X (cf. (2))) separates Nx into two
disjoint parts. Yg is an annulus whose two boundary components are contained in the
boundary of Mx. Removing Ys from Mx and taking the closure results in a manifold
with corners, M%. The boundary of M% contains two copies Y§ and Y3 of Yg.
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The manifold Mx- in @ is constructed by composing M§ with another manifold with

corners. This manifold which we denote by T, 4,5 is as a three-manifold D x S*:

192

Jg1govs =

Here S! is running vertically with top and bottom identified. We use black board framing
for ribbon graphs, i.e. we depict ribbons as lines, see [13, appendix A.4] for details. The
two spaces of bulk fields Hom 44 (Ug, ® T A®~ Uy, , A) and Homy 4 (Uz, @t A®~Ug,, A) are
labeled by ¢, and ¢; respectively. The boundary of Ty, 4,~5 contains two copies of Yg as
well. We denote them by Y3 and Y. See [13] for more details on Ty, g,+s-

The manifold M x4, 4.5, Playing the role of My in (@, is obtained by identifying Y
with Y3 and Y2 with Y. There is a unique way to make this identification such that the
orientations of the A-ribbons as well as the boundary components agree. The invariant
of Mx,q, 405 is related to Mx according to

Z(Mx) = Z Z dim(U(Il) dim(Uzp) (CEF};(Q)TSEY Z(MX;ql Q2’Y<5)' 9)

q1,92€Z 7,0

Here, (cP"¥) is a non-degenerate matrix whose elements are the structure constants of
the two points function on the sphere, cf. [8, eq. (2.42)] This is the precise form of in

the case of bulk factorization.

4. The annulus partition functions. Let the world sheet be an annulus with no field
insertions, and with the boundary conditions at the two boundary components given by
the simple A-modules M and N respectively. The correlator of this world sheet is the
annulus partition function A,/V, see [9 section 5.8]. The double of the world sheet is a
torus, and the connecting manifold M AN is a full torus with embedded ribbon graph,
see [9 eq. (5.117)]. Consequently, the annulus partition function is an element in the
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space of conformal zero-point blocks on the torus. We choose a basis {|xx; T)|k € I} for
this space with

IXe; T) = Z(Myi), k€T (10)

The cobordism M, is a full torus with an annular ribbon labeled by Uy, inserted along
the non-contractible cycle, cf. [9, eq. (5.15)]. The dual basis {(xx;T| |k € Z} is given in
[9, eq. (5.18)]. The elements (xx;T| of the dual basis are obtained as

0w T = Z2(M3p), kel (11)

The manifold M;; i differs from M, ., by reversion of the three-orientation and the orien-
tation of the ribbon core, cf. [9, eq. (5.18)]. We wish to expand A,/ as

AMN = Z AkMN‘Xk§T>- (12)
kez
The duality of the bases implies that the annulus coefficients A4, ,Y are obtained by
composing M}, with M AN This yields a ribbon graph in S? x S'. A4,V is obtained
by applying the tftc-functor to this ribbon graph, cf. [9] section 5.8].

4.1. Factorization. We investigate a bulk factorization along a circle S, embedded
between and aligned with the two boundary components of the annulus. Using the pre-
scription for bulk factorization, we first construct MZMN by decomposing M AN into a
disjoint sum of the following two components:

MG = (13)
and 5
M2 = (14)

Each component is a full torus with corners, with the boundary torus divided into two

parts. Y3 and Y2 constitutes the ”outer” and ”inner” part of the boundary of M% 'y and
M
MZ’ . respectively. The remaining boundary parts constitute the boundary of M AN
M
The manifold Mx.4,4,~s is obtained by composing MZMN with T4, 4,+s. Following the

o s . . o, 1 0,2
prescription of the previous section we glue M AN and M AN to Jg, govs- The component

MZ{jN is readily composed with Ty, 4,6 by identifying YZ and V2.
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The composition of MZ’I;N with T, ¢,y6 is straightforward as well but needs some

explanation. First of all it has to be glued with the black siddﬂ of the ribbon graph
facing upwards in order to match the A-ribbon in Jg,4,~s. Second, think of M 'y asa

cylinder with the two opposite boundary discs identified, i.e. as D x [—1, 1] with tﬁe discs
D x {—1} and D x {1} identified. The composition is then performed by first identifying
Y4 with Y3 and afterwards identifying D x {—1} with D x {1}. The result is a cobordism
(M4, ¥) 414,76, Which is a ribbon graph in D x S':

JQQ
I
<

Q

(MAMN) q192,78 = (15)

Again S! is running vertically with top and bottom identified. Here we have also deformed
the ribbon graph by a 7 rotation of the part of the ribbon graph that shows its black side.
The upper half of the ribbon graph can be interpreted as a morphism in Hom(Ug,, Uy, ).
This morphism can be non-zero only if g1 = ¢2. Consequently, the invariant is non-zero
only if ¢ = ¢2. Thus, applying @ the annulus partition function can be written as

Zaqq
A = 303 dim(U) (€5 )rs Z((Ma, ¥ agins) (16)
q€Z ~v,0=1
4.2. The annulus coefficients. When an extended surface F appears as the boundary
of a three-manifold M, there is a canonical choice of Lagrangian subspace given by the
kernel of the inclusion map H(E,R) — H(M,R). The purpose of the Lagrangian subspace
is to define the surface unambiguously. Let E be a torus and denote by the A-cycle the
cycle that does not become contractible when E appears as the boundary of a full torus,
and let the B-cycle be the other one. The canonical choice of Lagrangian subspace of

3 A ribbon with its preferred orientation is displayed as a solid line, whereas a dashed line, like
the upper A-ribbon in , indicates that the ribbon is endowed with the opposite orientation.
We refer to these two orientations by saying that the ribbon is showing its ”white side” and its
”black side” respectively.
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H(OM, ~ R) and H (M.,
constants in (12)) by composing M AN and M7, we do this with the two B-cycles aligned.

The relatlon @ involves cuttlng out a full torus and gluing it back after an S-
transformation. As a consequence, the factorization procedure exchanges the A- and
B-cycles on (M AA{N)qq775 compared to oM AN Therefore, also the Lagrangian sub-

space is changed, such that in H(@(MAMN) 43,46, R) it is spanned by the A-cycle. Thus,

R) is spanned by the B-cycle. When we extract structure

when extracting the annulus coeflicient A, AN, after factorization, the manifold M, has
to be glued to (M AMN)qq’fy(S with the B-cycle on OM7, aligned with the A-cycle on
My, ~) qq,46- The resulting cobordism (ApY)qrs is a ribbon graph in S3:

M

\
\

(Akz\y)qvé =

S

Combining with E the annulus coefficients can be written as

=3 Z dim(Ug)? (8 )35 Z((Ags) Jgno)-

4€T ~,6=1
In general, the choice of Lagrangian subspaces is related to an anomaly of the tft¢-functor
under gluing. However, in the case at hand the extended surfaces are doubles, which come
with an orientation reversing involution. In this case this anomaly factor is unity, see
[7, Lemma 2.2].

Next we evaluate Z((A, ] )qys)- The invariant of a ribbon graph in S® is calculated

as follows: First we project the ribbon graph to R? and interpret it as a morphism in C.
The result is an endomorphism of the tensor unit, i.e. a complex number. The invariant
of the cobordism in S? is this number multiplied by Sp . Thus, we obtain after some
manipulations

qu
Al = dim(M)dim(N) D Sk gy D (cha™)5 b4 b87 (18)
q€T 7v,0=1

The number b%”, with ¢ € Z and N a simple A-module, is a so-called reflection co-

efficients, cf. [15, egs. (3.24) & (3.26)]. b%" is related to the single structure constant,
¢(®4; N), of the one-point correlator of the disc with boundary condition N and a single
bulk field, labeled by ¢, € Hom a4 (U,@T AR~ Ug, A), by ¢(®;N) = dim(N) by To
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arrive at the expression we first remove the annular Ug-ribbon, which yields a factor

g’;‘; . Second, we use dominance in End(U;®U,;), which separates the morphism into two

morphisms, each of them proportional to a reflection coefficient. Simplifying the results
by braiding and fusion moves we arrive at .

The reflection coefficients can be calculated by evaluating the morphisms
[15, eq. (3.24)] in C, corresponding to the one-point functions. However, they also appear
as representation matrices of a semisimple associative complex algebra AEL the classify-
ing algebra [I3]. As a vector space, A is given as the space of primary bulk fields with
non-zero correlator on the disc:

A= P Hom 4 (U@ T AR Uy, A).
qeT
The irreducible representations of A are all one-dimensional and are labeled by simple
modules over A in C. Choosing a basis {¢?*|a = 1, ..., Zyg} of Hom a4 (U@ AR~ Us, A),
the representation matrices are ppar(¢?*) = b%. Furthermore, A is equipped with
a non-degenerate bilinear form, w. In the basis {¢?*}, the bilinear form is given by
w(gP, p9P) = wpy 45 Where

Wpar,gp = [Opdim (U, )Clo)(l)ﬂk} 15qp E,‘;lﬁgv (19)

cf. [13] eq. (4.26)]. w is a dim(A)xdim(A) block matrix, where each block, labeled by
p € Z, is proportional to cbulk Combining and , we can rewrite the annulus
coefficient A, N as

-
dim(M dlm )52 Sk 21 _
AkMN = o E < E , q57q7 b?\ﬂ b?\f : (20)

dim(A
g€l quzs 1

Thus, much of the significant information concerning the annulus partition functions is
contained in A and its representation theory.

We conclude by comparing with some previous results. In the Cardy case, i.e.
when A is Morita equivalent to the tensor unit, the irreducible boundary conditions

are labeled by simple objects M=U,, and N=U, in C. The matrix (¢ bu”‘)M
Sle

7 55 and Tm(U. )5, respectively.
Comblnlng thls with the Verlinde formula we obtam from

n __ n
Am _Nkm'

This result was established already in [B], and it also follows directly from e.g.
[2 eq. (2.16)] or [9, eq. (5.119)].

In [9, Theorem 5.20] some more results on the annulus coefficients are listed. The
result corresponds to point (iv) in that list, with the difference that ( . ) is written
in a more symmetrical manner. Furthermore, using Sj ;. = Sy 1 and (cb‘-‘lk)(w = ( g};lk);g )

the result [9, Theorem 5.20 (iii)]

is a scalar

N __ M
AkM *AEN

“The complex algebra A must not be confused with the Frobenius algebra A, which is an
algebra in an abstract category C.
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is reproduced. Finally, combining [9, Theorem 5.20 (ii)], which states Ay, = dur n, with
, we obtain an orthogonality relation for the representations of the classifying algebra:

g2 Z % =1 @y @9 _ dlm—(A) )
0,0 Has,qv N "M = dim(M)dim(N) M
q€Z v,0=1
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