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Abstract. Generalized planar curves (A-curves) are more general analogues of F-planar curves
and geodesics. In particular, several well known geometries are described by more than one
affinor. The best known example is the almost quaternionic geometry. A new approach to this
topic (A-structures) was started in our earlier papers. In this paper we expand the concept of
A-structures to projective A-structures.

1. A-structures. The concept of planar curves is a generalization of a geodesics on
a smooth manifold equipped with certain structure. In [MS] authors proved a set of
facts about structures equipped with two different affinors. A manifold equipped with an
affine connection and a set of affinors A = {F,..., F;} is called an A-structure and a
curve satisfying V¢ € (Fy,..., F}) is called A-planar. There are some very well known
structures equipped with more than one affinor based on quaternions.

DEFINITION 1.1. Let M be a smooth manifold such that dim(M) = m. Let A be a
smooth ¢-dimensional (¢ < m) vector subbundle in 7*M ® T'M such that the identity
affinor E = idp s restricted to T, M belongs to A, M C TXM®T, M at each point x € M.
We say that M is equipped with an ¢-dimensional A-structure.

An almost quaternionic structure (A4 = (E,I,J,K), I? = J? = —idyy, K = 1J,
IJ = —JI) and almost complex structure (A = (E, J), J? = —idrys) are the best known
examples of A-structures. Another one is e.g. an almost product structure (A = (E, J),
J? = idryr) or an almost para-quaternionic structure (A = (E, I, J, K), I? = J? = idryy,
K=1J,1J=JI) etc.
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Classically, an F'-planar curve is a curve ¢ : R — M satisfying the condition
Ve € (¢, F(¢)).

Clearly geodesics are F-planar curves for all affinors F, because V¢ € (¢) C (¢, F(¢)).
DEFINITION 1.2. Let M be a smooth manifold equipped with an A-structure and a linear
connection V. A smooth curve ¢: R — M is said to be A-planar if

Ve € A(e).
DEFINITION 1.3. Let M be a smooth manifold equipped with an A-structure and a linear
connection V. Let M be another manifold with a linear connection V and a B-structure.

A diffeomorphism f : M — M is called (A, B)-planar if each A-planar curve ¢ on M is
mapped by f onto the B-planar curve f,c on M.

Now, we shall prove some basic facts about A-planar curves and their morphisms.

DEFINITION 1.4. For any tangent vector X € T,,M we shall write A,(X) for the vector

subspace
A (X)={F(X)|Fe A, M} CT, M

and call it the A-hull of the vector X . Similarly, the A-hull of a vector field is a subbundle
in TM obtained pointwise.
For example, A-hull for an almost quaternionic structure is
Ay(X) ={aX +bI(X) + cJ(X) + dK(X)|a,b,c,d € R}.

DEFINITION 1.5. Let (M, A) be a smooth manifold M equipped with an ¢-dimensional
A-structure. We say that the A-structure has weak generic rank £ if for each x € M the
subset of vectors X € T, M such that the A-hull A,(X) generates a vector subspace of
dimension ¢ is open and dense.

We denote
V:={X € T,M|dim A(X) = (}.

The affinor J on an almost product structure has eigenvalues +1. Clearly, if JX =
AX, then X = J?°X = AMJX = M\X, and thus A = +1 and T, M = V*+ @ V~. Hence
X+ FXcVtand X — FX € V~ and one can easily see that

dimA(X 4+ FX) =1, dmA(2X + FX) = 2.
LEMMA 1.6. Every A-structure (M, A) on a manifold M, dim M > dim A, where A is
an algebra with inversion, has weak generic rank dim A.
Proof. Consider X such that X ¢ V, therefore 3F € A = (E,G),FX =0,and F~'FX =
0 implies X =0. m
LEMMA 1.7. Every two dimensional A-structure (M, A) on a manifold M, dim M > 2,

has weak generic rank 2.

Proof. Consider X such that X ¢ V, therefore 3F € A = (E,G), FX = aX +bG(X) =0,
i.e. the vector X has to be an eigenvector of G and the vector X has to belong to one of
finitely many k-dimensional (k < dim M) subspaces. Finally, the complement V is open
and dense. m
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LEMMA 1.8. Let (M, A) be a para-quaternionic structure on a manifold of dimension
dim M > 4. Then the A-structure A = (E, F,G, FG) has weak generic rank 4.

Proof. Recall from linear algebra that two commuting diagonalizable linear maps are
simultaneously diagonalizable, i.e. for two commuting product structures we have

Ey, 0 0
F:(ESF —EO >’G:<E7gc _; ),FG: 0 —E, 0
nr ne 0 0 By,
Let X ¢V, i.e. 3H such that HX = 0, where
ClEk1 0 0
H = 0 co By, 0
0 0 CgEk3

for all ¢1, co, c3 € R. Vector X has to be a vector inside ker H, i.e. has to belong to one of
finitely many k-dimensional (k < dim M) subspaces. Finally, the complement V is open
and dense. =

We have proved that an almost product structure and an almost complex structure
have weak generic rank 2 together with the fact that an almost quaternionic structure
and an almost para-quaternionic structure have weak generic rank 4.

DEFINITION 1.9. Let (M, A) be a smooth manifold M equipped with an ¢-dimensional
A-structure. We say that the A-structure has generic rank ¢ if for each x € M the subset
of vectors (X,Y) € T,M @& T,M such that the A-hulls 4, (X) and A,(Y) generate a
vector subspace A, (X) @ A,(Y) of dimension 2¢ is open and dense.

THEOREM 1.10 ([HSO08]). Let (M, A) be a smooth manifold of dimension n with ¢-dimen-
sional A-structure such that 20 < dim M. If A, is an algebra (i.e. for all f,g € A, fg =
foge A,) forallx € M and A has weak generic rank £, then the structure has generic
rank £.

Now, we know that an almost product structure and an almost complex structure
have a generic rank 2 (on a manifold M, dim M > 4) together with fact that an almost
quaternionic structure and an almost para-quaternionic structure have a generic rank 4
(on a manifold M, dim M > 8).

2. Projective A-structures. Let M be a smooth manifold equipped with an A-structure
and a linear connection V. The connection is said to be an A-connection if it belongs to
the class of connections

k=dim A
Via=V+ Z T; © F;, (1)
i=1
where (F1,..., Fi) = A as a vector space, ® is symmetric tensor product and Y; are one

forms on M.

THEOREM 2.1. Let (M, A = (E,J)) be an almost complex structure and V be a linear
connection preserving J, i.e. VJ = 0. Then the class of A-connections [V]a equals the
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class

[VI=V+YTOE—-(TolJ)oJ, (2)
where Y is any one form on M.
Proof. First, let us consider the difference tensor P(X,Y) = Vx(Y) — Vx(Y) and one
can see that its value is symmetric in each tangent space because both connections share

the same torsion. Since both V and V preserve J, the difference tensor P is complex linear
in the second variable. By symmetry it is thus complex bilinear and we can compute:

VxY = VxY =T (X)JY + T (V)X — To(X)JY — To(Y)X,
VixJY = VxJY = J*(VxY —VxY) = —(VxY — VxY),
—(VxY —VxY)=T1(JX)JY + Y1 (JY)JX — To(JX)Y — To(JY)X.
The sum of the first and third row implies
—YU(X)Y = T1(Y)X — To(X)JY — To(Y)JX
=T (JX)JY +T1(JY)JX — To(JX)Y — To(JY) X.
Thus (T2(X) + T1(JX)) = 0 because we can suppose that XY, JX,JY are linearly

independent without loss of generality. m

THEOREM 2.2. Let (M,Q = (I,J,K)) be an almost quaternionic structure and V be
a linear connection preserving I,J, K, i.e. VI = VJ = VK = 0. Then the class of
connections [V]a equals the class

VI=V+YTOE-Yo)OI-(ToJ)©oJ—-(TYoK)OK, (3)
where T is any one form on M.

Proof. First, let us consider the difference tensor P(X,Y) = Vx(Y)—Vx(Y) and one can
see that its value is symmetric in each tangent space because both connections share the
same torsion. Since both V and V preserve I, J, K the difference tensor P is quaternionic
linear in the second variable. By symmetry it is thus quaternionic bilinear and we can
compute:

P(X,Y)=Ti(X)Y + T1(Y)X + Yo(X)IY + To(Y)IX + T3(X)JY
+Y3(Y)JX + To(X)KY + T4(Y)KX,
P(IX,IV) = Y1 (IX)IY + Y1 (IY)IX — To(IX)Y — To(IV)X + T3(IX)KY
FY(IV)KX — Y4(IX)JY — T4(IY)JX,
P(JX,JY)="1(JX)JY + T1(JY)JX — To(JX)KY — To(JY)KX
—Y3(JX)Y = T3(JY)X + Y4(JX)IY — T4 (JY)IX,
P(KX,KY) =T (KX)KY + Y1(KY)KX + Y5(KX)JY — To(KY)JX
—YP5(KX)IY — T3(KY)IX — T4(KX)Y — T4(KY)X.

=

The sum of three times the first row and the last three rows implies a system of lin-
ear equations because we can suppose that X, Y. IX 1Y, JX,JY, KX, KY are linearly
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independent without loss of generality:

S3YT1(X) — To(IX) = T5(JX) — T4(KX) =0,
=3T2(X) + T1(JX) + Ta(JX) — T3(KX) =0,
—3T3(X) = T4(IX)+ T1(JX)+ To(KX) =0,
—3Y4(X) + T3(IX) — To(JX) + T1(KX) =0
Hence
=3T1(IX)+ YTo(X) — T3(KX)+ Ty (JX) =0,
3To(X) —T1(IX) — Ty (JX) + T3(KX) =0,
and finally

To(X) =-"T1(IX).
One can compute that T3(X) = —=T1(JX), T4(X) = =1 (K X) in the same way. m

THEOREM 2.3. Let (M,A = (E,P)) be an almost product structure and V be a linear
connection preserving P, i.e. VP = 0. Then the class of connections [V]a equals the class

[V]a.

VI=V+TOE+ (YoP)®P, (4)
where Y is any one form on M.
Proof. First, let us consider the difference tensor P(X,Y) = Vx (V) — Vx(Y) and one
can see that its value is symmetric in each tangent space because both connections share

the same torsion. Since both V and V preserve P, the difference tensor P is complex linear
in the second variable. By symmetry it is thus complex bilinear and we can compute:

VxY = VxY =T (X)Y + T (V)X + To(X)PY + Yo(Y)PX,
VxY —VxY = VpxPY — Vpx PY = T, (PX)PY + Y,(PY)PX
+ To(PX)Y + To(PY)X
and therefore
T1(X)Y + T1(Y)X + To(X)PY + To(Y)PX
=T (PX)PY + T1(PY)PX 4 YTo(PX)Y + To(PY)X

Thus (T2(X)—T1(PX)) = 0 because we can suppose that X,Y, PX, PY are linearly
independent without loss of generality. m

THEOREM 2.4. Let (M,A = (E,I,J,K)) be an almost para-quaternionic structure and
V be a linear connection preserving I, J, and K then the class of connections [V]4 equals
the class

VI=V4+YOE+(Tol)oI+(YoJ)®oJ+(ToK)OK, (5)
where Y is any one form on M.

Proof. First, let us consider the difference tensor P(X,Y) = Vx(Y) — Vx(Y) and one
can see that its value is symmetric in each tangent space because both connections share
the same torsion. Since both V and V preserve I.J.K, the difference tensor P is complex
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linear in the second variable. By symmetry it is thus quaternionic bilinear and we can
compute:

PX,Y)="1(X)Y + T1(Y)X + Y2(X)IY + To(Y)IX
+T3(X)JY +T3(V)JX + To(X)KY + T4 (V)KX,
PIX,IYV)="T,(IX)IY + T1(IV)IX + To(IX)Y + T2(IY)X
+YT3(IX)KY + Ts(IY)KX + T,(IX)JY + T4(IY)J X,
PUJX,JY)="T1(JX)JY + T1(JY)JX + To(JX)KY — To(JY)KX
+ Y3(JX)Y +T3(JY)X + Ty(JX)IY + Ty (JY)IX,
P(KX,KY)="T1(KX)KY + T1(KY)KX + To(KX)JY + To(KY)JX
+ T3(KX)IY + Y3(KY)IX + T4(KX)Y 4+ T4(KY)X.
The sum of three times the first row and the next three rows together implies a sys-

tem of linear equations because X,Y,IX,1Y,JX,JY, KX, KY are linearly independent
without loss of generality:

3Y1(X) + Y2(IX) + T3(JX) + Ty (KX) =0,

3To(X) + T1(IX) + Ta(JX) + Ts(KX) = 0,

3Y3(X) + Ta(IX) + T1(JX) + To(KX) =0,

3Y4(X) + Ts(IX) + To(JX) + T1(KX) = 0.
Hence

3T1(IX)+To(X)+T5(KX)+Ty(JX) =0
and

To(X)="T1(IX)+ T5(KX) + Ty(JX).
Finally one can compute that T3(X) = T1(JX), T4(X) = T1(KX) in the same

way. m

DEFINITION 2.5. Let M be a smooth manifold of dimension m. A projective A-structure
on M is a triple (M, A, [V]a), where the couple (M, A) is an A-structure and [V]4 is a

class of A-connections
k=dim A

Vla=V+ > ToF,
i=1
for any one form Y.

For almost complex, product, quaternionic and para-quaternionic structures the class
of A-connections [V]4 looks as follows:

Vla=V+TOE - (ToJ)@J
Via=V+TOE+(ToP)®
Vla=V4+TOFE—- (Yol
[V]a= (

)© —<roJ>@J—<ToK>@K,
V+TOE+(Yo)OI+(ToJ)OoJ+(To K)o K.
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THEOREM 2.6. Let (M, A,[V]a) be a smooth projective A-structure. A curve ¢: R — M
is A-planar with respect to at least one A-connection ¥V on M if and only if ¢ : R — M
18 a geodesic of some A-connection. Moreover this happens if and only if ¢ is A-planar
with respect to all A-connections.

Proof. Consider a curve ¢ : R — M such that V.¢ € A(¢), where V € [V]4. Then
dim A
Vet = Vi + Z 27 (¢) Fy(¢),
i=1

dim A dim A
Vet = 3 &GF(E)+ Y 2T ()Fi(é),
~ dzir:nlA -
Véé: Z (2T1< )+£z) z( )

=1

The set of equations 2T} (¢) + & = 0 has solutions, i.e. there exists T} € Q!(M) such
that c is a geodesic curve for the A-connection V. The rest of the proof is easy. m

THEOREM 2.7. Let M be a smooth manifold of dimension 2n, where n > 1 and let
(M, A, [V]) be a projective A-structure on M of dimension n with generic rank n, where
A is an algebra. Let V be a linear connection on M such that V and ¥V preserve any
F € A and they have the same torsion. If any geodesic of V is A-planar for V, then V
lies in the projective equivalence class of V.

Proof. First, let us consider the difference tensor P(X,Y) = Vx(Y) — Vx(Y) and one
can see that its value is symmetric in each tangent space because both connections share
the same torsion. Since both V and V preserve A, the difference tensor P is A-linear in
the second variable. By symmetry it is thus A-bilinear.

Consider a curve ¢ : R — M such that X = ¢ € V and such that ¢ is geodesics with
respect to V and A-planar with respect to V. In this case the deformation P(X,X) :=
Vx(X) = Vx(X) equals I 41, (X)Fy(X), and

1 k=dim A k=dim A k=dim A

P(X,Y):i( Y TUX +Y)F(X +Y) - Z TXORX) - Y Ti(Y)Fi(Y))
i=1 =1

k=dim A
> TiX +Y)F(X)
i=1

1
2
k=dim A k=dim A k=dim A
+ Y T(X+Y)F Z T(X)F(X) - Y Ti(Y)FZ-(Y)>

11 kl:dimA -
=3 X X +Y) - n(X)AX)

i=1

k=dim A

+ Z (X +Y) - T(Y))FAY))

by polarlzatlon.
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It is clear by construction that Y;(tX) = t1;(X) for ¢t € R and that P(sX,tY) =
stP(X,Y) for any s,t € R. Assuming that X and Y are A-linearly independent we
compare the coefficients of X in the expansions of P(sX,tY) = stP(X,Y) as above to
get

STi(sX + 1Y) — sTi(sX) = st(Ti(X + V) — T4(X)).

Dividing by s and putting ¢ = 1 and taking the limit s — 0, we conclude that T;(X+Y) =
T1(X) + T (Y).
We have proved that the form Y; is linear in X and
k=dim A
(X,Y) = > (T(Y)F(X) + To(X)F(Y))
i=1
is a symmetric A-bilinear map which agrees with P(X,Y"). If both arguments coincide, it
always agrees with P by polarization and V lies in the projective equivalence class [V]4. m

THEOREM 2.8 ([HS06]). Let (M,A), (M', A’) be smooth manifolds of dimension m
equipped with A-structure and A’-structure of the same generic rank £ < 2m and as-
sume that the A-structure satisfies the property

VX eT,M,VF € A, Jcx ‘ tx =X, Veyix = ﬁ(X)F(X), (6)

where B(X) £ 0. If f : M — M’ is an (A, A’)-planar mapping. Then f is a morphism of
A-structures, i.e. f*A' = A.

THEOREM 2.9. Let (M, A,[V]a), (M',A',[V]a) be smooth manifolds of dimension m
equipped with projective A-structure and projective A’-structure of the same generic rank
¢ < 2m, where A, A" are algebras. If f : M — M’ is an (A, A’)-planar mapping. Then f
18 a morphism of A-structures, i.e. f*A’ = A.

Proof. We have to prove (@ Let us consider F' € A, an A-connection V, and a curve
c: R — M such that ¢ = X and VxX = 0 for any X € T, M exists. We shall find a
connection V € [V]4 such that Vx X = 3(X)F(X), but the connection V=V + @ F
belongs to [V] 4 directly. m

COROLLARY 2.10. Let (M, A,[V]), (M, A,[V]a) be smooth manifolds of dimension 2m
equipped with projective A-structures of the generic rank m. Let f : M — M’ be a diffeo-
morphism between two projective A-structures. Then f is a morphism of A-structures if

and only if it preserves the class of unparameterized geodesics of all A-connections on M
and M'.

The corollary above holds for an almost product structure on a manifold M, dim M >4,
an almost complex structure on a manifold M, dim M > 4, an almost quaternionic
structure on a manifold M, dim M > 8 and an almost para-quaternionic structure on a
manifold M, dim M > 8.
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