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1. Introduction. The fundamental result for symplectic topology is Gromov’s non-
squeezing theorem.

THEOREM 1 (Gromov’s Nonsqueezing Theorem). Let
n
wo =Y dpi Adg;
i=1

be the standard symplectic structure on R2™. If there is a symplectic embedding
B(r) < Z2"(R),
where B*"(r) = {(p,q) € R*" : [p|* + |¢|* < r?} is a standard ball and
Z*"(R) = B*(R) x R*"™% = {(p,q) € R*" : pi + ¢ < R*}
s a symplectic cylinder, then
r<R.

Gromov proves this theorem using J-holomorphic curves ([9]). There are other proofs
of this theorem: a proof due to Viterbo which uses generating functions ([20]) and a proof
due to Hofer and Zehnder which is based on the calculus of variations ([10]).

This theorem was extended to arbitrary symplectic manifold (M, w) by Lalonde and
McDuff ([12]).

THEOREM 2. If (M,w) is any symplectic manifold of dimension 2n, there is a sym-
plectic embedding of the standard ball B2 (r) into the cylinder (B%(R) x M, dpA\dq®w)
only if r < R.
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Gromov’s nonsqueezing theorem is crucial for the proof of rigidity of symplectomor-
phisms. It is also the most basic geometric expression of this rigidity (see [14], [10]). This
theorem makes possible to define a new symplectic invariant (a symplectic capacity)—
Gromov width.

Another problem which visualize symplectic invariants is the symplectic camel prob-
lem. Let

W ={(p,q) e R* : py =0}
and
Hy = {(p,q) € R*" : |p]* + |¢” <%}

We ask if there exists a continuous family (an isotopy) of symplectic embeddings [0, 1] >
t — ®; : B>*(R) — R?", such that ®,(B*"(R)) C R*"\ (W \ H,) for every t € [0,1] and
®o(B*(R)), ®1(B?*(R)) are in different components of R?"\ W. The question was asked
by Arnold. McDuff and Traynor in [15] and Viterbo in [20] prove that such symplectic
isotopy exists if and only if R < r. McDuff and Traynor use Gromov’s methods developed
to prove the nonsqueezing theorem and Viterbo’s proof uses generating functions.

In this paper we consider similar problems for Martinet’s singular symplectic form
w==zx da:/\dy+2?;11 dp; Adg; on R?". This closed 2-form is also called a folded symplectic
form (see [2]). It is considered in [13], [17], [11], [4], [5], [3] and [2].

Now we recall some basic facts on the local classification of singularities of differential
closed 2-forms on R?" for n > 2 ([13]).

Let o be a germ of a closed 2-form on R?” at 0. We define

Si(e) = {z € R*" :ranka|. = 2n — k}, k is even.
Let a™ = fQ, where € is the volume form on R?".

(i) If f(0) # 0 then « is a germ of a symplectic form (denoted by ¥g) and by Darboux
theorem we obtain

(1) a:Zda?i/\dyi
i=1
in local coordinates around 0 € R?".
(ii) Next we assume f(0) = 0 while (df)(0) # 0. We have Yo(a) = {f =0}. If
(a|22(a))n71(0) # 0 then in local coordinates around 0 € R?"

n
(2) a=wx1dry Ndyy + Z dx; N dy;
i=2
and this type of singularity is denoted by ¥ ¢ (and called Martinet’s singular symplectic
form).

Both types of forms ¥, Xa o are locally stable (see [13]).
Let w =xdx N dy + Z?;ll dp; A dq; denote Martinet’s singular symplectic structure
on R?". Then

Y=Nw)={z R :w"|, =0} = {z €R* :2 =0}

is a hypersurface of degeneration of w.
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2. Nonsqueezing for Martinet’s singular symplectic structure on R?". Let
B*(r) = {z = (x,y,p,q) € R*" : (z,y) € R?, |2| <7}
be the ball of radius r in R?" and
Z7"(R) = {z = (z,y,p,q) € R* : pi + ¢f < R*}
be the cylinder in R?". Then it is easy to prove that

PROPOSITION 1. If there is an embedding ® : B?"(r) — Z**(R) preserving w then
r < R.

Proof. It is obvious that ® must preserve the hypersurface
E:{z’E]R2":CL‘:0}7

because ® preserves w. Let us consider ¢ = ®|x. Let B*"~1(r) = B>*(r)n%, Z*""1(R) =
Z™(R)NY and wy = w|y = Z?;ll dp; A dg;. The kernel of w; is spanned by 9/9y. It is
tangent to the boundary of Z2"~!(R) and it is tangent to the boundary of B**~1(r) on
the set

S2n=3(r) = {(y,p,q) €T :y =0, Ip|* + |q]* = 7“2} )

Let us consider B>"~2(r) = B>"~Y(r) N {(y,p,q) € T : y = 0}. Its boundary is S?"=3(r)
and the kernel of w; is transversal to it. Let us consider ¢ = 7, o ¢|g2n—2(,y where 7,
is the projection of Z2"~!(R) onto Z*"~2(R) = Z*"~Y(R) N {(y,p,q) € ¥ : y = 0} along
y-axis. It is an embedding, because 9/9dy is transversal to ¢(B>*"~2(r)). ¢ preserves the
symplectic form Z;:ll dp; A dg; on R?"=2 and maps B?"~2(r)—the standard ball of
radius r into Z2"~2(R)—the standard symplectic cylinder of radius R. Therefore r < R
by Gromov’s nonsqueezing theorem. m

Proposition 1 is true for every cylinder Z, such that the kernel of w|y is tangent to
0Z N'Y. But this is not a typical position. The kernel of w|y; is transversal to 0Z N for
a typical position of a cylinder Z. It is an open problem if the nonsqueezing theorem is
true for a typical position of a cylinder Z. The method of restriction to ¥ does not work
in this case. This is a consequence of the following

PROPOSITION 2. If wy = Z;:ll dp; A dg; is a closed 2-form on R?"~! then for any
R,r > 0 there exists an embedding preserving w1 of

BN (r) = {z=(y,p,q) €R*" "1 |z <7}
1mto
7N R)={z=(y,p.q) eR”" ' 1y’ + ¢ <R’}
Proof. It is easy to check that
Ry rp1 Rq
(I)(y7paQ): (_ D "'7pn—laT

r a?a 2, 7q25"'aQn—1)

satisfies these conditions. m



18 W. DOMITRZ

3. The camel problem for Martinet’s singular symplectic structure on R?".
Let W be a hyperplane in R2?, transversal to ¥, and 0 € W. Let H, = {z ER? :|z| < r}
(W is a “wall” and H, is a “hole” of a radius r in the wall). We ask if there exists a
continuous family (an isotopy) of embeddings [0,1] 3 t — @, : B*(R) — R?", such
that ®,(B*"(R)) C R*\ (W \ H,.), ®;w = w for every t € [0,1] and ®¢(B?"(R)) and
®1(B?"(R)) are in different components of R?" \ W. This is an analog of the camel
problem for the Martinet singular symplectic structure.

Firstly we find a normal form for the hyperplane W.

In a typical position W is transversal to the kernel of w|sx, on WNX. The kernel of w|x
is spanned by 9/dy. If

n—1
W = {26R2" 1A$+By+ZCipi+DiQi:0}
i=1
then B # 0. Therefore by a diffeomorphism of the form ¥(z) = (x,y + %x,p, q), which
preserves w, we reduce W to {z ER™ :y+ Z?;ll Eipi + Fiq; = O}. If B2 + F2 #0 we

may assume that Ej, # 0 (otherwise we may use a diffeomorphism
q)(z) = (x7y7p17 ce s Pe—1,4ks P41y - -y Pnyqly -+ -5 Qk—15 —Pky qk+15 - -+ Qn) )

Now we transform W to {z ER™M :y+pi + Z?:_ll’#k E;p; + Fyq; = O} by a diffeomor-
phism

dk
("‘)(Z) = ('rayyplw .. apk—hEkpk‘ + Fkaapk-‘rla ey Pnsqly - -5 qk—1, E_k7qk+la .. -7%1);

which preserves w. Finally by a diffeomorphism
2

1
F(Z) = <$7y+pkap1a'~'7pk‘—1apk77pk‘+17"'apnaQIv" <y qk—1,4k + ?an+17"'aQTl)7

which preserves w, we reduce W to {z ER:y+ Z?;l{i;ék Ep + Fiq; = 0}. If we re-
peat these transformations for each k such that E? + F? # 0 then we reduce W to
{26R2”:y20}.

If W is not transversal to the kernel of w|s and is transversal to ¥ then it has the form
W= {z €R>™ : Az + " Cipi + Digi = O} where Y277 C24-D? # 0. We may assume
that C # 0 for some k (otherwise Dy, # 0 for some k and we may use a diffeomorphism

@(z) = (xvyvpla v s Pk—159ky P41y - - -5 Pnyqly - - -y qk—15 —PksQk+1y- -+ (]n) )
Now we transform W to {z e R?>": Az + pi + Z;L_:ll’#k Cip; + D;g; = 0} by a diffeo-

morphism

dk
@(Z) = (m,yapla cee ,pk—lackpk + Dquapk+1a sy Pnsyqly -5 Qk—1, C_k,qk+17 .- '7Q7L)a
n—1

which preserves w. If 77 itk C? + D? # 0 then in the same way we may reduce W to
{z ER™ : Az +pi +p1 + Z?;11i¢k,l Cip; + D;q; = O} for some [ # k. By a diffeomor-
phism

A(Z) = ($7y7p17"'7pk*17pk +plapk+17"'7pn7q17~ - qi-1,q _q]cvqlJrlw"ﬂqn)
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we reduce W to {z eR™: Az +py +Z?=_117#k7l Cipi+D;q; = 0}. Repeating these trans-

formations for each [ such that C? + D? # 0 we reduce W to {z ER™: Az +py = 0}.
If A # 0 then we may reduce W to {z ER™M™:x+p = O} and if A = 0 then we may
reduce W to {z ERM™ :p = 0} by diffeomorphisms which preserve w. Thus we obtain

ProrosITION 3. If a hyperplane W is transversal to ¥ then there exists a diffeomor-
phism ® : (R?" 0) — (R?",0) such that ®*w = w and
W) ={zeR*™:y=0}
(if the kernel of w|s is transversal to W) or
W) ={zeR*™: 2 +p =0}
(if the kernel of w|s is tangent to W and the rank at w|w at 0 is mazimal) or
(W)= {z€eR*™:p =0}
(if the kernel of w|x is tangent to W and the rank at w|w at 0 is not mazimal).
Now it is easy to prove

PROPOSITION 4. If a hyperplane W is transversal to 3 and the kernel of w|ys is tan-
gent to W then there ewists an isotopy of embeddings [0,1] > t + ®; : B>*(R) — R?",
such that ®,(B**(R)) C R\ (W \ H,), ®jw = w for every t € [0,1], and ®q(B*"(R))
and ®1(B*"(R)) are in different components of R** \ W if and only if R < r, where r is
a radius of the hole H,.

Proof. By Proposition 3 we may assume that W is
{zeR™ :x4p =0}
or
{26R2”:p1:0}.
Let us assume that there exists an isotopy ®; which satisfies these conditions and let us
consider ¢y = ®¢|snpen(g) : B HR) — R*~! for ¢ € [0,1]. In both cases W N X is
{z ER™ :p = O}. Now we use the same argument as in the proof of Proposition 1. Let
B 1(R) = B>™(R)NY and w; = w|g = Z?;ll dp; A dg;. The kernel of w; is spanned
by 0/dy. It is tangent to the boundary of B>*~!(R) on a set
2 3(R) = {(y:p,q) €X:y =0, [p]* + |g|* = R?} .

Let us consider the submanifold B?"~2(R) = B?""Y(R) N {(y,p,q) € X :y =0}. Its
boundary is S?"~3(R) and the kernel of w; is transversal to this submanifold. Let
us consider ¢y = T, o ¢y|pan—2(g) Where m, is a projection of R?"~! onto R?"~? =
{(y,p,q) € X :y =0} along y-axis. It is an embedding, because 9/9y is transversal to
&¢(B*""2(R)). 1 preserves the symplectic form Z;le dp; Adg; on R*" 2. 1, (WNX) =
{(p,q) e R 2 :p; =0} and m,(H,NX) = {(p,q) € R?"2: |p|> +|q|> < r?}. Therefore
if 4, exists then R < r by the symplectic camel theorem. m

If the kernel of w|y is transversal to W then we cannot use the same method to prove
the camel theorem. But one can prove the following.
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PROPOSITION 5. If a hyperplane W is transversal to the kernel of w|yx, R < 2 and
RZ
r < I
then there is no isotopy of embeddings [0,1] > t — ®; : B*™(R) — R2", such that
®,(B*(R)) C R*\ (W \ H,), ®jw = w for every t € [0,1], and ®o(B>"(R)) and
®,(B?"(R)) are in different components of R*" \ W, where r is a radius of the hole H,.
Proof. By Proposition 3 we may assume that W is {z ER?M .y = 0}. Let us assume
that there exists an isotopy ®;, which satisfies these conditions. Let
M*z{z€R2”:x>0}, M*:{z€R2”:x<0}.
It is easy to see that ®,(B**(R)NM™*) C M+ or ®,(B?"(R)NM*) C M~. We assume
that ®,(B*"(R)NM™) C M. Let
©:M" 5 (z,y,p.9) — (V22,y,p,q) € M.

n—1

It is easy to see that O*w = wo = dz Ady + >, dp; A dg;,
P(R)=0"YB*™(R)NnM"') = {(z,y,p,q) ER* : 22+ y* + |p|* + |¢|* < R?, = > 0}
and
P(r)=0""H,NM")={(z,y,p.q) € R*" : 2z +y*> + |p|* + |¢|* <r* 2 > 0}.

It is obvious that the ball B2"(R?/4) is symplectically embedded in P(R), because R < 2.
Let ¥ denote such an embedding. On the other hand P(r) is symplectically embedded
in the ball B?*(r). Thus the mapping

0 lod, 000V : B*(R*/4) — R*"

defines an isotopy of symplectic embeddings such that ®;(B?"(R?/4)) C R?*"\ (W \ H,.)
for every t € [0,1], and ®¢(B?"(R?/4)), ®1(B?*(R?/4)) are in different components of
R?" \ W. By the symplectic camel theorem we get that such isotopy does not exist if
r<R’/4. m

It is an open problem if the camel theorem for Martinet’s singular symplectic struc-
tures is true for R?/4 <r < R.
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