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1. Introduction. The fundamental result for symplectic topology is Gromov’s non-
squeezing theorem.

Theorem 1 (Gromov’s Nonsqueezing Theorem). Let

ω0 =

n∑

i=1

dpi ∧ dqi

be the standard symplectic structure on R2n. If there is a symplectic embedding

B2n(r) ↪→ Z2n(R),

where B2n(r) =
{

(p, q) ∈ R2n : |p|2 + |q|2 ≤ r2
}

is a standard ball and

Z2n(R) = B2(R)× R2n−2 =
{

(p, q) ∈ R2n : p2
1 + q2

1 ≤ R2
}

is a symplectic cylinder, then

r ≤ R.
Gromov proves this theorem using J-holomorphic curves ([9]). There are other proofs

of this theorem: a proof due to Viterbo which uses generating functions ([20]) and a proof
due to Hofer and Zehnder which is based on the calculus of variations ([10]).

This theorem was extended to arbitrary symplectic manifold (M,ω) by Lalonde and
McDuff ([12]).

Theorem 2. If (M,ω) is any symplectic manifold of dimension 2n, there is a sym-
plectic embedding of the standard ball B2n+2(r) into the cylinder (B2(R)×M,dp∧dq⊕ω)

only if r ≤ R.
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Gromov’s nonsqueezing theorem is crucial for the proof of rigidity of symplectomor-
phisms. It is also the most basic geometric expression of this rigidity (see [14], [10]). This
theorem makes possible to define a new symplectic invariant (a symplectic capacity)—
Gromov width.

Another problem which visualize symplectic invariants is the symplectic camel prob-
lem. Let

W =
{

(p, q) ∈ R2n : p1 = 0
}

and

Hr =
{

(p, q) ∈ R2n : |p|2 + |q|2 < r2
}
.

We ask if there exists a continuous family (an isotopy) of symplectic embeddings [0, 1] 3
t 7→ Φt : B2n(R)→ R2n, such that Φt(B

2n(R)) ⊂ R2n \ (W \Hr) for every t ∈ [0, 1] and
Φ0(B2n(R)), Φ1(B2n(R)) are in different components of R2n\W . The question was asked
by Arnold. McDuff and Traynor in [15] and Viterbo in [20] prove that such symplectic
isotopy exists if and only if R < r. McDuff and Traynor use Gromov’s methods developed
to prove the nonsqueezing theorem and Viterbo’s proof uses generating functions.

In this paper we consider similar problems for Martinet’s singular symplectic form
ω = x dx∧dy+

∑n−1
i=1 dpi∧dqi on R2n. This closed 2-form is also called a folded symplectic

form (see [2]). It is considered in [13], [17], [11], [4], [5], [3] and [2].
Now we recall some basic facts on the local classification of singularities of differential

closed 2-forms on R2n for n ≥ 2 ([13]).
Let α be a germ of a closed 2-form on R2n at 0. We define

Σk(α) =
{
z ∈ R2n : rankα|z = 2n− k

}
, k is even.

Let αn = fΩ, where Ω is the volume form on R2n.

(i) If f(0) 6= 0 then α is a germ of a symplectic form (denoted by Σ0) and by Darboux
theorem we obtain

α =
n∑

i=1

dxi ∧ dyi(1)

in local coordinates around 0 ∈ R2n.

(ii) Next we assume f(0) = 0 while (df)(0) 6= 0. We have Σ2(α) = {f = 0}. If(
α|Σ2(α)

)n−1
(0) 6= 0 then in local coordinates around 0 ∈ R2n

α = x1 dx1 ∧ dy1 +
n∑

i=2

dxi ∧ dyi(2)

and this type of singularity is denoted by Σ2,0 (and called Martinet’s singular symplectic
form).

Both types of forms Σ0, Σ2,0 are locally stable (see [13]).
Let ω = x dx ∧ dy +

∑n−1
i=1 dpi ∧ dqi denote Martinet’s singular symplectic structure

on R2n. Then

Σ = Σ2(ω) =
{
z ∈ R2n : ωn|z = 0

}
=
{
z ∈ R2n : x = 0

}

is a hypersurface of degeneration of ω.
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2. Nonsqueezing for Martinet’s singular symplectic structure on R2n. Let

B2n(r) =
{
z = (x, y, p, q) ∈ R2n : (x, y) ∈ R2, |z| ≤ r

}

be the ball of radius r in R2n and

Z2n(R) =
{
z = (x, y, p, q) ∈ R2n : p2

1 + q2
1 ≤ R2

}

be the cylinder in R2n. Then it is easy to prove that

Proposition 1. If there is an embedding Φ : B2n(r) ↪→ Z2n(R) preserving ω then
r ≤ R.

Proof. It is obvious that Φ must preserve the hypersurface

Σ =
{
z ∈ R2n : x = 0

}
,

because Φ preserves ω. Let us consider φ = Φ|Σ. Let B2n−1(r) = B2n(r)∩Σ, Z2n−1(R) =

Z2n(R) ∩ Σ and ω1 = ω|Σ =
∑n−1

i=1 dpi ∧ dqi. The kernel of ω1 is spanned by ∂/∂y. It is
tangent to the boundary of Z2n−1(R) and it is tangent to the boundary of B2n−1(r) on
the set

S2n−3(r) =
{

(y, p, q) ∈ Σ : y = 0, |p|2 + |q|2 = r2
}
.

Let us consider B2n−2(r) = B2n−1(r) ∩ {(y, p, q) ∈ Σ : y = 0}. Its boundary is S2n−3(r)

and the kernel of ω1 is transversal to it. Let us consider ψ = πy ◦ φ|B2n−2(r) where πy
is the projection of Z2n−1(R) onto Z2n−2(R) = Z2n−1(R) ∩ {(y, p, q) ∈ Σ : y = 0} along
y-axis. It is an embedding, because ∂/∂y is transversal to φ(B2n−2(r)). ψ preserves the
symplectic form

∑n−1
i=1 dpi ∧ dqi on R2n−2 and maps B2n−2(r)—the standard ball of

radius r into Z2n−2(R)—the standard symplectic cylinder of radius R. Therefore r ≤ R

by Gromov’s nonsqueezing theorem.

Proposition 1 is true for every cylinder Z, such that the kernel of ω|Σ is tangent to
∂Z ∩Σ. But this is not a typical position. The kernel of ω|Σ is transversal to ∂Z ∩Σ for
a typical position of a cylinder Z. It is an open problem if the nonsqueezing theorem is
true for a typical position of a cylinder Z. The method of restriction to Σ does not work
in this case. This is a consequence of the following

Proposition 2. If ω1 =
∑n−1
i=1 dpi ∧ dqi is a closed 2-form on R2n−1 then for any

R, r > 0 there exists an embedding preserving ω1 of

B2n−1(r) =
{
z = (y, p, q) ∈ R2n−1 : |z| ≤ r

}

into

Z2n−1(R) =
{
z = (y, p, q) ∈ R2n−1 : y2 + q2

1 ≤ R2
}
.

Proof. It is easy to check that

Φ(y, p, q) =
(Ry
r
,
rp1

R
, p2, . . . , pn−1,

Rq1

r
, q2, . . . , qn−1

)

satisfies these conditions.



18 W. DOMITRZ

3. The camel problem for Martinet’s singular symplectic structure on R2n.
Let W be a hyperplane in R2n, transversal to Σ, and 0 ∈W . Let Hr =

{
z ∈ R2n : |z| < r

}

(W is a “wall” and Hr is a “hole” of a radius r in the wall). We ask if there exists a
continuous family (an isotopy) of embeddings [0, 1] 3 t 7→ Φt : B2n(R) → R2n, such
that Φt(B

2n(R)) ⊂ R2n \ (W \ Hr), Φ∗tω = ω for every t ∈ [0, 1] and Φ0(B2n(R)) and
Φ1(B2n(R)) are in different components of R2n \ W . This is an analog of the camel
problem for the Martinet singular symplectic structure.

Firstly we find a normal form for the hyperplane W .
In a typical position W is transversal to the kernel of ω|Σ on W ∩Σ. The kernel of ω|Σ

is spanned by ∂/∂y. If

W =
{
z ∈ R2n : Ax+By +

n−1∑

i=1

Cipi +Diqi = 0
}

then B 6= 0. Therefore by a diffeomorphism of the form Ψ(z) = (x, y + A
Bx, p, q), which

preserves ω, we reduce W to
{
z ∈ R2n : y +

∑n−1
i=1 Eipi + Fiqi = 0

}
. If E2

k + F 2
k 6= 0 we

may assume that Ek 6= 0 (otherwise we may use a diffeomorphism

Φ(z) = (x, y, p1, . . . , pk−1, qk, pk+1, . . . , pn, q1, . . . , qk−1,−pk, qk+1, . . . , qn) ).

Now we transform W to
{
z ∈ R2n : y + pk +

∑n−1
i=1,i6=k Eipi + Fiqi = 0

}
by a diffeomor-

phism

Θ(z) =
(
x, y, p1, . . . , pk−1, Ekpk + Fkqk, pk+1, . . . , pn, q1, . . . , qk−1,

qk
Ek

, qk+1, . . . , qn

)
,

which preserves ω. Finally by a diffeomorphism

Γ(z) =
(
x, y + pk, p1, . . . , pk−1, pk, pk+1, . . . , pn, q1, . . . , qk−1, qk +

x2
1

2
, qk+1, . . . , qn

)
,

which preserves ω, we reduce W to
{
z ∈ R2n : y +

∑n−1
i=1,i6=k Eipi + Fiqi = 0

}
. If we re-

peat these transformations for each k such that E2
k + F 2

k 6= 0 then we reduce W to{
z ∈ R2n : y = 0

}
.

If W is not transversal to the kernel of ω|Σ and is transversal to Σ then it has the form

W =
{
z ∈ R2n : Ax+

∑n−1
i=1 Cipi +Diqi = 0

}
where

∑n−1
i=1 C

2
i +D2

i 6= 0. We may assume

that Ck 6= 0 for some k (otherwise Dk 6= 0 for some k and we may use a diffeomorphism

Φ(z) = (x, y, p1, . . . , pk−1, qk, pk+1, . . . , pn, q1, . . . , qk−1,−pk, qk+1, . . . , qn) ).

Now we transform W to
{
z ∈ R2n : Ax+ pk +

∑n−1
i=1,i6=k Cipi +Diqi = 0

}
by a diffeo-

morphism

Θ(z) =
(
x, y, p1, . . . , pk−1, Ckpk +Dkqk, pk+1, . . . , pn, q1, . . . , qk−1,

qk
Ck

, qk+1, . . . , qn

)
,

which preserves ω. If
∑n−1

i=1,i6=k C
2
i +D2

i 6= 0 then in the same way we may reduce W to{
z ∈ R2n : Ax+ pk + pl +

∑n−1
i=1,i6=k,l Cipi +Diqi = 0

}
for some l 6= k. By a diffeomor-

phism

∆(z) = (x, y, p1, . . . , pk−1, pk + pl, pk+1, . . . , pn, q1, . . . , ql−1, ql − qk, ql+1, . . . , qn)
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we reduce W to
{
z ∈ R2n : Ax+pk+

∑n−1
i=1,i6=k,l Cipi+Diqi = 0

}
. Repeating these trans-

formations for each l such that C2
l + D2

l 6= 0 we reduce W to
{
z ∈ R2n : Ax+ pk = 0

}
.

If A 6= 0 then we may reduce W to
{
z ∈ R2n : x+ p1 = 0

}
and if A = 0 then we may

reduce W to
{
z ∈ R2n : p1 = 0

}
by diffeomorphisms which preserve ω. Thus we obtain

Proposition 3. If a hyperplane W is transversal to Σ then there exists a diffeomor-
phism Φ : (R2n, 0)→ (R2n, 0) such that Φ?ω = ω and

Φ−1(W ) =
{
z ∈ R2n : y = 0

}

(if the kernel of ω|Σ is transversal to W ) or

Φ−1(W ) =
{
z ∈ R2n : x+ p1 = 0

}

(if the kernel of ω|Σ is tangent to W and the rank at ω|W at 0 is maximal) or

Φ−1(W ) =
{
z ∈ R2n : p1 = 0

}

(if the kernel of ω|Σ is tangent to W and the rank at ω|W at 0 is not maximal).

Now it is easy to prove

Proposition 4. If a hyperplane W is transversal to Σ and the kernel of ω|Σ is tan-
gent to W then there exists an isotopy of embeddings [0, 1] 3 t 7→ Φt : B2n(R) → R2n,
such that Φt(B

2n(R)) ⊂ R2n \ (W \Hr), Φ∗tω = ω for every t ∈ [0, 1], and Φ0(B2n(R))

and Φ1(B2n(R)) are in different components of R2n \W if and only if R < r, where r is
a radius of the hole Hr.

Proof. By Proposition 3 we may assume that W is
{
z ∈ R2n : x+ p1 = 0

}

or
{
z ∈ R2n : p1 = 0

}
.

Let us assume that there exists an isotopy Φt which satisfies these conditions and let us
consider φt = Φt|Σ∩B2n(R) : B2n−1(R) → R2n−1 for t ∈ [0, 1]. In both cases W ∩ Σ is{
z ∈ R2n : p1 = 0

}
. Now we use the same argument as in the proof of Proposition 1. Let

B2n−1(R) = B2n(R) ∩ Σ and ω1 = ω|Σ =
∑n−1

i=1 dpi ∧ dqi. The kernel of ω1 is spanned
by ∂/∂y. It is tangent to the boundary of B2n−1(R) on a set

S2n−3(R) =
{

(y, p, q) ∈ Σ : y = 0, |p|2 + |q|2 = R2
}
.

Let us consider the submanifold B2n−2(R) = B2n−1(R) ∩ {(y, p, q) ∈ Σ : y = 0}. Its
boundary is S2n−3(R) and the kernel of ω1 is transversal to this submanifold. Let
us consider ψt = πy ◦ φt|B2n−2(R) where πy is a projection of R2n−1 onto R2n−2 =

{(y, p, q) ∈ Σ : y = 0} along y-axis. It is an embedding, because ∂/∂y is transversal to
φt(B

2n−2(R)). ψt preserves the symplectic form
∑n−1
i=1 dpi ∧ dqi on R2n−2. πy(W ∩Σ) ={

(p, q) ∈ R2n−2 : p1 = 0
}

and πy(Hr∩Σ) =
{

(p, q) ∈ R2n−2 : |p|2 + |q|2 < r2
}

. Therefore
if ψt exists then R < r by the symplectic camel theorem.

If the kernel of ω|Σ is transversal to W then we cannot use the same method to prove
the camel theorem. But one can prove the following.
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Proposition 5. If a hyperplane W is transversal to the kernel of ω|Σ, R < 2 and

r <
R2

4

then there is no isotopy of embeddings [0, 1] 3 t 7→ Φt : B2n(R) → R2n, such that
Φt(B

2n(R)) ⊂ R2n \ (W \ Hr), Φ∗tω = ω for every t ∈ [0, 1], and Φ0(B2n(R)) and
Φ1(B2n(R)) are in different components of R2n \W , where r is a radius of the hole Hr.

Proof. By Proposition 3 we may assume that W is
{
z ∈ R2n : y = 0

}
. Let us assume

that there exists an isotopy Φt, which satisfies these conditions. Let

M+ =
{
z ∈ R2n : x > 0

}
, M− =

{
z ∈ R2n : x < 0

}
.

It is easy to see that Φt(B
2n(R) ∩M+) ⊂M+ or Φt(B

2n(R) ∩M+) ⊂M−. We assume
that Φt(B

2n(R) ∩M+) ⊂M+. Let

Θ : M+ 3 (x, y, p, q) 7→ (
√

2x, y, p, q) ∈M+.

It is easy to see that Θ?ω = ω0 = dx ∧ dy +
∑n−1
i=1 dpi ∧ dqi,

P (R) = Θ−1(B2n(R) ∩M+) =
{

(x, y, p, q) ∈ R2n : 2x+ y2 + |p|2 + |q|2 < R2, x > 0
}

and

P (r) = Θ−1(Hr ∩M+) =
{

(x, y, p, q) ∈ R2n : 2x+ y2 + |p|2 + |q|2 < r2, x > 0
}
.

It is obvious that the ball B2n(R2/4) is symplectically embedded in P (R), because R < 2.
Let Ψ denote such an embedding. On the other hand P (r) is symplectically embedded
in the ball B2n(r). Thus the mapping

Θ−1 ◦ Φt ◦Θ ◦Ψ : B2n(R2/4)→ R2n

defines an isotopy of symplectic embeddings such that Φt(B
2n(R2/4)) ⊂ R2n \ (W \Hr)

for every t ∈ [0, 1], and Φ0(B2n(R2/4)), Φ1(B2n(R2/4)) are in different components of
R2n \W . By the symplectic camel theorem we get that such isotopy does not exist if
r < R2/4.

It is an open problem if the camel theorem for Martinet’s singular symplectic struc-
tures is true for R2/4 ≤ r < R.
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