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Abstract. Corank one mono-germs f : (Rn, 0)→ (Rp, 0), n < p, of Ae-codimension one are

classified by giving an explicit normal form.

1. Introduction. Classification of singularities up to A-equivalence—up to local dif-

feomorphism in the source and target—is a primary goal of Singularity Theory. Recent

work has been done in the classification ofAe-codimension 1 singularities in [1], [2] and [4].

In [5] Ae-codimension 1 corank 1 multi-germs f : (Cn, S)→ (Cp, 0) with n < p and S a

finite set have been classified. Explicit normal forms for the mono-germs are given and

constructions involving three operations on these mono-germs are used to produce the

multi-germs. In this paper we shall give an explicit description for the real versions of the

mono-germs.

In contrast to the complex case, real K-equivalent corank 1 Ae-codimension 1 map-

germs are not A-equivalent. For example, consider (x, y) 7→ (x, y2, y3 ± x2y), both germs

have Ae-codimension 1, are K-equivalent but not A-equivalent, see [9]. Yet, over the

complex numbers the two are equivalent.

The key comes from the observation that the inequivalent maps arise from the aug-

mentation of the map y 7→ (y2, y3) unfolded by (λ, y2, y3+λy) or (λ, y2, y3−λy). Note that

any Ae-codimension 1 map K-equivalent to y 7→ (y2, y3) is A-equivalent to it. A corollary

of the classification given here is that if f is not an augmentation then any corank 1

Ae-codimension 1 map K-equivalent to it is also A-equivalent. It would be interesting to

know how general a phenomenon this is for primitive mono-germs.

In [1] Cooper shows how to classify real Ae-codimension 1 corank 1 mono-germs by

explicit coordinate changes in the source and target of the map in the case of p = n+1. In

a similar way one could classify corank 1 real mono-germs for n < p. Instead, in Section 3

we present a significantly simpler method of classifying mono-germs by using left and right
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diffeomorphisms in source and target and utilising information on the defining equations

of the multiple point spaces of the complexified map.

As expected the case of real multi-germs is more complicated than the complex case.

This is because one of the processes used to create Ae-codimension 1 multi-germs from

unfolding other codimension 1 germs, the process of binary concatentation (see [2] or [5]),

depends on the unfoldings used. Nonetheless, it seems likely that real multi-germs have

a form similar to that in the complex case as described in Theorem 6.4 of [5].

2. Augmentation. First we give some notation used throughout the paper. The

field K will denote either the complex or real numbers, C and R respectively. Map-germs

will be smooth over the reals and analytic when over the complexes. The multiplicity of

a map will be denoted mult(f). The Ae-codimension of a map-germ f will be denoted

cod(f). If two germs f and g are A-equivalent then we use the notation f ∼A g. The

set S will be a finite set of points and usually they will be the origins of a collection of

copies of Kn for some n. In this section n and p will be quite general, only later will we

assume n < p. Other notation will be the standard used in Singularity Theory, see [10].

First we define the positive and negative augmentation of a map-germ.

Definition 2.1. Let f : (Kn, 0) → (Kp, 0) be a map with a 1-parameter stable

unfolding F : (Kn × K, 0) → (Kp × K, 0), where F (x, λ) = (fλ(x), λ). Then the positive

augmentation of f by F is the map A+
F (f) given by (x, λ) 7→ (fλ2(x), λ). The negative

augmentation of f by F is the map A−F (f) given by (x, λ) 7→ (f−λ2(x), λ).

The image of the example of the standard cusp x 7→ (x2, x3) unfolded by

(x2, x3 − λx, λ) and augmented to (x2, x3 − λ2x, λ) is shown in Figure 1.

A

Figure 1. Augmentation of a cusp

Theorem 2.2 (See [2]). Suppose f : (Kn, 0) → (Kp, 0) is a finitely determined map-

germ with a 1-parameter stable unfolding. Then cod(A±F (f)) = cod(f).

Thus we can produce new codimension 1 maps from old ones. If f is not A-equivalent

to the augmentation of another germ then f is called primitive.

Via the following lemma we are in a position to reduce A-equivalence problems to

K-equivalence ones.

Lemma 2.3. Suppose ft : (Kn, 0) → (Kp, 0), t ∈ [0, 1], is a smooth family of prim-

itive Ae-codimension 1 multi-germs. If the ft are K-equivalent for all t, then they are

A-equivalent for all t.
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Proof. We use Mather’s Lemma ([8], Lemma 3.1). Condition (b) of his lemma is

satisfied since every member of the family has Ae-codimension 1 and so A-codimension

is constant also (see [10], Proposition 4.5.2).

Since ft is primitive for all t the A-orbit of ft is open in its K-orbit, as can be seen

from the proof of Lemma 3.6 of [5]. As the family members are all K-equivalent this

implies Mather’s condition (a). Hence the family is contained in a single A-orbit.

Suppose that F and F̃ are two 1-parameter stable unfoldings of the map f : (Kn, 0)→
(Kp, 0). Then F (x, λ) is A-equivalent to F̃ (x, φ(λ)) for some smooth φ : (K, 0)→ (K, 0).

Theorem 2.4. Suppose K = R. Then A+

F̃
(f) ∼A Asign(dφ(0))

F (f).

Proof. The proof is the same as Proposition 2.1 in [2] except their α(t2) = ±β(t)2 as

we are working over the reals.

In the case of K = C it has already been shown that an augmentation is independent

up to A-equivalence of the unfolding used.

Corollary 2.5. Suppose f ∼A f ′. Then f and f ′ can be induced from the same

stable unfolding and we have A±F (f) ∼A A±F (f ′).

Since the augmentation of an Ae-codimension one map is again codimension one we

can augment repeatedly by taking the unfolding (fµ±λ2(x), λ, µ). Thus, define (A+
F )m(f)

to be the m-fold positive augmentation of f by F . For m > 0 this is the augmentation

process repeated m times and for the trivial case (A+
F )0(f) = f . Similar definitions can

be made for m-fold negative augmentation. Note that A+
FA
−
F f ∼A A−FA+

F f .

A stable map is called a prism if it is the trivial unfolding of another map. We state

the generalisation of Theorem 2.7 of [2] to the case of a real map. (See also Lemma 4.12

and Remark 4.13 of [4].)

Lemma 2.6 (Diminishing Lemma). Suppose that f : (Kn, S) → (Kp, 0) is an Ae-co-

dimension 1 multi-germ such that the miniversal unfolding of f is an m-fold prism.

Then there exists a codimension 1 map h with stable unfolding (hλ(x), λ) such that f is

A-equivalent to (h∑m
i=1 ±λ2

i
(x), λ1, . . . , λm).

Proof. The proof follows that of Theorem 2.7 of [2] except that the quadratic sin-

gularity γ is a sum of squares with possibly negative coefficients. The use of Damon’s

KV -equivalence is justified since his theory works when instead of the discriminant of the

real map we take the real part of the discriminant of the complex map as the variety V .

It is easy to see that a map in the lemma comes from repeated application of positive

and negative augmentation to a primitive Ae-codimension 1 map.

3. Classification of mono-germs. In this section we classify corank 1 Ae-codimen-

sion 1 mono-germs.

Theorem 3.1. Suppose that f : (Rn, 0) → (Rp, 0), n < p, is a smooth corank 1

Ae-codimension 1 map-germ, then the following are true.
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(i) f is A-equivalent to a map of the form
(
u1, . . . , ul−1, v1, . . . , vl−1, w11, w12, . . . , wrl, x1, . . . , xn−l(r+2)+1, y

)

7→
(
u1, . . . , ul−1, v1, . . . , vl−1, w11, w12, . . . , wrl, x1, . . . , xn−l(r+2)+1,

yl+1 +
l−1∑

i=1

uiy
i, yl+2 +

l−1∑

i=1

viy
i + yl

n−l(r+2)+1∑

i=1

±x2
i ,

l∑

i=1

w1iy
i, . . . ,

l∑

i=1

wriy
i
)
,

where r = p− n− 1 and l+ 1 is the multiplicity of the germ. Conversely, any such germ

has Ae-codimension 1.

(ii) An Ae-versal unfolding is given by unfolding with the addition of the term λyl to

the (p− rl − 1)th component function, i.e. the term beginning yl+2.

(iii) The germ is precisely (l + 2)-determined.

The proof of Theorem 3.1 is given in the rest of this section.

Remark 3.2. The form is the same as the complex form, see Theorem 3.1 of [5],

except that the sum of squares can have negative coefficients.

Remark 3.3. The squared terms in x and the unfolding parameter term yl show that

a map of the above form is an augmentation of the primitive form where n = l(r+ 2)−1.

3.1. Proof of Theorem 3.1 parts (ii) and (iii). As f is finitely A-determined we can

assume that f is A-equivalent to some k-jet for k large. Parts (ii) and (iii) follow

from the fact that if we complexify the k-jet, then we get a complex analytic corank 1

Ae-codimension 1 map-germ and the results are true in this case, see Theorem 3.1 of [5].

3.2. Proof of Theorem 3.1 part (i). A key element of the classification is the use of

the multiple point spaces of the complexified map, so let fC be the complexification of the

map f . For the kth multiple point space of a map we would like the set of all k-tuples of

points of the source that map to the same point in the target. A good method of defining

these spaces for corank maps 1, so that they behave well under deformation, is given by

Marar and Mond in [7]. We recall this now and generalise it slightly to the case of real

maps.

If G : Kn−1 × K → K is a function in the variables x1, . . . , xn−1, y, then define

V ki (G) : Kn−1 ×Kk → K to be

1 y1 . . . y
i−1
1 G(x, y1) yi+1

1 . . . yk−1
1

...
...

...
...

...
...

1 yk . . . y
i−1
k G(x, yk) yi+1

k . . . yk−1
k

/ 1 y1 . . . y
k−1
1

...
...

...

1 yk . . . y
k−1
k

for i = 1, . . . , k−1. The group of permutations on k objects, denoted Sk, acts onKn−1×Kk
by permutation of the last k coordinates. The function above is Sk-invariant, and if G

is holomorphic then so is V ki (G). When f is a complex analytic map Marar and Mond

make the following definition.

Definition 3.4. Suppose h : Cn → Cp, n < p, is a complex analytic map in the form

h(x1, . . . , xn−1, y) =
(
x1, . . . , xn−1, h1(x, y), . . . , hp−n+1(x, y)

)
. Then the kth multiple
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point space, denoted D̃k(h), is the set defined in Cn+k−1 by V kr (hs) = 0, r = 1, . . . , k−1,

s = 1, . . . , p− n+ 1.

For a real analytic map f we can make a similar definition for D̃k(f) and the defining

equations for D̃k(fC) are just the complexification of those for D̃k(f) .

The following is shown in the proof in Proposition 3.7 of [6].

Theorem 3.5. Suppose f : (Rn, 0)→ (Rp, 0), n < p, is a corank 1 Ae-codimension 1

germ, then D̃k(fC) is non-singular for k < mult(f) and D̃k(fC) is quadratic in the

variables (y1, . . . , yk) for k = mult(f). The other multiple point spaces are empty.

Now let us return to proving the theorem. First, from Lemma 2.6 we can restrict to

the case that f is primitive.

Lemma 3.6. Suppose that f : (Rn, 0) → (Rp, 0), n < p, is a primitive corank 1

Ae-codimension 1 map-germ of multiplicity l + 1. Then,

(i) l = (n+ 1)/(p− n+ 1),

(ii) f is A-equivalent to a germ which has (l + 2)-jet

(u, v, w, yl+1 + h1(u, v, w)yl +
l−1∑

i=1

uiy
i, yl+2 + h2(u, v, w)yl +

l−1∑

i=1

viy
i,

l∑

i=1

w1iy
i, . . . ,

l∑

i=1

wriy
i),

where h1 and h2 are functions in u, v and w with zero constant term.

Proof. (i) The germ f can be unfolded by one parameter to make a corank 1 stable

map which is not A-equivalent to the trivial unfolding of another stable map. Hence, the

multiplicity is easy to calculate in terms of n and p.

(ii) Step 1. Since f has corank 1 it can be put in the form
(
u, v, w, F1(u, v, w, y), . . . , Fr+2(u, v, w, y)

)
,

where Fi(u, v, w, 0) = 0 for i = 1, . . . , r + 2. On the target we will take coordinates

(U, V,W, Y1, Y2, Z1, . . . , Zr). To lighten notation these shall remain the labels even after

changes of coordinates.

Since f is finitely determined and has multiplicity l + 1 there exists i such that Fi
has non-zero constant coefficient for yl+1 and without loss of generality we can assume

i = 1. Suppose that the coefficient of yl+1 is h(u, v, w) then change coordinates by Y ′1 =

Y1/h(U, V,W ). Thus we can assume that the coefficient of yl+1 in F1 is equal to 1.

From now on we shall assume that we are dealing with the (l+ 2)-jet of f , and hence

any effects of changes in coordinates will only be noted for this jet. So f is equivalent to

a map with (l + 2)-jet

(
u, v, w, fl+1(u, v, w)yl+2 + yl+1 +

l∑

i=1

fi(u, v, w)yi,
l+2∑

i=1

gi(u, v, w)yi,

l+2∑

i=1

h1,i(u, v, w)yi, . . . ,

l+2∑

i=1

hr,i(u, v, w)yi
)
,
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for some functions fi, gi and hi,j .

We can remove the yl+1 terms from the Y2 and Zi components by the left change of

coordinates:

Y ′2 = Y2 − gl+1(U, V,W )Y1

Z ′i = Zi − hi,l+1(U, V,W )Y1,

for all i = 1, . . . r.

Step 2. If we complexify the resulting germ, then we get a complex corank 1 codimen-

sion 1 germ fC which by Theorem 3.5 has its multiple point spaces D̃k(fC) non-singular

for k < l + 1. As noted earlier the defining equations for these multiple point spaces are

just the complexification of the real version’s equations.

Consider first D̃2(fC). If this is singular then we can skip this and the next two

paragraphs. The defining equations for D̃2(fC) have linear terms arising from the linear

terms in the coefficients of y in f . To ensure the non-singularity of D̃2(fC) the r + 2

defining equations should have a non-zero linear term. Then there exists a real change of

coordinates involving only u, v and w so that (without loss of generality) f1(u, v, w) = u1,

g1(u, v, w) = v1 and hi,1 = wi,1 for i = 1, . . . r. Then through a left change of coordinates

in U , V and W we can restore the components of f to (u, v, w, . . .).

When we look at D̃3(fC) we get r + 2 equations with non-zero linear terms arising

from the coefficients of y in f (i.e. the u1, v1, wi,1 we found above). The other r + 2

defining equations have linear terms arising from the linear terms of f2, g2 and hi,2
and to ensure non-singularity of the multiple point space we have, after a change of

coordinates, f2(u, v, w) = u2, g2(u, v, w) = v2 and hi,2(u, v, w) = wi,2 for i = 1, . . . r.

Thus by proceeding in this way for all k < l + 1 we get a map

(
u, v, w, fl+1(u, v, w)yl+2 + yl+1 + fl(u, v, w)yl +

l∑

i=1

uiy
i,

gl+2(u, v, w)yl+2 + gl(u, v, w)yl +

l−1∑

i=1

viy
i,

h1,l+2(u, v, w)yl+2 + h1,l(u, v, w)yl +

l−1∑

i=1

w1,iy
i, . . .

)
.

Step 3. Now, D̃l+1(fC) defines a quadratic singularity and so using the facts that its

corank is 1 and V ll+1(yl+1) is linear in yj we can assume that there are r linear coefficients

in the yl term of different components. Without loss of generality we can assume that

these are the last r. Thus we have a map

(
u, v, w, fl+1y

l+2 + yl+1 + fly
l +

l∑

i=1

uiy
i, gl+2y

l+2 + gly
l +

l−1∑

i=1

viy
i,

h1,l+2y
l+2 +

l∑

i=1

w1,iy
i, . . . , hr,l+2y

l+2 +

l∑

i=1

wr,iy
i
)
.

If gl+1(0, 0, 0) = 0 then D̃l+1(fC) would not be quadratic and so we can make the change
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of coordinates Y ′2 = Y2/gl+1(U, V,W ). The multiple point spaces of the resulting map

will have the same form as f , i.e. non-singular, empty or quadratic, and so we can repeat

the above working to restore the vi.

By making changes of the form

Y ′1 = Y1 − fl+2(U, V,W )Y2

Z ′i = Zi − hi,l+2(U, V,W )Y2,

for all i = 1, . . . , r, and then restoring the u, v and w, we can produce a map of the form

in the statement of the lemma.

Lemma 3.7. Suppose f : (Rn, 0)→ (Rp, 0) is A-equivalent to the form

(
u, v, w, yl+1 + h1(u, v, w)yl +

l−1∑

i=1

uiy
i, yl+2 + h2(u, v, w)yl +

l−1∑

i=1

viy
i,

l∑

i=1

w1iy
i, . . . ,

l∑

i=1

wriy
i
)
,

for some smooth h1(u, v, w) and h2(u, v, w) with zero constant term. Then f is

A-equivalent to the primitive Ae-codimension 1 map in Theorem 3.1.

Proof. We can make the Tschirnhaus transformation y′ = y−
(
h1(u, v, w)/(l+1)

)
. This

removes the h1(u, v, w)yl terms in Y1 but takes the other terms out of our preferred form.

However, it is easy to calculate that the multiple point spaces of the complexification have

the form of Theorem 3.5 and so using the methods in Step 2 of the proof of Lemma 3.6

we can take f into the form

(
u, v, w, yl+1 +

l−1∑

i=1

uiy
i, yl+2 + h2(u, v, w)yl +

l−1∑

i=1

viy
i,

l∑

i=1

w1iy
i, . . . ,

l∑

i=1

wriy
i
)
,

where h2 is possibly different to before, but still with zero constant term.

Let F be the stable map

(
u, v, w, yl+1 +

l−1∑

i=1

uiy
i, yl+2 + λyl +

l−1∑

i=1

viy
i,

l∑

i=1

w1iy
i, . . . ,

l∑

i=1

wriy
i, λ
)
.

Let L(U, V,W ) be the linear part of h2(U, V,W ) and define the family of maps

gt(U, V,W, Y, Z) =
(
U, V,W, Y, Z, L(U, V,W ) + t(h2(U, V,W ) − L(U, V,W ))

)
. Thus, the

pull-back g∗1(F ) induces f .

We now employ Damon’s theory of KV -equivalence, see [3]. Let V = F (Cn+1) and

Derlog(V ) be the liftable vector fields over F . If g : (Cp, 0) → (Cp+1, 0) induces h as a

pull-back, then

NAeh ' NKV,eg :=
θ(g)

tg(θCp) + g∗(Derlog(V ))
.

By Nakayama’s Lemma we have

tgt(mCpθCp) + g∗t
(
Derlog(V )

)
= mCp+1θ(gt)
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if and only if

tgt(mCpθCp) + g∗t
(
Derlog(V )

)
+m2

Cpθ(gt) = mCp+1θ(gt).

Thus, the codimension of g∗t (F ) depends only on the linear part of h2. If h2 is linear,

then it is possible to show by calculation that the Ae-tangent space has the same form

as Theorem 3.5 of [5] (see also [2]) and hence has codimension 1. Therefore, all g∗t (F ) are

codimension 1. The family members are all K-equivalent and so by Lemma 2.3 they are all

A-equivalent. So f is equivalent to g∗0(F ) and, in effect, we can assume that h2(U, V,W )

is linear.

Now we take the family of maps indexed by t and produced from the above f

by replacing h2(u, v, w) with tL(u, v, w) (and taking h1(u, v, w) = 0 of course).

This family can be induced from the stable map F by the family (U, V,W, Y, Z) 7→(
U, V,W, Y, Z, tL(U, V,W )

)
. Since the Ae-codimension for each member is 1 and all the

members are obviously K-equivalent, by Lemma 2.3 they are all A-equivalent. In partic-

ular f is A-equivalent to the standard form given by t = 0.

We now finish the proof of the main theorem.

Proof of Theorem 3.1(i). By Lemma 2.6 f is A-equivalent to the repeated augmenta-

tion of an Ae-codimension 1 map f ′, where f ′ is primitive. The map f ′ is A-equivalent to

a map with (l+2)-jet of the form in Lemma 3.6. By Lemma 3.7 the (l+2)-jet is equivalent

to the primitive normal form in the statement of the theorem, which is (l+2)-determined

by part (iii). Thus f ′ is A-equivalent to the primitive normal form.

References

[1] T. Cooper, Map germs of Ae-codimension one, Ph.D. Thesis, University of Warwick, 1993.

[2] T. Cooper, D. Mond, R. Wik Atique, Vanishing topology of codimension 1 multi-germs over

R and C, Compositio Math. 131 (2002), 121–160.

[3] J. Damon, A-equivalence and the equivalence of sections of images and discriminants, in:

Singularity Theory and its Applications, Part I, Lecture Notes in Math. 1462, Springer,

Berlin, 1991, 93–121.

[4] J. Damon, On the legacy of free divisors: discriminants and Morse-type singularities, Amer.

J. Math. 120 (1998), 453–492.

[5] K. Houston, On the classification of complex multi-germs of corank one and codimension

one, University of Leeds Preprint 2003,

http://www.amsta.leeds.ac.uk/~khouston/psfiles/cod1.ps

[6] K. Houston, A note on good real perturbations of singularities, Math. Proc. Cambridge

Philos. Soc. 132 (2002), 301–310.

[7] W. L. Marar, D. Mond, Multiple point schemes for corank-1 maps, J. London Math. Soc. (2)

39 (1989), 553–567.

[8] J. N. Mather, Stability of C∞ mappings IV. Classification of stable germs by R-algebras,

Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223–248.

[9] D. Mond, On the classification of germs of maps from R2 to R3, Proc. London Math. Soc. (3)

50 (1985), 333–369.

[10] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981),

481–539.


