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1. Introduction. A mapping f : (Rn−k, 0) → R2n (0 ≤ k ≤ n) to the symplectic
space R2n with the symplectic form ω =

∑n
i=1 dpi ∧ dqi is called isotropic if f∗ω = 0.

The classification problem of isotropic mappings is one of basic subjects in the sym-
plectic mathematics, in particular, in symplectification of the singularity theory, including
the study on Lagrangian varieties and singular curves in the symplectic space. We will
give a short survey on the subject and related basic contributions to the classification
problem.

One of major motivations for the classification problem comes from classical mechanics
and its quantizations, celestial mechanics, field theory, and so on, in the Hamiltonian
framework. From the view point of applications, we need to consider also the classification
problem in the presence of a system of commuting Hamiltonians.

For example, in the symplectic 4-space {(p1, q1, p2, q2)} consider the energy function
h = 1

2 (p2
1+p2

2), then the problem is to classify curves or isotropic surfaces with singularities
by local symplectomorphisms preserving the energy foliation on R4 \ h−1(0).

In general we consider, in the local framework, coisotropic fibrations π : R2n → Rn−`

(0 ≤ ` ≤ n). It is defined by a system of Poisson commuting independent (n − `)-
functions. By the classical Jacobi-Liouville theorem, up to local symplectomorphisms,
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we may assume π(p, q) = (q`+1, . . . , qn) = q̄. Then two isotropic map-germs f, g :

(Rn−k, 0)→ R2n are called equivalent if f is transformed to g by a symplectomorphism
Φ : (R2n, f(0)) → (R2n, g(0)) preserving π-fibers up to a parametrization, namely, for
diffeomorphisms σ : (Rn−k, 0)→ (Rn−k, 0) and ϕ :

(
Rn−`, π(f(0))

)
→
(
Rn−`, π(g(0))

)
,

we have Φ ◦ f = g ◦ σ, ϕ ◦ π = π ◦ Φ, i.e., the following diagram is commutative:

(Rn−k, 0)
f−→
(
R2n, f(0)

) π−→
(
Rn−`, π(f(0))

)

↓ σ ↓ Φ ↓ ϕ
(Rn−k, 0)

g−→
(
R2n, g(0)

) π−→
(
Rn−`, π(g(0))

)
.

In the case ` = 0, we call the above equivalence Lagrange equivalence. In the case
` = n, we call it symplectic equivalence. In the case ` = n− 1, we consider a fibration by
hypersurfaces. In general, we call the equivalence flexible equivalence, or π-equivalence,
making stress on the fixed coisotropic fibration π.

In the above definition, if we do not impose the condition that Φ is a symplectomor-
phism but do impose just that Φ is a diffeomorphism, we get the ordinary equivalence
of composed mappings (f, π) and (g, π). If ` = n, then it just gives the A-equivalence of
mappings f and g.

Apart from generic classification, for Cauchy problem of Hamilton-Jacobi equations,
we treat isotropic submanifolds In−1 in a smooth hypersurface {H(p, q) = 0} in R2n.
Then we parametrize I by f : Rn−1 → R2n, and consider the diagram

Rn−1 f−→ R2n H−→ R,

with the condition H ◦ f = 0. Then the problem is reduced to the classification of the
reduction f : Rn−1 → R2(n−1), which is a singular isotropic mapping ([12]).

A coisotropic fibration π : (R2n, 0) → (Rn−`, 0) induces, via the fiberwise sym-
plectic reduction, the submersion π̄ : (R2n, 0) →

(
R2` × Rn−`, (0, 0)

)
to the family

of R2` = T ∗R`.
Now let f : (Rn−k, 0)→ (R2n, 0) be an isotropic map-germ. If π ◦ f is a submersion,

then, k ≤ ` and π̄ ◦ f : (Rn−k, 0) →
(
R2` × Rn−`, (0, 0)

)
is regarded as an unfold-

ing by isotropic map germs of an isotropic map-germ (R`−k, 0) → (R2`, 0). Then we
are led to the classification problem and the unfolding problem of isotropic map-germ
f : (R`−k, 0)→ (R2`, 0).

In the paper [16] we consider, in particular, the case ` = 1 and k = 0. We review
shortly the classification result obtained in [16] in Section 2. In particular we have shown
in [16] the symplectic codimension of plane curve-germ f : (R, 0) → (R2, 0) is a diffeo-
morphism invariant. This is not true for curves (R, 0)→ (R2n, 0) when n ≥ 2. However
we observe the diffeomorphism invariance of the symplectic codimension of Lagrange
variety in Section 6.

Note that the case π ◦ f is not a submersion and k = 0 is treated in [30].
Lagrange singularity theory treats Lagrange equivalence mainly. The objects of the

study, then, are the composed mapping

(Rn, 0)
f−→ (R2n, 0)

π−→ (Rn, 0),

consisting of a Lagrange immersion, i.e. an isotropic immersion f with k = 0, and a
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Lagrange fibration, i.e. a coisotropic fibration π with ` = 0 ([3]). For the classification in
the case f is not an immersion, see [4] for example.

Note that a coisotropic fibration π : (R2n, 0) → (Rn−`, 0) can be decomposed into a
Lagrange fibration Π : (R2n, 0) → (Rn, 0) and a fibration (Rn, 0) → (Rn−`, 0). More-
over an isotropic immersion f : (Rn−k, 0) → (R2n, 0) can be extended to a Lagrange
immersion F : (Rn, 0)→ (R2n, 0) via an immersion (Rn−k, 0)→ (Rn, 0). Thus we have
a composed mapping

(Rn−k, 0) −→ (Rn, 0)
F−→ (R2n, 0)

Π−→ (Rn, 0) −→ (Rn−`, 0).

Though intermediate Lagrange fibrations and Lagrange extensions are not unique, we
see this aspect is effective for the classification problem, at least, in the case ` = 0. In
Section 4, we review the classification of isotropic immersions under Lagrange equivalence
due to Janeczko and Zakalyukin ([20], [29]).

Even if f : (Rn−k, 0) → (R2n, 0) is not an immersion, it is effective to consider
a Lagrange extension F : (Rn, 0) → (R2n, 0) of f . Here we assume F |Rn−k×0 = f

and F may not be an immersion accordingly. Thus we consider the “flag” of isotropic
mappings:

(Rn−k, 0)
i−→ (Rn, 0)

F−→ (R2n, 0).

Lastly we consider the case of equivariant isotropic mappings.

2. Symplectic bifurcations of plane curves. Let f : (R, 0)→ (R2, 0) be a map-
germ. We define the codimension (more exactly Ae-codimension) of f by

codim(f) := dimR
Vf

tf(V1) + wf(V2)
,

where Vf := {v : (R, 0) → TR2 |π ◦ v = f} is the space of vector field-germs along f ,
V1 (resp. V2) is the space of vector field-germs over (R, 0) (resp. (R2, 0)), and tf : V1 → Vf
(resp. wf : V2 → Vf ) is the homomorphism defined by tf(ξ) := f∗(ξ) (resp. wf(η) :=

η◦f). A plane curve f is calledA-finite if codim(f) <∞. Then f has anA-versal unfolding
with the parameter dimension codim(f). If f is analytic, the condition of A-finiteness is
equivalent to that the complexification of f has an injective representative.

Moreover, in general, we define

sp-codim(f) := dimR
Vf

tf(V1) + wf(V H2)
,

where V H2 ⊆ V2 means the space of Hamiltonian vector field-germs over the symplectic
plane (R2, 0). Then clearly

sp-codim(f) ≥ codim(f).

In [16] the following is shown:

Theorem 2.1. Let f : (R, 0)→ (R2, 0) be an A-finite map-germ. sp-codim(f) is an
A-invariant (diffeomorphism invariant). In fact we have

sp-codim(f) = δ(f) := dimR E1/f∗E2.
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Moreover the Milnor number µ(f) of f is equal to 2δ(f) (cf. [26]). So we have
sp-codim(f) = µ(f)/2.

The classification under A-equivalence of A-simple (0-modal) plane curves is given by
Bruce and Gaffney [5]:

A2`: t 7→ (t2, t2`+1);

E6`: t 7→ (t3, t3`+1 ± t3(`+p)+2), 0 ≤ p ≤ `− 2; t 7→ (t3, t3`+1);

E6`+2: t 7→ (t3, t3`+2 ± t3(`+p)+4), 0 ≤ p ≤ `− 2; t 7→ (t3, t3`+2);

W12: t 7→ (t4, t5 ± t7); t 7→ (t4, t5);

W18: t 7→ (t4, t7 ± t9); t 7→ (t4, t7 ± t13); t 7→ (t4, t7);

W#
1,2q−1: t 7→ (t4, t6 + t2q+5), q ≥ 1.

Then we have the symplectic classification of them in [16]:

Theorem 2.2 ([16]).

(1) Any plane curve germ of type E6` (` ≥ 2) is symplectically equivalent to

fλ =
(
t3, (±1)`+1t3`+1 +

`−1∑

j=1

λjt
3(`+j)−1

)
,

for some λ = (λ1, . . . , λ`−1) ∈ R`−1. fλ and fλ′ are symplectically equivalent if and only
if λ′ = (±1)`−1λ.

(2) Any plane curve germ of type E6`+2 (` ≥ 2) is symplectically equivalent to

fλ =
(
t3, (±1)`t3`+2 +

`−1∑

j=1

λjt
3(`+j)+1

)
,

for some λ = (λ1, . . . , λ`−1) ∈ R`−1. fλ and fλ′ are symplectically equivalent if and only
if λ′ = (±1)`λ.

(3) Any plane curve germ of type W12 is symplectically equivalent to

fλ = (t4, t5 + λt7)

for some λ ∈ R. Moreover fλ and fλ′ are symplectically equivalent if and only if λ′ = λ.

(4) Any plane curve germ of type W18 is symplectically equivalent to

fλ,µ = (t4, t7 + λt9 + µt13)

for some (λ, µ) ∈ R2. Moreover fλ,µ and fλ′,µ′ are symplectically equivalent if and only
if (λ′, µ′) = (λ, µ).

(5) Let q ≥ 1. Then any plane curve germ of type W#
1,2q−1 is symplectically equivalent

to

fλ,µ = (t4,±t6 + λt2q+5 + µt2q+9),

for some (λ, µ) ∈ (R − {0})×R. Moreover fλ,µ and fλ′,µ′ are symplectically equivalent
if and only if (λ′, µ′) = ±(λ, µ).

Remark 2.3. For E6 and E8, the symplectomorphism classification and the diffeo-
morphism classification coincide.
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Remark 2.4. Note that the linear symplectic group Sp(R2) = SL(2,R) is a normal
subgroup of GL(2,R). If Symp(R2, 0) is a normal subgroup in Diff(R2, 0), then the
symplectic classification might be easier. However Symp(R2, 0) is not a normal subgroup
in Diff(R2, 0) in fact. For example, define τ ∈ Symp(R2, 0) by τ(x, y) = (x + y, y), and
g ∈ Diff(R2, 0) by g(x, y) = ( x

1+x , y). Then g−1(x, y) =
(

x
1−x , y

)
and

(g−1 ◦ τ ◦ g)(x, y) =
(x+ y(1 + x)

1− y(1 + x)
, y
)

is not a symplectomorphism. In fact,

(g−1 ◦ τ ◦ g)∗(dx ∧ dy) =
1

{
1− y(1 + x)

}2 dx ∧ dy 6= dx ∧ dy.

The homogeneous space Diff(R2, 0)/Symp(R2, 0) has, via Jacobian, a simple structure
(as set):

Diff(R2, 0)/Symp(R2, 0) ∼= E×2 ,
where E×2 = {h ∈ E2 |h(0) 6= 0}. This may explain partly the fact observed in Theorem 2.2
that the “symplectic moduli space” has rather simple structure.

In general consider the group CSymp(R2n, 0) of conformal symplectomorphisms. Note
that Diff(R2, 0) = CSymp(R2, 0). Then

CSymp(R2n, 0)/Symp(R2n, 0) ∼= E×2n.

3. Singular curves in the symplectic space. Arnold [1] gives symplectic classifi-
cation of singular curves f : (C, 0)→ (C2n, 0) with order(f) = 2. This can be applied also
to the real case. Also note that any curve-germ (R, 0)→ (R2n, 0) is necessarily isotropic.

Now we define the symplectic codimension of f : (R, 0)→ (R2n, 0) by

sp-codim(f) := dimR
V If

tf(V1) + wf(V H2n)
,

where V H2n ⊆ V2n denotes the space of Hamiltonian vector field-germs over (R2n, 0).
V If is the space of infinitesimal isotropic deformations of f .

Then we observe that the symplectic codimension is, in fact, not a diffeomorphism
invariant for map-germs R→ R4, contrary to the case of symplectic plane curves.

For example, consider map-germs

A2k,0 :
(
q1 = t2, p1 = t2k+1, q2 = 0, p2 = 0

)
,

and

A2k,r :
(
q1 = t2, p1 = t2k+1+2r, q2 = t2k+1, p2 = 0

)
(r > 0),

from Arnold’s classification [1]. Then, for each k ≥ 1, all A2k,r, r ≥ 0, are clearly
A-equivalent. However we have

sp-codim(A2k,0) = k + 2,

and

sp-codim(A2k,r) = k + r + 2.
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In fact, when f = A2k,0 : (R, 0)→ (R4, 0), we can take
t(0, t2i−1, 0, 0) (i = 1, 2, . . . , k), t(0, 0, t, 0), t(0, 0, 0, t)

as a basis of the vector space Vf/
(
tf(V1) + wf(V H4)

)
. For f = A2k,r we need

t(0, t2k+2j−1, 0, 0) (j = 1, 2, . . . , r)

in addition.
Here we do not mention the details of the symplectic classification of curves in (R2n, 0).

However we introduce several natural equivalence groups for a given coisotropic fibration
π : (R2n, 0)→ (Rn−`, 0).

We denote by π-Symp(R2n, 0) the group consisting of π-fiber preserving symplecto-
morphisms Φ : (R2n, 0) → (R2n, 0). In the similar way, for π-fiber preserving positive-
conformally symplectic diffeomorphisms (resp. π-fiber and orientation preserving dif-
feomorphisms, π-fiber and volume preserving diffeomorphisms), we define the group
π-C+Symp(R2n, 0) (resp. π-Diff+(R2n, 0), π-VPDiff(R2n, 0)).

Then we have the square of inclusions:

π-C+Symp(R2n, 0)

↗ ↘
π-Symp(R2n, 0) π-Diff+(R2n, 0)

↘ ↗
π-VPDiff(R2n, 0)

Note that, in the case n = 1,

π-Symp(R2, 0) = π-VPDiff(R2, 0), π-C+Symp(R2, 0) = π-Diff+(R2, 0).

4. Isotropic immersions in Lagrange equivalences. Now we consider the case
of proper isotropic immersions

in−k : Rn−k → (T ∗Rn, ω), 1 ≤ k ≤ n− 1,

classified with respect to the standard equivalency by symplectomorphisms

Φ : (T ∗Rn, 0)→ (T ∗Rn, 0),

preserving π-fibers up to a parametrization, where the coisotropic fibration π : T ∗Rn →
Rn is a Lagrangian fibration. An each immersed isotropic submanifold-germ (In−k, 0) ⊂
T ∗Rn is generated by a smooth generating I-Morse family-germ (cf. [20]) F : (Rn ×
Rm ×Rk, 0)→ R, such that the map-germ

Rn ×Rm 3 (q, λ) 7→
(∂F
∂λ

(q, λ, 0),
∂F

∂β
(q, λ, 0)

)
∈ Rm ×Rk

has exactly rank equal to m+ k at 0. Then it is easy to check that

in−k : (q, λ)|ΣI
F
→
(∂F
∂p

(q, λ, 0), q
)
∈ T ∗Rn,(1)

where

ΣIF =
{

(q, λ) :
∂F

∂β
(q, λ, 0) = 0 =

∂F

∂λ
(q, λ, 0)

}
≡ (Rn−k, 0)
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is an isotropic immersion and in−k(Rn−k, 0) = (In−k, 0) is an isotropic submanifold-
germ. The image CI = π(In−k) was introduced in [20] as a quasicaustic in an aperture
diffraction. By this formulation we also see that the isotropic submanifold-germs can
be represented as a sub-Lagrangian-germs, i.e., we have a smooth Lagrangian subman-
ifold-germ L ⊂ T ∗(Rn × Rm) generated by the function-germ (q, λ) → f(q, λ), and
the reduction πC : C → T ∗Rn in T ∗(Rn × Rm) defined by the coisotropic space
C = {(p, q;µ, λ) : µ = 0}. Let g : (q, λ) → (g1, . . . , gk) ∈ Rk be a smooth map-germ
(coming from the extra k equations of the family F : gi(q, λ) = ∂F

∂βi
(q, λ, 0) = 0). Then

I-Morse family-germ implies the transversality of intersection of C with L ∩ g−1(0) and
the image πC(L̄ ∩ g−1(0) ∩ C) is a smooth isotropic germ. All isotropic submanifold-
germs can be represented in this way (cf. [20]). To establish the classes of generating
I-Morse family-germs which generate Lagrangian equivalent isotropic varieties, to each
generating family-germ (q, λ, β) → F (q, λ, β) we prescribe the inactive domain, i.e. the
set of function-germs

UF = F +

〈
∂F

∂λ
,
∂F

∂β

〉2

E(q,λ,β)

+ 〈β1, . . . , βk〉2E(q,λ,β)
,

which generates as an I-Morse family-germ the same isotropic immersion-germ.

We say that two I-Morse family-germs, F1, F2 : (Rn × Rm × Rk, 0) → R, are
R+-equivalent if there is a diffeomorphism Φ : (Rn×Rm×Rk, 0)→ (Rn×Rm×Rk, 0)

preserving the fibration πn : (Rn × Rm × Rk, 0) → (Rn, 0) and such that πm+k ◦ Φ :

(Rn×Rm ×Rk, 0)→ (Rm×Rk, 0) is a q-parametrized family of diffeomorphism-germs
on (Rm × Rk, 0) preserving the hypersurface {β = 0}. This group of R+-equivalences
preserves the set UF . Now we can define the equivalency of I-Morse family-germs rep-
resenting uniquely the corresponding isotropic immersion-germs. We say that F1 and F2

are I-equivalent if there is an element of UF2
which is R+-equivalent to F1 and oppositely

there is an element of UF1
which is R+-equivalent to F2. We say that I-equivalency of

I-Morse family-germs is equivalent to the Lagrangian equivalency of the corresponding
isotropic immersion-germs.

If we pass to the representing pairs (f, g), then the inactive domains are defined by

U(f,g) = f +

〈
∂f

∂λ
, g

〉2

E(q,λ)

,

where f(q, λ) = F (q, λ, 0) and gi(q, λ) = ∂F
∂β (q, λ, 0). The R+-equivalence of I-Morse

family-germs reduces to the ordinary R+-equivalence of representing pairs (f, g). Fol-
lowing the methods of [20] and the announced completed classification of [29] we may
formulate the following proposition.

Proposition 4.1. The stable simple isotropic immersion germs, in−k : Rn−k →
(T ∗Rn, ω), with the singular quasicaustic CI are Lagrangian equivalent to the isotropic
immersion germs (or their suspensions) generated by the I-Morse family-germs from the
following list, or have k ≥ 2, non-zero 4-jet of F |q=0,β=0 and non-zero 3-jet of gi|q=0,
i = 1, . . . , k.
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1. F = ±λs+1 +
s−1∑

j=1

λjqj +
k∑

i=1

βi

(
λl +

l−1∑

j=0

λjqs+j+(i−1)l

)
,

(s+ 1)/2 ≤ l ≤ s, s ≥ 2, n = kl + s− 1;

2. F = λ2
1λ2 ± λs−1

2 +

s−2∑

j=1

λj2qj + λ1qs−1 +

k∑

i=1

βi

(
λl2 +

l−1∑

j=0

λj2qs+j+(i−1)l

)
,

s ≥ 4, n = kl + s− 1;

3. F = λ3
1 ± λ4

2 + q5λ
2
2λ1 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ1λ2 + λ2

2 + λ1q5+3i + λ2q4+3i + q3+3i

)
,

n = 5 + 3k;

4. F = λ3
1 ± λ4

2 + q5λ
2
2λ1 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ1λ2 + λ2

2q5+4i + λ1q4+4i + λ2q3+4i + q2+4i

)
,

n = 5 + 4k;

5. F = λ3
1 ± λ4

2 + q5λ
2
2λ1 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ1λ2q5+4i + λ2

2 + λ1q4+4i + λ2q3+4i + q2+4i

)
,

n = 5 + 4k;

6. F = λ3
1 ± λ4

2 + q5λ
2
2λ1 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ1λ

2
2 + λ1λ2q5+5i + λ2

2q4+5i + λ1q3+5i + λ2q2+5i + q1+5i

)
,

n = 5 + 5k;

7. F = λ3
1 ± λ4

2 + q5λ
2
2λ1 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ1λ

2
2q5+6i + λ1λ2q4+6i + λ2

2q3+6i + λ1q2+6i + λ2q1+6i + q6i

)
,

n = 5 + 6k;

8. F = λ3
1 + λ1λ

3
2 + q6λ

4
2 + q5λ

3
2 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ1λ2 + λ2

2q6+4i + λ1q5+4i + λ2q4+4i + q3+4i

)
,

n = 6 + 4k;

9. F = λ3
1 + λ1λ

3
2 + q6λ

4
2 + q5λ

3
2 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ3

2 + λ1λ2q6+5i + λ2
2q5+5i + λ1q4+5i + λ2q3+5i + q2+5i

)
,

n = 6 + 5k;



SYMPLECTIC SINGULARITIES 93

10. F = λ3
1 + λ1λ

3
2 + q6λ

4
2 + q5λ

3
2 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ4

2 + λ3
2q6+6i + λ1λ2q5+6i + λ2

2q4+6i + λ1q3+6i + λ2q2+6i + q1+6i

)
,

n = 6 + 6k;

11. F = λ3
1 + λ1λ

3
2 + q6λ

4
2 + q5λ

3
2 + q4λ2λ1 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ4

2q6+7i +λ3
2q5+7i +λ1λ2q4+7i +λ2

2q3+7i +λ1q2+7i +λ2q1+7i + q7i

)
,

n = 6 + 7k;

12. F = λ3
1 + λ5

2 + q7λ
3
2λ1 + q6λ

2
2λ1 + q5λ

3
2 + q4λ1λ2 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ1λ2 + λ2

2q7+4i + λ1q6+4i + λ2q5+4i + q4+4i

)
,

n = 7 + 4k;

13. F = λ3
1 + λ5

2 + q7λ
3
2λ1 + q6λ

2
2λ1 + q5λ

3
2 + q4λ1λ2 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ3

2 + λ1λ2q7+5i + λ2
2q6+5i + λ1q5+5i + λ2q4+5i + q3+5i

)
,

n = 7 + 5k;

14. F = λ3
1 + λ5

2 + q7λ
3
2λ1 + q6λ

2
2λ1 + q5λ

3
2 + q4λ1λ2 + q3λ

2
2 + q2λ1 + q1λ2

+

k∑

i=1

βi
(
λ1λ

2
2 + λ3

2q7+6i + λ1λ2q6+6i + λ2
2q5+6i + λ1q4+6i + λ2q3+6i + q2+6i

)
,

n = 7 + 6k;

15. F = λ3
1 + λ5

2 + q7λ
3
2λ1 + q6λ

2
2λ1 + q5λ

3
2 + q4λ1λ2 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ1λ

3
2 + λ1λ

2
2q7+7i + λ3

2q6+7i + λ1λ2q5+7i + λ2
2q4+7i

+ λ1q3+7i + λ2q2+7i + q1+7i

)
,

n = 7 + 7k;

16. F = λ3
1 + λ5

2 + q7λ
3
2λ1 + q6λ

2
2λ1 + q5λ

3
2 + q4λ1λ2 + q3λ

2
2 + q2λ1 + q1λ2

+
k∑

i=1

βi
(
λ1λ

3
2q7+8i + λ1λ

2
2q6+8i + λ3

2q5+8i + λ1λ2q4+8i + λ2
2q3+8i

+ λ1q2+8i + λ2q1+8i + q8i

)
,

n = 7 + 8k.

Note that there exists another natural class of immersions in a symplectic space:
coisotropic immersions. Though we treat isotropic mappings in this paper mainly, we
recall here the basic construction of coisotropic immersions briefly.

Let cn+k : (Rn+k, 0)→ (T ∗Rn, ω) be a coisotropic immersion-germ (1 ≤ k ≤ n− 1),
classified with respect to the standard Lagrangian equivalence. Coisotropic submanifold-
germs are generated by the corresponding generating families (cf. [19]) called C-Morse
families. To each coisotropic immersed submanifold-germ (C, 0) ⊂ (T ∗Rn, ω) there exists
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a C-Morse family-germ F : (Rn ×Rk ×Rm, 0)→ R, such that the smooth map-germ

Rn ×Rk ×Rm 3 (q, α, λ) 7→
(∂F
∂α

(q, α, λ), α
)

is regular on the stationary set

ΣCF =
{

(q, α, λ) :
∂F

∂λ
(q, α, λ) = 0

}

and

ΣCF 3 (q, α, λ) 7→
(∂F
∂q

(q, α, λ), q
)

is a coisotropic immersion-germ.
We leave the classification of the coisotropic singularities to the forthcoming paper.

5. Singular isotropic mappings. In this section, we first observe that any family
of curves produces an isotropic mapping of corank not greater than 1.

Let Ψ :
(
R×Rn−k−1, (0, 0)

)
→ T ∗Rk+1 be a family of curves:

Ψ(t, λ) = ψλ(t) =
(
a1(t, λ), . . . , ak+1(t, λ), b1(t, λ), . . . , bk+1(t, λ)

)
.

Set

e(t, λ) :=

∫ t

0

(
a1
∂b1
∂t

+ . . .+ ak+1
∂bk+1

∂t

)
dt.

Then we define Ψ̃ : R×Rn−k−1 → T ∗Rn by

(p ◦ Ψ̃)(t, λ) = a(t, λ), (q ◦ Ψ̃)(t, λ) = b(t, λ), (q′ ◦ Ψ̃)(t, λ) = λ,

and

(p′ ◦ Ψ̃)(t, λ) =
(
c1(t, λ), . . . , cn−k−1(t, λ)

)
,

where, for 1 ≤ j ≤ n− k − 1,

cj(t, λ) =

∫ t

0

(k+1∑

i=1

∂ai
∂λj

∂bi
∂t
− ∂ai

∂t

∂bi
∂λj

)
dt.

In fact, the p′-components are given by the condition

a1 db1 + . . .+ ak+1 dbk+1 + c1 dλ1 + . . .+ cn−k−1 dλn−k−1 = de,

namely by

a1
∂b1
∂λj

+ . . .+ ak+1
∂bk+1

∂λj
+ cj =

∂e

∂λj
.

Then Ψ̃ is an isotropic mapping uniquely determined from Ψ up to symplectomorphisms.
We call Ψ̃ the isotropic lifting of Ψ (cf. [16]).

By the same construction as above, we see that any isotropic unfolding Ψ : (Rm ×
Rs, 0) → (R2n × Rs, 0) of corank not greater than 1, lifts to an isotropic mapping
Ψ̃ : (Rm+s, 0)→ (R2(n+s), 0). In fact, since Ψ is an unfolding by isotropic germs, setting

Ψ(x, λ) =
(
a1(x, λ), . . . , an(x, λ), b1(x, λ), . . . , bn(x, λ), λ

)
,
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we see that there exists a function e(x, λ) satisfying
n∑

i=1

ai
∂bi
∂xj

=
∂e

∂xj
,

for each j (1 ≤ j ≤ m). We set

ck(x, λ) :=
∂e

∂λk
−

n∑

i=1

ai
∂bi
∂λk

,

for each k (1 ≤ k ≤ s). Then we have the isotropic lifting of Ψ by setting

Ψ̃(x, λ) =
(
a(x, λ), b(x, λ), λ, c(x, λ)

)
.

Let π : (T ∗Rn, 0) = (R2n, 0)→ (Rn−`, 0) be a coisotropic fibration. We suppose that
π(p, q) = (q`+1, . . . , qn) =: q̄. Let r be an integer with 0 ≤ r ≤ n− `. Then set

q = (q′, q̄), q′ = (q1, . . . , q`), q′′ = (q`+1, . . . , qn−r), q′′′ = (qn−r+1, . . . , qn),

so that q̄ = (q′′, q′′′) = (q`+1, . . . , qn). Similarly we decompose p = (p′, p̄) = (p′, p′′, p′′′).
We define π0 : (R2(n−r), 0)→ (Rn−`−r, 0) by π0(p′, p′′, q′, q′′) = q′′.

Then, as a converse of the lifting construction, we have a kind of “rank theorem”:

Proposition 5.1. Let f : (Rn−k, 0) → (R2n, 0) be an isotropic map-germ. Assume
k ≤ ` and rank(π ◦ f) = r (≤ n − `). Then f is π-equivalent to an isotropic unfolding
of f0 : (Rn−k−r, 0) → (R2(n−r), 0) with the coisotropic fibration π0 : (R2(n−r), 0) →
(Rn−`−r, 0).

Next we remark that the construction of isotropic jet spaces discussed in the case
k = 0 in [13] works also for the general case, and the isotropic transversality theorem
holds as well.

Let X be an (n− k)-dimensional manifold, M a symplectic 2n-dimensional manifold.
We set

JrI (X,M) :=
{
jrf(x) | f : (X,x)→M is isotropic

}
⊆ Jr(X,M),

and

Rr(X,M) := JrI (X,M) \ Σ2(X,M) ⊂ Jr(X,M).

Here Σ2(X,M) denotes the set of isotropic jets with corank not smaller than 2.
We set

JrI (n− k, 2n) := {jf (0) | f : (Rn−k, 0)→ R2n is isotropic} ⊆ Jr(n− k, 2n),

and

Rr(n− k, 2n) := {jf (0) | f : (Rn−k, 0)→ R2n is isotropic of corank at most 1}.
Proposition 5.2. Rr(X,M) is a submanifold of Jr(X,M) of codimension

(n− k) ·
(
n− k + r

r

)
−
(
n− k + r + 1

r + 1

)
+ 1.

Proof. Set m = n − k. Since the assertion is a local one, it is sufficient to show it in
the case X = Rm and M = R2n. Moreover, since

Rr(Rm,R2n) = Rr(m, 2n)×Rm ×R2n,
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under the trivialization Jr(Rm,R2n) = Jr(m, 2n)×Rm×R2n, it is sufficient to show the
assertion for Rr(m, 2n) ⊆ Jr(m, 2n). Set V r = Jr(m, 2n) and denote by Λr the space of
(r−1)-jets of closed 2-forms on (Rm, 0). Define ρ : V r → Λr by ρ(jrφ(0)) = jr−1(φ∗ω)(0).

It is sufficient to show that ρ : V r → Λr is a submersion along (Σ0∪Σ1)(m, 2n), since
ρ−1(0) = JrI (m, 2n). Set z = jrφ(0) and

φ = (P,Q) = (P1, . . . , Pn, Q1, . . . , Qn).

We set φt = (P + tP̃ , Q+ tQ̃). Then

d

dt
φ∗tω|t=0 =

n∑

i=1

dP̃i ∧ dQi −
n∑

i=1

dQ̃i ∧ dPi = d
( n∑

i=1

P̃i dQi − Q̃i dPi
)
.

Then, for any 1-form E on Rm, we find P̃i, Q̃i and e in Em with
n∑

i=1

P̃i dQi − Q̃i dPi = E + de.

Set Q =
(
x′, u1(x′, xm), . . . , un−m+1(x′, xm)

)
, where x′ = (x1, . . . , xm−1). Then, setting

E =
∑m

i=1Ei dxi, Q̃ = 0, P̃m = 0, . . . , P̃n = 0, we obtain
m−1∑

i=1

(
P̃i − Ei −

∂e

∂xi

)
dxi −

(
Em +

∂e

∂xm

)
dxm = 0.

Then we can find e and then consequently find P̃i, i = 1, . . . ,m− 1. Thus we see that ρ∗
is surjective.

For an (n − k)-manifold X and for a symplectic 2n-manifold M , we denote by
C∞I (X,M)1 the set of C∞ isotropic mappings f : X → M of corank not greater than 1

everywhere on X, endowed with Whitney C∞ topology.
In [13], we prove “isotropic transversality theorem” in the case k = 0. The same proof

works also for k > 0:

Proposition 5.3. Let X be an (n − k)-manifold, M a symplectic 2n-manifold, r a
non-negative integer and U a locally finite family of submanifolds of Rr(X,M). Then the
subspace

TU := {f ∈ C∞I (X,M)1 | jrf is transverse to all elements of U}
is dense in C∞I (X,M)1.

Next we give a remark on “isotropic Thom-Boardman singularity”. We define, for a
sufficiently large r,

Σ1
I(n− k, 2n) := Σ1(n− k, 2n) ∩ JrI (n− k, 2n),

and

Σ1s
I (n− k, 2n) := Σ1s(n− k, 2n) ∩ JrI (n− k, 2n).

Here 1s means the s time iteration of 1, and s ≤ r. Moreover Σ1
2,I(n − k, 2n; `) denotes

the subset of JrI (n− k, 2n) consisting of isotropic r-jets jrf(0) with corank0(π ◦ f) = 2.

Proposition 5.4. codim Σ1
I(n−k, 2n) = 2(k+1). In general codim Σ1s

I (n−k, 2n) =

2(k + 1)s. Suppose 0 ≤ ` ≤ k. Then codim Σ1
2,I(n− k, 2n; `) = 3k − `+ 4.
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By the isotropic transversality theorem (Proposition 5.3), we see that there exists an
isotropic mapping R7 → T ∗R8 = R16 intersecting Σ1

2(7, 16; 0) transversely at the origin.
Also we see that there exists an isotropic mapping R6 → T ∗R7 = R14 intersecting
Σ1

2(6, 14; 1) transversely at the origin.

Lastly, in this section, we prepare several infinitesimal notions.
For the infinitesimal study on isotropic deformations, we need to consider the canon-

ical lifting ω̃ on TR2n of the symplectic form ω on R2n. In fact we set

ω̃ =

n∑

i=1

(dϕi ∧ dqi + dpi ∧ dκi),

where (p, q, ϕ, κ) is the coordinate system on TR2n = R4n defined by ϕi(v) = v(dpi) and
κi(v) = v(dqi) for v ∈ TR2n. Then ω̃ = dθ#, where

θ# =
n∑

i=1

(ϕi dqi − κi dpi).

Let f : (Rn−k, 0) → R2n be an isotropic map-germ. Then we set, as the space of
infinitesimal isotropic deformations of f , at least formally,

V If :=
{
v : (Rn−k, 0)→ TR2n

∣∣Π ◦ v = f, v∗ω̃ = 0
}
,

where Π is the canonical projection Π : TR2n → R2n.
For a v ∈ V If , we have 0 = v∗ω̃ = d(v∗θ#). Then there exists a function e ∈ En−k,

which is called a generating function, satisfying de = v∗θ#, up to a constant. We set

Rf := {h ∈ En−k |dh ∈ En−k df}.
Then any generating function of a vector field in V If belongs to Rf . Thus we define the
linear mapping e : V If → Rf/R by taking a generating function up to constant.

We denote by Vn−k (resp. V H2n) the space of vector field-germs over (Rn−k, 0) (resp.
the space of Hamiltonian vector field-germs over (R2n, 0)). Then we define the basic
operations tf : Vn−k → V If and wf : V H2n → V If induced by f in the infinitesimal way:
tf(ξ) := f∗(ξ) and wf(η) := η ◦ f , where ξ ∈ Vn−k, η ∈ V H2n and f∗ : TRn−k → TR2n

being the differential of f .
Note that H ◦ f is a generating function of wf(XH), where XH is the Hamiltonian

vector field with Hamiltonian H ∈ E2n. Moreover we have (tf(ξ))∗(θ#) = 0, and therefore
e(tf(ξ)) = 0, for any ξ ∈ Vn−k.

We define V Lπ ⊆ V H2n, the subspace consisting of Hamiltonian vector fields which
project to vector fields over (Rn−`, 0), via the differential π∗ : TR2n → TRn−` of the
given coisotropic fibration π : R2n → Rn−`. Then we have the following basic result:

Proposition 5.5. A Hamiltonian vector field η ∈ V H2n projects to a vector field
over (Rn−`, 0) via π∗ : TR2n → TRn−` if and only if η has a Hamiltonian function H

which is inhomogeneous linear with respect to π:

H(p, q) = a0(p′, q) + a`+1(q̄)p`+1 + . . .+ an(q̄)pn,

where p′ = (p1, . . . , p`), q̄ = π(p, q) = (q`+1, . . . , qn), and a`+1, . . . , an are smooth func-
tions.
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Proof. Let H = H(p, q) be a Hamiltonian of η; −dH = iηω. Then

η = −∂H
∂q′

∂

∂p′
− ∂H

∂q̄

∂

∂p̄
+
∂H

∂p′
∂

∂q′
+
∂H

∂p̄

∂

∂q̄
.

The condition is that ∂H
∂p̄ depends only on q̄. Set ∂H

∂pi
= ai(q̄), ` + 1 ≤ i ≤ n. Then we

have the required result.

We denote by Hπ the set of inhomogeneous linear functions with respect to π.
By taking generating functions, we have defined the linear mapping e : V If → Rf/R.

Lemma 5.6 (Basic exact sequence). The linear mapping e : V If → Rf/R induces
the following exact sequence:

0→
V I ′f

tf(Vn−k) + wf(V L′f,π)
→ V If

tf(Vn−k) + wf(V Lπ)
→ Rf

f∗(Hπ)
→ 0,

where

V I ′f := {v ∈ V If | v∗θ# = 0},
and

V L′f,π := {XH ∈ V Lπ |H ◦ f = 0}.
Now we define the symplectic codimension of an isotropic map-germ f : (Rn−k, 0)→

(R2n, 0) with respect to a coisotropic fibration π : (R2n, 0) → (Rn−`, 0), from the in-
finitesimal aspect, by

π-sp-codim(f) = dimR
V If

tf(Vn−k) + wf(V Lπ)
.

Simply f is called π-stable if π-sp-codim(f) = 0, namely if V If = tf(Vn−k) +

wf(V Lπ). This stability condition coincides with the stability for isotropic deformations
under π-equivalence, at least if corank(f) ≤ 1.

In the case ` = 0, namely in the case that π is a Lagrange fibration, f is called
Lagrange stable if f is π-stable. Lagrange stable immersions are classified by means of
their generating families ([3]). Lagrange stable mappings of corank not greater than 1 are
classified partly in [4].

If ` = n, then we omit π:

sp-codim(f) = dimR
V If

tf(Vn−k) + wf(V H2n)
.

f is called symplectically stable if sp-codim(f) = 0. Symplectically stable isotropic map-
germs are classified under the symplectic equivalence completely in [14].

6. Symplectic codimension of Lagrange varieties. We understand the reason of
the fact proved in [16] that the symplectic codimension of a plane curve on the symplectic
plane is a diffeomorphism invariant (Theorem 2.1) is simply that a plane curve is a
Lagrange variety. Now we show that the symplectic codimension of an isotropic map-
germ f : (Rn, 0) → (R2n, 0), satisfying a mild condition, is a diffeomorphism invariant
(i.e. A-invariant).
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We call a map-germ f : (Rn, 0) → (Rp, 0) (n < p) a C∞-normalization if f is
A-equivalent to an analytic normalization (Rn, 0) → (Rp, 0) to the image ([9], [27]).
Note that if a plane curve f : (R, 0)→ (R2, 0) is A-finite then f is a C∞-normalization.

Lemma 6.1. Let f : (Rn, 0) → (Rp, 0) (n < p) be a C∞-normalization, and η a
C∞ vector field over (Rp, 0). If, for any regular point x ∈ (Rn, 0), the vector η(f(x)) ∈
Tf(x)Rp belongs to f∗(TxRn), then there exists a C∞ vector field ξ over (Rn, 0) such that
f∗(ξ) = η ◦ f .

Proof. Let ϕt denote the flow generated by η. Then ϕt ◦ f has the same image as f .
Therefore, by Corollary 2.5 of [9], there exists a unique diffeomorphism-germ ψt satisfying
f ◦ψt = ϕt ◦f , for each t. Note that, since n < p, f is a critical normalization in the sense
of [9]. Then ψt (t ∈ R) defines a local flow on (Rn, 0). The differentiability of ψt for t
can be obtained by applying Corollary 2.5 of [9] to the trivial unfolding F := f × idR :

(Rn+1, 0)→ (Rp+1, 0), which is also a C∞, therefore critical, normalization. Now we set
ξ := dψt

dt |t=0. Then, from the equality f ◦ ψt = ϕt ◦ f , we have f∗(ξ) = η ◦ f .

Recall that we have defined the symplectic codimension of an isotropic map-germ
f : (Rn, 0)→ (R2n, 0) (k = 0, ` = n), by

sp-codim(f) = dimR
V If

tf(Vn) + wf(V H2n)
.

Then we have the following:

Theorem 6.2. Let f, g : (Rn, 0) → (R2n, 0) be isotropic C∞-normalizations. If f
and g are A-equivalent, then sp-codim(f) = sp-codim(g).

Proof. First we remark that if f and g are R-equivalent, then

sp-codim(f) = sp-codim(g).

So we may assume g = Φ ◦ f , Φ being a diffeomorphism on (R2n, 0).
Consider the basic exact sequence for f :

0 −→
V I ′f

tf(Vn) + wf(V H ′f,2n)
−→ V If

tf(Vn) + wf(V H2n)
−→ Rf

f∗E2n
→ 0,

where

V H ′f,2n := {XH ∈ V H2n |H ◦ f = 0}.
Then by Lemma 6.1, wf(V H ′f,2n) ⊆ tf(Vn). Thus we have the following exact sequence:

0 −→
V I ′f
tf(Vn)

−→ V If
tf(Vn) + wf(V H2n)

−→ Rf
f∗E2n

→ 0.

Also for g, we have the corresponding exact sequence.
Now we have Rg = Rf , g∗E2n = f∗E2n, and Φ∗(tf(Vn)) = tg(Vn). Moreover, in

general, we have

V I ′f ⊆ {v : (Rn, 0)→ TR2n |π ◦ v = f, v(x) ∈ f∗(TxRn) for all x ∈ Reg(f)}.
In fact, suppose v ∈ V I ′f . Then, for all ξ ∈ TxRn, we have 0 = 〈ṽ∗θ, ξ〉 = 〈θ(ṽ(x)), ṽ∗ξ〉 =

〈ṽ(x), π∗ṽ∗ξ〉 = 〈ṽ, f∗ξ〉 = ω(v(x), f∗ξ). So, for any x ∈ Reg(f), f∗(TxRn) is Lagrangian,
and therefore v(x) ∈ f∗(TxRn).
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Since f is a C∞-normalization, we see Reg(f) is dense. Therefore we have

V I ′f = {v : (Rn, 0)→ TR2n |π ◦ v = f, v(x) ∈ f∗(TxRn), for all x ∈ Reg(f)},
Hence Φ∗(V I ′f ) = V I ′g. Thus

sp-codim(g) = dimR
Rg
g∗E2n

+ dimR
V I ′g

tg(Vn) + wg(V H ′2n)

= dimR
Rf
f∗E2n

+ dimR
V I ′f

tf(Vn) + wf(V H ′2n)
= sp-codim(f).

Moreover we define a variant of symplectic codimension, called the reduced symplectic
codimension of f , by

s̃p-codim(f) = dimR
V If

tf(Vn) + wf(V2n) ∩ V If
.

Then we have:

Theorem 6.3. s̃p-codim(f) is a diffeomorphism invariant.

Proof. Set

Gf := {h ∈ En |dh ∈ 〈df〉f∗E2n}.
We have the following exact sequence:

0 −→
V I ′f
tf(Vn)

−→ V If
tf(Vn) + wf(V2n) ∩ V If

−→ Rf
Gf
→ 0.

Then we see easily that s̃p-codim(f) is an A-invariant.

We set

sd(f) := sp-codim(f)− s̃p-codim(f).

Then we have:

Corollary 6.4. sd(f) is a diffeomorphism invariant. Moreover we see that

sd(f) = dimR
tf(Vn) + wf(V2n) ∩ V If
tf(Vn) + wf(V H2n)

= dimR
Gf
f∗E2n

.

Remark 6.5. We can also treat the case of multi-germs: Let S ⊂ Rn be a finite
subset. A map-germ f : (Rn, S) → (R2n, 0), f(S) = {0}, is called isotropic if f ∗ω = 0.
Then if f is a C∞-normalization, then we have the exact sequence

0 −→
V I ′f
tf(VS)

−→ V If
tf(VS) + wf(V H2n)

−→ Rf
f∗E2n

→ 0,

where V If , V I ′f , VS and Rf are defined similarly to the case S = {0}. For example,

Rf := {e ∈ ES |de ∈ ES df}.
Moreover we see that

V I ′f = {v ∈ Vf | v(x) ∈ f∗(TxRn) for all x ∈ Reg(f)}.
Thus we conclude that

sp-codim(f) := dimR
V If

tf(VS) + wf(V H2n)

is a diffeomorphism invariant (A-invariant).
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7. Lagrange extensions of isotropic mappings. Any isotropic immersion-germ
can be extended to a Lagrange immersion. Then we consider singular Lagrange extensions
of singular isotropic mappings.

First we observe, at least, any generic isotropic map-germ of corank at most 1 has a
Lagrange extension of corank not greater than 1. We recall the open Whitney umbrellas
f : (Rn, 0)→ (R2n, 0) ([14]). For an integer m with 0 ≤ 2m ≤ n, we set

u(x1, x2, . . . , xn) :=
xm+1
n

(m+ 1)!
+ x1

xm−1
n

(m− 1)!
+ . . .+ xm−1xn,

and

v(x1, x2, . . . , xn) := xm
xmn
m!

+ . . .+ x2m−1xn.

Then the pair (u, v) can be regarded as a family of plane curves Ψ : (Rn−1 × R, 0) →
(R2, 0) with parameters x1, . . . , xn−1. We remark that just x1, . . . , x2m−1 appear expli-
citly in u, v, and that 2m− 1 ≤ n− 1. Thus, we get the isotropic lifting

fn,m := Ψ̃ : (Rn, 0) = (Rn−1 ×R, 0)→ (R2n, 0).

See Section 5. The explicit form of Ψ̃ is given in [14]. We call an isotropic map-germ the
open Whitney umbrella of type m if it is symplectically equivalent to fn,m. General open
Whitney umbrellas are introduced also in [20].

Now we have:

Proposition 7.1. Any generic isotropic mapping f : (Rn−k, 0)→ (R2n, 0) of corank
not exceeding 1 is symplectically equivalent to an open Whitney umbrella F : (Rn, 0) →
(R2n, 0) composed with an embedding i : (Rn−k, 0)→ (Rn, 0).

Proof. There exists a Lagrange fibration π : (R2n, 0) → (Rn, 0) such that π ◦ f :

(Rn−k, 0)→ (Rn, 0) is of corank at most 1. Any perturbation of π ◦f lifts to an isotropic
perturbation of the original f . Thus we may assume π◦f is a generic map-germ of corank
not greater than 1. Then we see π ◦ f is A-equivalent to

y1 =
tm+1

(m+ 1)!
+ λ1

tm−1

(m− 1)!
+ . . .+ λm−1t,

y2 = λm
tm

m!
+ λm+1

tm−1

(m− 1)!
+ . . .+ λ2m−1t,

. . . . . . . . . . . .

yk+1 = λ(k+1)m
tm

m!
+ λ(k+1)m+1

tm−1

(m− 1)!
+ . . .+ λ(k+2)m−1t,

yk+2 = λ1,

. . . . . . . . . . . .

yk+(k+2)m = λ(k+2)m−1,

. . . . . . . . . . . .

yn = λn−k−1.

with (k + 2)m ≤ n− k. Then we define the embedding i : (Rn−k, 0)→ (Rn, 0), i(λ, t) =



102 G. ISHIKAWA AND S. JANECZKO

(x1, . . . , xn−1, xn) by

x1 = λ1,

. . . . . . . . . . . .

xm−1 = λm−1,

xm = λm,

. . . . . . . . . . . .

x2m−1 = λ2m−1,

x2m = λ2m
tm

m!
+ λ2m+1

tm−1

(m− 1)!
+ . . .+ λ3m−1t,

. . . . . . . . . . . .

xn−1 = λn−k−1,

xn = t.

Then π ◦ f = Ψ ◦ i, and we see that f is symplectically equivalent to Ψ̃ ◦ i.

Example 7.2. Let us consider the open Whitney umbrella F = f2,1 : (R2, 0) →
(R4, 0) defined by

F (u, v) = (q1, q2, p1, p2) =
(
u2, v, uv,

2

3
u3
)
,

and its restrictions. Consider an embedding i : (R, 0) → (R2, 0) with u = t, v = ϕ(t).
Then f := F ◦ i : (R, 0) → (R2, 0) is given by f(t) = (t2, ϕ(t), tϕ(t), 2

3 t
3). Then f is an

immersion if and only if ord(ϕ) = 1. f is of type A2,0 if and only if ord(ϕ) = 2. f is of
type A2,r for some r ≥ 1 if and only if ord(ϕ) ≥ 3.

Remark 7.3. In the case of analytic curves, we have a stronger result: Let f :

(R, 0) → R4 be a real analytic curve-germ. Then there exists a real analytic isotropic
map-germ F : (R2, 0)→ T ∗R2 of corank at most 1 such that F |R×{0} = f .

8. Symmetry on symplectic singularities. In [21], an equivariant classification
of isotropic immersions is given. Here we study the stability and versality problems of
equivariant singular isotropic mappings.

Let G be a compact Lie group. We suppose a representation ρ : G → Diff(Rn−k, 0)

(resp. ρ′ : G → Symp(R2n, 0), ρ′′ : G → Diff(Rn−`, 0)) is given. We call a map-germ
f : (Rn−k, 0)→ (R2n, 0) (resp. π : (R2n, 0)→ (Rn−`, 0)) G-equivariant if, for any g ∈ G,
f ◦ ρ(g) = ρ′(g) ◦ f (resp. π ◦ ρ′(g) = ρ′′(g) ◦ π).

We can formulate G-equivariant stability of G-equivariant isotropic map-germs of
corank not exceeding 1, for a fixed coisotropic submersion π : (R2n, 0)→ (Rn−`, 0), and
introduce corresponding infinitesimal condition

V IGf = tf(V Gn−k) + wf(V LGπ ),

where V IGf (resp. V Gn−k, V L
G
π ) is the set of G-equivariant isotropic vector fields along f

(resp. G-invariant vector fields over (Rn−k, 0), G-invariant Hamiltonian vector fields over
(R2n, 0) covering a vector field over (Rn−`, 0) via π). We endow TR2n with the naturally
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lifted G-action from the G-action on (R2n, 0). We call a G-equivariant isotropic map-
germ f G-π-stable if

V IGf = tf(V Gn−k) + wf(V LGπ ).

If ` = 0 (resp. if ` = n), then we call it also G-Lagrange stable (resp. G-symplectically
stable).

By using the infinitesimal criterion for the stability, we obtain:

Proposition 8.1. Let f : (Rn−k, 0) → (R2n, 0) be an isotropic mapping of corank
at most 1. If f is G-equivariant and π-stable, then f is G-π-stable.

Proof. We will show that the condition V If = tf(Vn−k) + wf(V Lπ) implies V IGf =

tf(V Gn−k) + wf(V LGπ ). Let v ∈ V If (resp. ξ ∈ Vn−k, η ∈ V Lπ). For g ∈ G, we set
g∗v := ρ′(g)∗ ◦v ◦ρ(g)−1 (resp. g∗ξ := ρ(g)∗ ◦ ξ ◦ρ(g)−1, g∗η := ρ′(g)∗ ◦η ◦ρ′(g)−1). Then
v ∈ V IGf (resp. ξ ∈ V Gn−k, η ∈ V LGπ ) if and only if g∗v = v (resp. g∗ξ = ξ, g∗η = η) for
any g ∈ G.

Now let v ∈ V IGf . From the condition V If = tf(Vn−k) + wf(V Lπ), there exist
ξ ∈ Vn−k, η ∈ V Lπ satisfying v = tf(ξ) + wf(η). Since f is G-equivariant, we have

v = g∗v = g∗(tf(ξ) + wf(η)) = tf(g∗ξ) + wf(g∗η).

By means of the invariant integral over G, we set

ξ :=

∫

G

g∗ξ, η :=

∫

G

g∗η.

Then we see that ξ ∈ V Gn−k, η ∈ V LGπ , and that v = tf(ξ) + wf(η). Therefore V IGf =

tf(V Gn−k) + wf(V LGπ ).

Example 8.2. Let us consider again the open Whitney umbrella f : (R2, 0) →
(R4, 0),

f(u, v) = (q1, q2, p1, p2) =
(
u2, v, uv,

2

3
u3
)
.

Let G = Z/2Z = 〈1, σ〉. G acts on (R2, 0) (resp. on (R4, 0) symplectically, on (R2, 0))
by σ(u, v) = (−u,−v) (resp. σ(q1, q2, p1, p2) = (q1,−q2, p1,−p2), σ(q1, q2) = (q1,−q2)).
Then f is G-equivariant. Moreover f is Lagrange stable ([10], [11]). Therefore f is
G-Lagrange stable.

We have G-equivariant versality theorem and that the infinitesimal G-stability is
equivalent to the G-stability in the case of corank not greater than 1 (cf. [8], [15]).

Example 8.3. Let G = Z/2Z = 〈1, σ〉. G acts on (R, 0) by σ(t) = −t and acts on
(R2, 0) symplectically by σ(x1, x2) = (−x1,−x2). Let f : (R, 0)→ (R2, 0) be defined by
f(t) = (t3, t5). Then f is G-equivariant. We see F : (R×R, 0)→ (R2 ×R, 0) defined by
F (t, λ) = (t3 + λt, t5 + λt, λ) is a G-versal isotropic unfolding of f .

Moreover we can define the G-π-symplectic codimension of a G-equivariant isotropic
map-germ f : (Rn−k, 0) → (R2n, 0) for a fixed G-equivariant coisotropic fibration
π : (R2n, 0)→ (Rn−`, 0) by

G-π-sp-codim(f) := dimR
V IGf

tf(V Gn−k) + wf(V LGπ )
,
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and, if ` = 0, we call it simply G-symplectic codimension of f :

G-sp-codim(f) := dimR
V IGf

tf(V Gn−k) + wf(V HG
2n)

.

Then we have

Proposition 8.4. Let f : (Rn, 0)→ (R2n, 0) be a G-equivariant isotropic map-germ.
Suppose f is a C∞-normalization. Then G-sp-codim(f) is a G-diffeomorphism invariant.
Namely, if G-equivariant isotropic map-germs f, f ′ : (Rn, 0)→ (R2n, 0) are A-equivalent
by G-equivariant diffeomorphisms : the diagram

(Rn, 0)
f−→ (R2n, 0)

↓ σ ↓ Φ

(Rn, 0)
f ′−→ (R2n, 0),

commutes for G-equivariant diffeomorphism-germs σ and Φ, then

G-sp-codim(f) = G-sp-codim(f ′).

Proof. We have the exact sequence

0 −→
V I
′G
f

tf(V Gn )
−→

V IGf
tf(V Gn ) + wf(V HG

2n)
−→

RGf
f∗EG2n

→ 0,

where V HG
2n, R

G
f , EG2n are corresponding G-objects to the case that G is trivial. Actually,

V HG
2n is the space of G-equivariant Hamiltonian vector fields over (R2n, 0), EG2n is the

space ofG-invariant functions on (R2n, 0), and RGf the space of functions e on (Rn, 0) such
that de is a functional linear combination of d(q1 ◦f), . . . , d(qn ◦f), d(p1 ◦f), . . . , d(pn ◦f)

with G-invariant functions on (Rn, 0) as coefficients.
Moreover we have

V I
′G
f = {v ∈ V Gf | v(x) ∈ f∗(TxRn) for all x ∈ Reg(f)}.

Then the invariance of G-sp-codim(f) under G-equivariant diffeomorphisms follows from
that all V I

′G
f , tf(V Gn ), RGf , f

∗EG2n are defined by means of invariant notions underG-diffeo-
morphisms.

The details will be given in forthcoming papers.
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