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When we consider the classification problem of real singularities, it is important to
show triviality theorems. Then, for a question whether the triviality we consider is suitable
or not, it seems to be natural to ask if a finiteness theorem (or a local finiteness theorem)
holds on the triviality. We first ask a finiteness theorem for a family of real algebraic sets.

For a family of algebraic sets, finiteness theorems have been established on topological
triviality by T. Fukuda [Fu] and A. N. Varchenko [V] and, more strongly, a finiteness
theorem for a family of semialgebraic sets on semialgebraic triviality by R. M. Hardt [Ha].
Besides them, finiteness theorems on topological triviality are known for a family of
polynomial function-germs ([Fu]) and for a family of two-variable polynomial map-germs
(K. Aoki [A], C. Sabbah [Sa-1]). On the other hand, it is also known that local topological
moduli appear in a family of three-variable polynomial map-germs (I. Nakai [N]).

Here we consider the following problem:

Does a finiteness theorem hold for stronger triviality in a structural meaning?

Let F (x; t) be a family of polynomial mappings. Then we can describe the problem
above more explicitly. Namely, we ask the following. After a finite subdivision of the pa-
rameter space, do there exist a desingularisation of the algebraic variety defined by F = 0

and some triviality upstairs which induces a topological (or semialgebraic) trivialisation
of the zero-set F−1(0)?

If the trivialisation upstairs is a regular isomorphism, we say that the family of zero-

2000 Mathematics Subject Classification: 14P20, 58C27, 14P25, 57R45, 58A07, 58A35.
Key words and phrases: Blow-Nash Triviality, Simultaneous Resolution, Semialgebraicity,

Isotopy Lemma.
Research of the author supported by Grant-in-Aid for Scientific Research (No. 13640070) of

the Ministry of Education, Science and Culture of Japan, and a grant of the Japan Association
for Mathematical Sciences.

The paper is in final form and no version of it will be published elsewhere.

[135]



136 S. KOIKE

sets F−1(0) admits a Blow-regular trivialisation, following Tzee-Char Kuo’s terminology.
He introduced the notion of blow-analytic equivalence for real analytic function-germs
([Ku-1], [Ku-2], [Ku-3], [FKK]).

We recall the Whitney function ([W]). Let J = (1,∞) and let ft : (R2, 0) → (R, 0),
t ∈ J , be a function defined by

ft(x, y) = xy(x− y)(x− ty).

Then the zero-set consists of 4 lines intersecting at the origin of R2 for each t.
Define F : (R2 × J, {0} × J) → (R, 0) by F (x, y; t) = ft(x, y). Then it is easy to

see that (R2 × J, F−1(0)) is topologically trivial. But a finiteness theorem does not hold
for (R2 × J, F−1(0)) on Blow-regular triviality. Namely, (R2 × J0, F

−1(0)) is not Blow-
regularly trivial over any open subinterval J0 of J , taking an arbitrary finite subdivision
of J . This follows from the fact that a regular automorphism of P 1(R) is linear (see
Appendix in T. Fukui, S. Koike and M. Shiota [FKS]). Therefore Blow-regular triviality
does not answer our purpose. It is too strong even for a family of plane algebraic curves
with isolated singularities. On the other hand, (R2 × J, F−1(0)) admits a Π-Blow-Nash
trivialisation along J ([K-2]). Here Π = π×idJ where π is a blowing-up at 0 ∈ R2. Taking
these observations into consideration, let us consider everything in the Nash category after
this.

1. Some properties on semialgebraicity and Nash. We first recall the defini-
tions of a Nash manifold and a Nash mapping. Let r = 1, 2, . . . ,∞, ω. A semialgebraic
set of Rm is called a Cr Nash manifold, if it is a Cr submanifold of Rm. In this paper,
a submanifold always means a regular submanifold. Let M ⊂ Rm and N ⊂ Rn be Cr

Nash manifolds. A Cs mapping f : M → N (s ≤ r) is called a Cs Nash mapping, if the
graph of f is semialgebraic in Rm ×Rn.

We next recall some important results on semialgebraicity and Nash.

Theorem 1.1 (B. Malgrange [M]).

(1) A C∞ Nash manifold is a Cω Nash manifold.

(2) A C∞ Nash mapping between Cω Nash manifolds is a Cω Nash mapping.

After this, a Nash manifold and a Nash mapping mean a Cω Nash manifold and a Cω

Nash mapping, respectively. We call the zero-set of a Nash mapping a Nash set.

Theorem 1.2 (Tarski-Seidenberg Theorem [Se]). Let A be a semialgebraic set in Rk,
and let f : Rk → Rm be a semialgebraic mapping, namely, the graph of f is semialgebraic
in Rk ×Rm. Then f(A) is semialgebraic in Rm.

Theorem 1.3 (Łojasiewicz’s Semialgebraic Triangulation Theorem [L-1], [L-2]).
Given a finite system of bounded semialgebraic sets Xα in Rn, there exist a simplicial
decomposition Rn =

⋃
a Ca and a semialgebraic automorphism τ of Rn such that

(1) each Xα is a finite union of some of the τ(Ca),

(2) τ(Ca) is a Nash manifold in Rn and τ induces a Nash diffeomorphism Ca →
τ(Ca), for every a.
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Remark 1.4. In Theorem 1.3, the boundedness is not essential. In fact, there is a
Nash embedding of Rn into Rn+1 via Rn ⊂ Sn. Then every semialgebraic set in Rn can
be considered as a bounded semialgebraic set in Rn+1.

Theorem 1.5 (Shiota’s Approximation Theorem [S-2], [S-3], [S-1]). Let M1 ⊂M be
Nash manifolds such that M1 is closed in M , let N be a Nash manifold and let f : M → N

be a Cr Nash mapping, r <∞, such that f |M1
is of Nash class. Then we can approximate

f by a Nash mapping g in the Cr topology so that f = g on M1.

For the definition of Cr topology, see [S-3].
In general, a Nash equivalence is stronger than a Cω equivalence. In fact, M. Shiota

([S-3]) showed that there are affine nonsingular algebraic varieties V1 and V2 which are
Cω equivalent but not Nash equivalent.

2. Nash simultaneous resolution. Let M,U be Nash manifolds, and let V be a
Nash set of U . Let Π : M → U be a proper Nash modification. We say that Π is a Nash
resolution of V in U , if there is a finite sequence of blowings-up σj+1 : Mj+1 →Mj with
smooth centres Cj (where σj ,Mj and Cj are of Nash class) such that:

(1) Π is the composite of σj ’s.

(2) The critical set of Π is a union of Nash divisors D1, . . . , Dd.

(3) V ′ (the strict transform of V in M by Π) is a Nash submanifold of M .

(4) V ′, D1, . . . , Dd simultaneously have only normal crossings.

(5) There is a thin Nash (or semialgebraic) set T in V so that Π|Π−1(V−T ) :

Π−1(V − T )→ V − T is a Nash isomorphism.

Let V be a Nash set of a Nash manifold M ⊂ Rm. Concerning a Nash resolution, we
have the following theorem.

Theorem 2.1 ([H-1], [H-3], [BM-1], [BM-2], [BM-3])). For a Nash variety V of a
Nash manifold U , there exists a Nash resolution of V in U , Π : M → U .

Let M,U , I be Nash manifolds, and let V be a Nash set of U . Let Π : M → U be
a proper Nash modification, and let q : U → I be an onto Nash submersion. For t ∈ I,
we set Ut = q−1(t), Vt = V ∩ Ut and Mt = (q ◦ Π)−1(t). We say that Π gives a Nash
simultaneous resolution of V in U over I, if there is a finite sequence of blowings-up
σ̃j+1 : Mj+1 → Mj with smooth centres C̃j (where σ̃j ,Mj and C̃j are of Nash class)
such that:

(1) Π is the composite of σ̃j ’s.

(2) The critical set of Π is a union of Nash divisors D1, . . . ,Dd.
(3) V ′ (the strict transform of V in M by Π) is a Nash submanifold of M.

(4) V ′,D1, . . . ,Dd simultaneously have normal crossings. The restrictions
• q ◦Π|V′ : V ′ → I,
• q ◦Π|Dj1∩...∩Djs : Dj1 ∩ . . . ∩ Djs → I,
• q ◦Π|V′∩Dj1∩...∩Djs : V ′ ∩ Dj1 ∩ . . . ∩ Djs → I (1 ≤ j1 < . . . < js ≤ d)

are onto submersions.
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(5) There is a thin Nash (or semialgebraic) set T in V so that T ∩ Vt is a thin set
in Vt for each t ∈ I, and that Π|Π−1(V−T ) : Π−1(V −T )→ V −T is a Nash isomorphism.

We can define the notion of Nash simultaneous resolution in the local case similarly.
Let I be a Nash manifold, and let F : (Rn × I, {0} × I)→ (Rp, 0) be a Nash map-germ.
We say that a Nash modification Π :M→ Rn × I gives a Nash simultaneous resolution
of V = F−1(0) in Rn × I over I around {0} × I, if there are open Nash submanifolds
N ,U with

Π−1({0} × I) ⊂ N ⊂M and {0} × I ⊂ U ⊂ Rn × I
such that Π|N : N → U gives a Nash simultaneous resolution of F−1(0)∩ U in U over I.

3. Nash Isotopy Lemma. Let M be a Nash manifold possibly with boundary, and
let N1, . . . , Nb be Nash submanifolds of M possibly with boundary which together with
N0 = ∂M are normal crossing. Assume that ∂Ni ⊂ N0, i = 1, . . . , b. Then we have

Theorem 3.1 (Nash Isotopy Lemma [FKS]). Let $ : M → Rk be a proper onto
Nash submersion such that for 0 ≤ i1 < . . . < is ≤ b,

$|Ni1∩...∩Nis : Ni1 ∩ . . . ∩Nis → Rk

is also a proper onto submersion. Then there is a Nash diffeomorphism

φ : (M ;N1, . . . , Nb)→
(
(M)0; (N1)0, . . . , (Nb)0

)
×Rk

such that $ ◦ φ−1 : (M)0 × Rk → Rk is the canonical projection. Here (Z)0 denotes
($|Z)−1(0) for a subset Z ⊂M .

Remark 3.2. From the proof of the theorem above, we have the following.

(1) We can replace Rk by a Nash manifold which is Nash diffeomorphic to an open
simplex in a Euclidean space.

(2) The φ Nash-trivialises not only M,N1, . . . , Nb but also their arbitrary intersec-
tions.

The integration of a vector field is a regular method to show C∞ triviality (more
generally, Cr triviality) or Cω triviality for a family of sets or mappings. But the inte-
gration of a Nash vector field is not necessarily of Nash class (cf. 2.1 in [FKS]). In such
sense, the Isotopy Lemma above is an effective tool to show Nash triviality. Although the
integration method is not useful in the Nash category, we have instead a powerful tool
called Shiota’s Approximation Theorem (cf. Theorem 1.5). In fact, the Approximation
Theorem takes a very important role in the proof of our Nash Isotopy Lemma.

Nash Isotopy Lemma was first proved by M. Coste and M. Shiota [CS-1] for only a
Nash manifold M without boundary, and then proved also for a Nash manifold M with
boundary in [CS-2]. Using them, the Isotopy Lemma was shown for a pair of a Nash
manifold M and its Nash submanifold N without boundary ([K-2]). The above lemma
treats the normal crossing case, containing all the results. The reader would be able to
guess that our Nash Isotopy Lemma will be applied to show the Nash triviality of the
Nash simultaneous resolution described in the former section.
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4. Nash trivial simultaneous resolution. Let Π :M→ U be a Nash simultaneous
resolution of a Nash variety V = {F = 0} in U over I in the sense of Section 2. Let t0 ∈ I.
We say that Π gives a Nash trivial simultaneous resolution of V in U over I, if there is a
Nash diffeomorphism φ :M→Mt0 × I such that

(1) (q ◦Π) ◦ φ−1 : Mt0 × I → I is the natural projection,

(2) φ(V ′) = V ′t0×I, φ(Dj1∩. . .∩Djs) = (Dj1,t0∩. . .∩Djs,t0)×I, φ(V ′∩Dj1∩. . .∩Djs) =

(V ′t0 ∩Dj1,t0 ∩ . . . ∩Djs,t0)× I (1 ≤ j1 < . . . < js ≤ d).

In the local case, we define the notion of a Nash trivial simultaneous resolution of
F−1(0) in Rn×I over I around {0}×I similarly. Here, we may require also the condition
that φ(Π−1({0} × I)) = π−1

t0 (0)× I, for our finiteness property.
We now prepare some notation. Let ft : X → Y (t ∈ J) be a mapping. Define a

mapping F : X × J → Y by F (x; t) = ft(x). For a subset Q ⊂ J , set FQ = F |X×Q. We
use the notation throughout this paper.

We first consider the compact case. Let N be a compact Nash manifold, and let J
be a semialgebraic set in some Euclidean space. Let ft : N → Rk (t ∈ J) be a Nash
mapping. Assume that F is a Nash mapping. Set

K = {t ∈ J | f−1
t (0) ∩ S(ft) is isolated}.

Here S(ft) denotes the singular points set of ft. It is easy to see that K is a semialgebraic
subset of J , using Hardt’s semialgebraic triviality theorem.

We have the following finiteness theorem on Nash trivial simultaneous resolution.

Theorem Ia ([K-3]). There exists a finite partition

J = Q1 ∪ . . . ∪Qs ∪Qs+1 ∪ . . . ∪Qu
with K = Q1 ∪ . . . ∪ Qs and J − K = Qs+1 ∪ . . . ∪ Qu which satisfies the following
conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is a Nash trivial simultaneous resolution Πi :Mi → N ×Qi of
F−1
Qi

(0) in N ×Qi over Qi.
In particular, for 1 ≤ i ≤ s, this Nash trivialisation induces the semialgebraic

trivialisation of F−1
Qi

(0) in N ×Qi over Qi. (In this case, we say that (N ×Qi, F−1
Qi

(0))

admits a Πi-Blow-Nash trivialisation along Qi.)

Outline of the proof. Let dim J = r.
(1) By Hardt’s theorem, there is a finite partition of J into semialgebraic sets Rk

such that (N × Rk, F
−1
Rk

(0)) is semialgebraically trivial over each Rk. It follows that
dim f−1

t (0) is constant over Rk. Therefore, to show our finiteness theorem, we can assume
that dim f−1

t (0) is constant over J .
(2) Subdivide J into finite Nash manifolds Qi which are Nash diffeomorphic to open

simplexes by Łojasiewicz’s Semialgebraic Triangulation Theorem.
(3) Consider only Nash manifolds Qi of dimension r.
(4) Desingularise F−1

Qi
(0) in N ×Qi by the Desingularisation Theorem.
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(5) Using Semialgebraic Triangulation Theorem, Tarski-Seidenberg Theorem and
Sard’s Theorem again and again, we can subdivide Qi into finite Nash submanifolds
Pi(j) so that Nash Isotopy Lemma is applicable for Pi(j) of dimension r. Then we can get
a Nash trivial simultaneous resolution of F−1

Pi(j)
(0) in N × Pi(j) over Pi(j).

(6) The union J1 of Nash manifolds Qi and Pi(j) we removed in the above process is
a semialgebraic subset of J of dimension less than r.

Considering J1 as J , repeat this procedure. Then we can get our finiteness theorem.

We next consider the local case. Let J be a semialgebraic set in some Euclidean space,
and let ft : (Rn, 0) → (Rk, 0) (t ∈ J) be a Nash mapping. Assume that F is a Nash
mapping. Set

K = {t ∈ J | f−1
t (0) ∩ S(ft) ⊆ {0} as germs at 0 ∈ Rn}.

Then we can see that K is a semialgebraic subset of J ([FKS], Lemma 6.4).
We have the result corresponding to Theorem Ia in the local case.

Theorem Ib ([K-3]). There exists a finite partition

J = Q1 ∪ . . . ∪Qs ∪Qs+1 ∪ . . . ∪Qu
with K = Q1 ∪ . . . ∪ Qs and J − K = Qs+1 ∪ . . . ∪ Qu which satisfies the following
conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is a Nash trivial simultaneous resolution Πi :Mi → Rn×Qi of
F−1
Qi

(0) in Rn ×Qi over Qi around {0} ×Qi.
In particular, for 1 ≤ i ≤ s, this Nash trivialisation induces the semialgebraic

trivialisation of F−1
Qi

(0) in Rn ×Qi over Qi around {0} ×Qi. (In this case, we say that
(Rn ×Qi, F−1

Qi
(0)) admits a Πi-Blow-Nash trivialisation along Qi around {0} ×Qi.)

Remark 4.1. The latter half in Theorem Ib(2), namely, finiteness on Blow-Nash
triviality for a family of Nash set-germs with isolated singularities was first proved in
[FKS]. But it is natural to regard it as a part of the finiteness theorem above on Nash
trivial simultaneous resolution.

When T. Fukui, M. Shiota and I wrote up [FKS], we did not know the desingularisation
theorem in the Nash category. Therefore, after we proved a finiteness theorem on Blow-
Nash triviality for a family of algebraic set-germs with isolated singularities, we reduced
the Nash case to the algebraic case using the Artin-Mazur Theorem ([AM]). But, we need
not make use of such a method, if we apply Theorem 2.1 directly.

When we apply Nash Isotopy Lemma in Section 3 to show the finiteness theorems
on the existence of Nash trivial simultaneous resolution, properness is important. In the
compact case, properness is automatically satisfied. But in the local case, some device is
necessary. A similar situation happens also in T. Fukuda [Fu]. He proved Local Isotopy
Lemma without the assumption of properness. (Only the statement is written in [Fu],
but the proof was given also in the first draft.) Here we do not try to show a similar
kind of Local Isotopy Lemma in the Nash category. Instead, when we treat the local
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case, we consider the objects in a closed neighbourhood of Π−1
i ({0} × Qi) which is a

Nash manifold with boundary. In order to apply our Nash Isotopy Lemma in the proof of
Theorem Ib, as such a closed neighbourhood, we have to construct a Nash manifold whose
boundary is transverse to the strict transform of Vi = F−1

Qi
(0), all exceptional divisors

and their arbitrary intersection. For this purpose, we introduced the notion of uniformity
of Milnor radius via desingularisation in [K-3], and first proved a finiteness theorem on
it. In the case of isolated singularities, the situation is simple. In this case it suffices to
construct a semialgebraic neighbourhood of {0} ×Qi in Rn ×Qi with usual uniformity
of Milnor radius. Then we may assume that the inverse of the neighbourhood by Πi is a
Nash manifold whose boundary is transverse to the strict transform of Vi and does not
intersect any exceptional divisor. An inequality of Thom’s type is a useful tool to show a
finiteness theorem on uniformity of Milnor radius in the case of isolated singularities. In
fact, we used the inequality to show the latter half of Theorem Ib(2) in [FKS]. For the
detail of an inequality of Thom’s type, see K. Bekka and S. Koike [BK].

5. Problems and partial results. In the previous section, we described finiteness
theorems on the existence of Nash trivial simultaneous resolution in the global com-
pact case and in the local case. Consecutively, we treat finiteness in the cases. As stated
above, when the zero-sets of Nash mappings have isolated singularities, a Nash isomor-
phism upstairs automatically induces a t-level preserving semialgebraic homeomorphism
downstairs trivialising F−1

Qi
(0). Therefore we got a Blow-Nash triviality. We consider a

similar problem in the case of non-isolated singularities.

Problem 1. Does a finiteness theorem hold on Blow-Nash triviality for {(N, f−1
t (0))}

(or {(Rn, f−1
t (0))}) in the case of non-isolated singularities, too?

The problem is not easy. In this case, we have to show Nash-semialgebraic triviality
of each resolution mapping Πi as a family of Nash mappings. But we do not have any
method to show such a triviality in general. In addition, local topological moduli appear
in a family of polynomial map-germs {ft : (Rn, 0)→ (Rk, 0)}, n ≥ 3, k ≥ 2, as stated in
the introduction. Taking these facts into consideration, we pose the following weakened
problem:

Problem 1-1. Does a finiteness theorem hold on Blow-semialgebraic triviality for
{(N, f−1

t (0))} (or {(Rn, f−1
t (0))}) in the case of non-isolated singularities?

Blow-semialgebraic triviality means that there are a Nash simultaneous resolution
Πi of F−1

Qi
(0) and a semialgebraic homeomorphism upstairs which induces a t-level

preserving semialgebraic homeomorphism downstairs trivialising (N × Qi, F
−1
Qi

(0)) (or
(Rn ×Qi, F−1

Qi
(0))). Concerning this problem, we have some partial results.

Let N be a compact Nash manifold of dimension less than or equal to 3, and let J
be a semialgebraic set in some Euclidean space. Let ft : N → Rk (t ∈ J) be a Nash
mapping. Assume that F is a Nash mapping and f−1

t (0)∩S(ft) is not isolated for t ∈ J .

We have the following finiteness theorem on Blow-semialgebraic triviality.
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Theorem IIa ([K-3]). There exists a finite partition J = Q1∪ . . .∪Qu which satisfies
the following conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is a Nash simultaneous resolution Πi :Mi → N×Qi of F−1
Qi

(0) in
N ×Qi over Qi such that (N×Qi, F−1

Qi
(0)) admits a Πi-Blow-semialgebraic trivialisation

along Qi.

Remark 5.1. Let q : N×J → J be the canonical projection, and let Vi = {FQi = 0}.
If dim(S(Vi) ∩ q−1(t)) ≤ 0 for any t ∈ Qi, then subdividing Qi into finitely many Nash
manifolds if necessary, (N ×Qi, F−1

Qi
(0)) admits a Πi-Blow-Nash trivialisation along Qi.

Here S(Vi) denotes the singular points set of Vi as a Nash variety, and dim(∅) = −1.
Therefore in the case where dimN ≤ 2, (N ×Qi, F−1

Qi
(0)) admits a Πi-Blow-Nash trivi-

alisation along Qi for 1 ≤ i ≤ u.

We can show the theorem above using the semialgebraic versions of Thom’s 1st and
2nd Isotopy Lemmas proved by M. Shiota [S-4]. We first make some remarks on the
Isotopy Lemmas. The original Thom’s Isotopy Lemmas ([T-1], [T-2], [T-3]) were proved
in the C2 category that is topological triviality follows from some regularity conditions
(e.g. the Whitney (b)-regularity, the Thom (af )-regularity) on C2 stratified sets and
mappings. For the detailed proofs, see J. Mather [Mat] or C. G. Gibson, K. Wirthmüller,
A. du Plessis and E. J. N. Looijenga [GWPL]. The semialgebraic versions were also proved
under the same assumptions not only in the C2 Nash category but also in the C1 Nash
category. But the proofs of the former are simpler than those of the latter. We use the
Isotopy Lemmas in the C2 Nash category. We make one more remark. If we replace the
assumption of the (aF )-regularity by the assumption of the (aft)-regularity for any t ∈ Q,
the semialgebraic version of Thom’s 2nd Isotopy Lemma still holds after taking a finite
subdivision of the parameter space Q ([K-3]).

We describe the gist of the proof of Theorem IIa. By Theorem Ia, a finiteness theorem
holds on the existence of Nash simultaneous resolution Πi :Mi → N ×Qi of F−1

Qi
(0) in

N×Qi over Qi. A pinch map is a typical example as a non-Thom mapping. Therefore we
cannot apply the semialgebraic version of Thom’s 2nd Isotopy Lemma directly to this Πi.
But taking a finite subdivision of Qi if necessary, we can construct Cω Whitney stratifica-
tions S(Mi) of Mi compatible with the strict transform of F−1

Qi
(0), exceptional divisors

and their intersections and S(N ×Qi) of N ×Qi compatible with their images by Πi so
that the 2nd Isotopy Lemma (with the (aft)-regularity for t ∈ Qi) is applicable to the re-
striction of Πi to the union D of exceptional divisors. Therefore it follows that Πi|D : D →
N ×Qi is semialgebraically trivial over Qi (taking a finite subdivision of Qi if necessary).
Let q : N × Qi → Qi be the canonical projection. Then q ◦ Πi|D : D → Qi is semialge-
braically trivial over Qi. By the semialgebraic version of Thom’s 1st Isotopy Lemma, we
can extend the semialgebraic triviality of q◦Πi|D over Qi to the semialgebraic one of q◦Πi

over Qi. Since Πi :Mi → N ×Qi is an isomorphism outside D, the extended semialge-
braic trivialisation of q◦Πi induces a semialgebraic one of Πi over Qi. We can show Blow-
semialgebraic triviality in this way, using a combination of 2nd and 1st Isotopy Lemmas.
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Let N be a compact Nash manifold of dimension bigger than 3, and let J and ft :

N → Rk (t ∈ J) be the same as in Theorem IIa. We further assume that dim f−1
t (0) ≤ 2

for t ∈ J . Then, using an argument similar to the above, we can show:

Corollary IIIa. There exists a finite partition J = Q1 ∪ . . .∪Qu which satisfies the
following conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is a Nash simultaneous resolution Πi :Mi → N×Qi of F−1
Qi

(0) in
N×Qi over Qi such that F−1

Qi
(0) admits a Πi-Blow-semialgebraic trivialisation along Qi.

Namely, there is a semialgebraic trivialisation of the strict transform of F−1
Qi

(0) by Πi

which induces a semialgebraic one of F−1
Qi

(0) over Qi.

Let J be a semialgebraic set in some Euclidean space, and let ft : (Rn, 0)→ (Rk, 0)

(t ∈ J) be a Nash mapping. Assume that F is a Nash mapping and f−1
t (0)∩S(ft) is not

contained in {0} as germs at 0 ∈ Rn for t ∈ J .
The results corresponding to Theorem IIa, Remark 5.1 and Corollary IIIa hold in the

local case. In the case where n ≤ 3, we have

Theorem IIb ([K-3]). There exists a finite partition J = Q1∪ . . .∪Qu which satisfies
the following conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is a Nash simultaneous resolution Πi : Mi → Rn × Qi of
F−1
Qi

(0) in Rn × Qi over Qi around {0} × Qi such that (Rn × Qi, F
−1
Qi

(0)) admits a
Πi-Blow-semialgebraic trivialisation along Qi around {0} ×Qi.

Assume that n > 3 and dim f−1
t (0) ≤ 2 for t ∈ J . Then we have

Corollary IIIb. There exists a finite partition J = Q1∪ . . .∪Qu which satisfies the
following conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is a Nash simultaneous resolution Πi :Mi → Rn×Qi of F−1
Qi

(0)

in Rn ×Qi over Qi around {0} × Qi such that F−1
Qi

(0) admits a Πi-Blow-semialgebraic
trivialisation along Qi around {0} ×Qi.

Concerning the corollaries above, we have the following problem:

Problem 1-2. Does a finiteness theorem hold on Blow-semialgebraic triviality for
{f−1
t (0)} in the case of non-isolated singularities?

6. List of finiteness properties. We give the list of our results on finiteness prop-
erties. In this section we describe only the global compact case, but we have a similar list
also in the local case.

Let N be a compact Nash manifold of dimension n, and let J be a semialgebraic set
in some Euclidean space. Let ft : N → Rk (t ∈ J) be a Nash mapping. Assume that F is
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a Nash mapping. As stated in the outline of the proof of Theorem Ia, when we consider
our finiteness problem, we may assume from the beginning that dim f−1

t (0) is constant
over J . Then we can summarise our results more explicitly as follows:

dim f−1
t (0) f−1

t (0) ∩ S(ft) isolated (= ∅) f−1
t (0) ∩ S(ft) non-isolated

0 Nash triviality for This case never happens
{(N, f−1

t (0))}
1 Blow-Nash triviality

Existence of for {(N, f−1
t (0))}

Nash trivial Blow-Nash triviality for n = 3: Blow-semialgebraic
simultaneous 2 (Nash triviality for) triviality for {(N, f−1

t (0))}
resolution {(N, f−1

t (0))} n ≥ 4: Blow-semialgebraic
triviality for {f−1

t (0)}
3 A result in the algebraic case

≥ 4 Fukui’s observation

The list shows on which triviality a finiteness theorem holds. For instance, it shows
in the middle row that if f−1

t (0) ∩ S(ft) is isolated (resp. empty), a finiteness theorem
holds on Blow-Nash triviality (resp. Nash triviality) for {(N, f−1

t (0))} in the case where
dim f−1

t (0) ≥ 1.
In the former sections, we did not refer to any result in the case where f−1

t (0)∩S(ft)

is non-isolated and dim f−1
t (0) ≥ 3. We have some result related to Problem 1-2 in the

case where dim f−1
t (0) = 3. But we do not have any positive result in the case where

dim f−1
t (0) ≥ 4. Recently, T. Fukui ([F-2]) gave an interesting observation in this case.

We shall describe the result in the case where dim f−1
t (0) ≥ 3 and the observation of

Fukui in the next section.

7. Some remarks in the higher-dimensional case. We first describe a result
concerning Problem 1-2 in the algebraic case. Let N be a compact affine nonsingular
algebraic variety or Rn, and let J be an affine algebraic variety. Let ft : N → Rk (t ∈ J)

be a polynomial mapping such that dim f−1
t (0) ≤ 3 for t ∈ J . Assume that F is a

polynomial mapping. Then we have the following finiteness theorem.

Theorem IV ([K-4]). There exists a finite partition J = Q1∪ . . .∪Qu which satisfies
the following conditions :

(1) Each Qi is a Nash manifold which is Nash diffeomorphic to an open simplex in
some Euclidean space.

(2) For each i, there is an algebraic simultaneous resolution Πi : Mi → N × Qi of
F−1
Qi

(0) in N×Qi over Qi such that F−1
Qi

(0) admits a Πi-Blow-semialgebraic trivialisation
along Qi.

We can show this theorem using a similar argument as the proof of Corollary IIIa with
Sabbah’s arguments on “Morphismes stratifiés sans éclatement” ([Sa-1], [Sa-2]) based
on the flattening theorem of Hironaka ([H-2], [H-4]). The details will be written in the
forthcoming paper.
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We next describe Fukui’s observation. Let us recall the Nakai family.

Example 7.1 ([N]). Let fe = (f1e, f2e) : (R3, 0)→ (R2, 0) be a polynomial mapping
defined by

f1e(x, y, z) = (e1x− y)(e2x− y)(e3x− y),

f2e(x, y, z) = (e4x− y)(e5x− y)(e6x− y)z

where e = (e1, e2, e3, e4, e5, e6) ∈ R6 with e1 < e2 < e3 < e4 < e5 < e6. Then local
topological moduli appear in the family {fe}.

T. Fukui gave the following observation.

Observation 7.2 ([F-2]). There are a family of algebraic sets Vt ⊂ R6 with
dimVt = 4 and a simultaneous resolution {πt : Mt → R6 of Vt} such that {πt|V ′t ∩Et}
at some point P is the Nakai family. Here V ′t is the strict transform of Vt by πt and
Et is an exceptional divisor containing P . In addition, there is a natural identification of
(V ′t ∩Et, P ) with (R3, 0) for each t, and R2 = R2 × {(0, 0, 0, 0)} ⊂ R6.

The observation above means that in the case where f−1
t (0) ∩ S(ft) is non-isolated

and dim f−1
t (0) ≥ 4, we cannot show a finiteness theorem even on blow-semialgebraic

triviality for a family of zero-sets {f−1
t (0)} using just the existence of a desingularisation

of F−1(0). But the desingularisation procedure in Theorem 2.1 is canonical. Therefore
there is a possibility that finiteness holds on semialgebraic triviality for the family of
Hironaka’s resolution mappings (or Bierstone-Milman’s resolution mappings). In fact,
Fukui’s choice of centres of the blowings-up is essentially different from the canonical one
in Theorem 2.1. At present, we do not know the answer to the finiteness problem in this
case.

Generalising Fukui’s argument, K. Bekka and S. Koike showed the following:

Assertion 7.3. Let f = (f1, . . . , fp) : (Rn, 0) → (Rp, 0) be a polynomial mapping
such that fj is not identically zero for 1 ≤ j ≤ p, and let m be an arbitrary positive
integer with m ≥ n+ p+ 1. Then there are an algebraic variety V in Rm and a blowing-
up Π :M→ Rm with an (m−n− 1)-dimensional centre such that Π|V ′∩E at some point
P ∈M is f .

Proof. Let the source space Rn of f be the (xm−n+1, . . . , xm)-space, and let

fj(xm−n+1, . . . , xm) =
∑

α

a(j)
α x

αm−n+1

m−n+1 · · ·xαmm , 1 ≤ j ≤ p,

where α = (αm−n+1, . . . , αm). Set |α| = αm−n+1 + . . . + αm, and let dj be the degree
of fj , 1 ≤ j ≤ p. Define gj : (Rn+1, 0)→ (R, 0), 1 ≤ j ≤ p, by

gj(xm−n, xm−n+1, . . . , xm) =
∑

α

a(j)
α x

dj−|α|
m−n x

αm−n+1

m−n+1 · · ·xαmm .

Then each gj is a homogeneous polynomial of degree dj .
Let k = max(d1, . . . , dp), and let x = (xm−n, xm−n+1, . . . , xm). Define F : (Rm, 0)→

(R, 0) by

F (x1, . . . , xm) = x
2(k−d1)
m−n

(
x1x

d1
m−n − g1(x)

)2
+ . . .+ x

2(k−dp)
m−n

(
xpx

dp
m−n − gp(x)

)2

+ x2k
m−n(x2

p+1 + . . .+ x2
m−n−1).
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Then V = F−1(0) is an algebraic variety in Rm of dimension greater than or equal to
m− n− 1.

Consider the blowing-up Π : M → Rm with centre C = {xm−n = . . . = xm = 0}.
Using a suitable chart U , we can express Π as follows:

x1 = u1, . . . , xm−n−1 = um−n−1,

xm−n = um−n, xm−n+1 = um−num−n+1, . . . , xm = um−num.

Then we have

F ◦Π(u1, . . . , um) = u2k
m−n{(u1 − f1(um−n+1, . . . , um))2 + . . .

+ (up − fp(um−n+1, . . . , um))2 + u2
p+1 + . . .+ u2

m−n−1}.
In U , the exceptional divisor E is {um−n = 0} and the strict transform V ′ of V by Π is

{u1 = f1(um−n+1, . . . , um), . . . , up = fp(um−n+1, . . . , um), up+1 = . . . = um−n−1 = 0}.
The strict transform is smooth in U and of dimension n+ 1. Since E is transverse to V ′,
V ′ ∩ E is a smooth submanifold of U and can be identified with the (um−n+1, . . . , um)-
space. Then in U , Π|V ′∩E : Rn → Rp × {(0, . . . , 0)} is given by

x1 = f1(um−n+1, . . . , um), . . . , xp = fp(um−n+1, . . . , um).

Thus we can regard Π|V ′∩E at 0 ∈ U as f .

Remark 7.4. In the proof of the assertion, while V ′ is smooth in U , it may have
singularities at ∞ outside U . Assume that dimV = n + 1 (= dimV ′) and dimC ≤ n.
Then, using the desingularisation theorem of Hironaka ([H-1]), we can desingularise V ′

without touching a neighbourhood of 0 ∈ V ′ ∩E ∩ U . Namely, we can get the statement
of the assertion for a desingularisation Π of V not just a blowing-up Π of Rm.

In the case of Fukui’s observation, n = 3, p = 2, m = n+p+1 = 6, dimV = n+1 = 4,
and dimC = 2. It satisfies our assumption.

Concerning Fukui’s observation and the remark above, we have the following natural
problem:

Problem 2. Let f = (f1, . . . , fp) : (Rn, 0)→ (Rp, 0) be a polynomial mapping such
that fj is not identically zero for 1 ≤ j ≤ p. Are there an algebraic variety V in some
Euclidean space Rm and a desingularisation Π :M→ Rm of V in Rm such that Π|V ′∩E
at some point P ∈M is f? Here V ′ is the strict transform of V by Π and E is the union
of exceptional divisors.

From the construction of F in Assertion 7.3 and Remark 7.4, it follows that the answer
to Problem 2 is yes in the function case that is p = 1.

Supplement. The Briançon-Speder family {ft} ([BS]) is well-known as an example
that even in the complex case topological triviality does not always imply the Whit-
ney (b)-regularity. In the real case the family of weighted homogeneous polynomial
function-germs with isolated singularities admits a blow-analytic trivialisation (T. Fukui
[F-1], T. Fukui and L. Paunescu [FP]), as conjectured by T.-C. Kuo. Therefore the real
Briançon-Speder family is blow-analytically trivial. On the other hand, I proved in [K-1]
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that the blow-analytic triviality does not preserve the tangency of analytic arcs in f−1
t (0).

As a result, blow-analytic equivalence for analytic function-germs does not always imply
Lipschitz one for analytic set-germs. Then, looking for stronger triviality than topolog-
ical one for the zero-sets of the real Briançon-Speder family, I introduced the notion of
Π-modified Nash triviality for a family of zero-sets of weighted homogeneous polynomial
mappings using a weighted double oriented blowing-up Π in the sense of H. Hironaka
[H-4], and proved that the family is Π-modified Nash trivial if the zero-sets have iso-
lated singularities ([K-2]). In the homogeneous case, the modified Nash triviality induces
a Blow-Nash triviality in our sense. Concerning the modified Nash triviality, we have
started to consider finiteness problems on Blow-Nash triviality for a family of Nash sets.
In a global meaning, our finiteness problems are, of course, deeply related to equisingu-
larity problems originated in O. Zariski [Z-1], [Z-2], [Z-3], [Z-4].

Acknowledgements. I wish to thank Karim Bekka, Toshizumi Fukui, Tzee-Char
Kuo, Tadeusz Mostowski and Adam Parusiński for helpful discussions about Asser-
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