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Abstract. Since the mid-nineties it has gradually become understood that the Cartan pro-

longation of rank 2 distributions is a key operation leading locally, when applied many times, to

all so-called Goursat distributions. That is those, whose derived flag of consecutive Lie squares

is a 1-flag (growing in ranks always by 1). We first observe that successive generalized Cartan

prolongations (gCp) of rank k+1 distributions lead locally to all special k-flags: rank k+1 dis-

tributions D with the derived flag F being a k-flag possessing a corank 1 involutive subflag

preserving the Lie square of F . (Note that 1-flags are always special.)

Secondly, we show that special k-flags are effectively nilpotentizable (or: weakly nilpotent)

in the sense that local polynomial pseudo-normal forms for such D resulting naturally from

sequences of gCp’s give local nilpotent bases for D. Moreover, the nilpotency orders of the

generated real Lie algebras can be explicitly computed by means of simple linear algebra (for

k = 1 this was done earlier in [M1], [M3]). For k = 2 we also transform our linear algebra

formulas into recursive ones that resemble a bit Jean’s formulas [Je] for nonholonomy degrees of

Goursat germs.

Additionally it is shown that, when all parameters appearing in a local form for a special

k-flag vanish, then such a distribution germ is also strongly nilpotent in the sense of [AGau]

and [M1].

1. Generalized Cartan prolongations. Through the work [BH], followed by [Je]

and [MonZ], it has become known that the Goursat distributions, that naturally generalize

Cartan distributions on the spaces of jets of functions R → R, and at the same time

bring in a rich pattern of singularities, are locally nothing more than the outcomes of so-

called Cartan prolongations [defined rigorously and very geometrically only fairly recently

in [BH] and, in a less constructive manner closer to the originating paper [Ca2], in [ShSl] ]
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when one departs from the tangent bundle to a 2-manifold. This helped a lot to get new

insights into Goursat distributions, their geometry and symmetries. The paper is devoted

to Cartan-like, but more general than in [BH], prolongations of distributions, and to

their applications: building more involved (having longer small and big growth vectors,

or higher nonholonomy degrees, for instance) distributions from simpler ones.

1.1. The basic (if homogeneous) example. We want to start from one important exam-

ple illustrating the substance of the paper—the Cartan distribution (or: contact system)

on the space of 1-jets of functions R(t) −→ R2(x, y). It is a rank 3 distribution E living

on M = R5(t, x, y, x1, y1), generated by the vector fields
( ∂
∂t

+ x1 ∂

∂x
+ y1 ∂

∂y
,
∂

∂x1
,
∂

∂y1

)
,(1)

where x1 (y1) can be regarded as dx/dt (dy/dt). This E is clearly ‘two step’ in the sense

that [E, E] = TM ; later this will be expressed by saying that the flag generated by E

‘has length one’. One is in the realm of [Ca1], p. 121. Any such two step E possesses (and,

at that, uniquely determined!) its corank 1 subdistribution F enjoying the property

[F, F ] ⊂ E.(2)

In [Ca1] that F was neatly defined by the Pfaffian equations (4) there (cf. also [GeVe]

and p. 5 in [KuRub]). Cartan calls such an accompanying subdistribution F le système

covariant of [the Pfaffian system] E. For the object (1), the covariant system is but

F =
(
∂/∂x1, ∂/∂y1

)
and is even involutive, not just satisfying (2).

To have that rank 2 distribution F involutive is very and very rare. This is situa-

tion (a) in [Ca1]; among other advantages, such F helps to describe all symmetries of E.

While typically the covariant object has its ‘curvature’ and allows to retrieve E in that

[F, F ] = E; this is situation (b) in [Ca1], extremely rich geometrically and investigated

much further in that seminal work. We will say that a general such E (i.e., no particulars

about the inclusion (2)) generates a 2-flag of length 1, while an E with its covariant

system F involutive will generate a special 2-flag of length 1. Later we will deal with flags

of, no wonder, bigger lengths, but they will likewise be only special—in the sense to be

defined (in Section 3.2), and not general.

Pursuing further the differences between (a) and (b), it is observed in [Ca1] (see

also a much posterior to it [GeVe]) that all E generating special 2-flags of length 1 are

locally equivalent to (1). This implies that special 2-flags of length 1 are homogeneous:

they look identically around any point, and hence feature no singularities at all; see also

Proposition 1 (i) below. (We note in parentheses that, this notwithstanding, their global

aspects, by far not evident, only start to attract researchers, [Ad2]. For 1-flags a similar

situation occurs in length 2, with locally existing only one ‘classical’ behaviour (or model)

of Engel 1889, and globally rich geometries being possible, started to be dealt with in

[Ge], [Mon], [Ad1], . . . .)

In the guise of a forerunner, we say also that (1) is the outcome of a single (generalized)

Cartan prolongation applied to the full tangent bundle to the manifold R3(t, x, y). Later

in the text we will see the results of several prolongations performed in row which will

often not be homogeneous—will feature singular behaviour(s) alongside with the generic
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one. Even two prolongations, one performed after the other, will turn out sufficient to

generate singularities, cf. Proposition 1 (iii).

1.2. The definition of the prolongation. We assume in the sequel that all discussed

objects are C∞ and propose a more general prolongation scheme than the one discussed

in [BH]—generalized (or: multi-dimensional) Cartan prolongation (gCp). Its main ap-

plication, spread over Sections 4–5, is the effective local (weak in the sense of [M1])

nilpotency of a quite rich family of objects related to and generalizing abstract Cartan

distributions (or: contact systems in a parallel terminology) appearing in the geometric

theory of ODEs (and, although not within the scope of the present paper, PDEs; see in

this respect [KLV] or [BCG+]). This extends considerably the range of known [weakly]

nilpotent distributions.

In short retrospection, among others, the papers [HeLuSul], [LaSus], and later

also [Mu], aroused interest in the search for nilpotent distributions and for possible un-

derlying structure theorems. Goursat distributions—quite particular subbundles of the

tangent bundle having the flag of consecutive Lie squares regular and growing in ranks

(slowly!) always by one—are among such objects. Nilpotent bases with (what is of key

importance for applications) precisely computed nilpotency orders(1) of the induced real

Lie algebras, were proposed in [M1].

In fact, those bases were first put forward in a much different context in [KuRui];

later they have been re-found by applying many times an important theorem, recalled in

Section 2 below as Theorem 1. In [BH], in a comment to that theorem we read: ‘Indeed

it is the basis of the proof of Goursat’s theorem.’

So what are: Cartan prolongation evoked in that theorem, and gCp needed for a new

theorem appearing in the next section of the present work? In the following definition,

excerpted from [BH], p. 4544−10, one obtains the definition of generalized Cartan prolon-

gation by simply replacing ‘rank 2’ by ‘rank k+1’, ‘2-dimensional’ by ‘(k+1)-dimensional’,

‘PR1’ by ‘PRk’, and ‘1-manifolds’ by ‘k-manifolds’ (another definition, more vague if prob-

ably better suited for applications in differential equations and control theory, is given

in [ShSl]). One more minor change is that later, having some further generalizations (still

in progress) in mind, we will write π : Gr(D, 1) −→M instead of π : PD −→M :

‘If D is a rank 2 distribution on a manifold M , then, regarding D as a vector bundle, we

can certainly define its projectivization π : PD −→ M , which is a bundle over M whose

typical fiber PDm is the space of 1-dimensional linear subspaces of the 2-dimensional

vector space Dm. Thus, the fibers of PD are isomorphic to PR1 as projective 1-manifolds.

There is a canonical rank 2 distribution D(1) on PD defined by setting D(1)
ξ = (π′)−1(ξ)

for each linear subspace ξ ⊂ Dm. The distribution D(1) is called the (first) prolongation

of D.’

Remark 1. Certain ingredients of this definition of gCp are dispersed in the litera-

ture, like for instance in [Y2], p. 34 or [BCG+], p. 148–9, or else [Gr], par. 4.1.C. Yet, to

our knowledge, they are always accompanied by so-called independence conditions forced

(1) i.e., minimal numbers of Lie multiplications in an algebra yielding automatically zero, cf.

p. 239 in [LaSus].
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by the impending applications to the geometry of PDEs, or by explicit conditions that the

directions ξ be not arbitrary (not vertical in certain sense, as on p. 346−8 in [Y2]) often

restricting a prolongation to the domain of just one affine chart. Or—in [Gr]—allowing

for different ‘charts’ (different submanifolds V ′0 in that work) in the first starting mani-

fold (V0), but then considering only jets of graphs of mappings in such an arbitrarily fixed

chart(2). While the essence of the singularities that are hidden in 1-flags, and more gen-

erally in special k-flags (defined later in Section 3.2), consists in arbitrary, also vertical,

positions of ξ being allowed . And allowed also many times either in row or intermittently,

etc. To support this comment, one sees for instance in the summary of the results of an

important work [Y1] (p. 110) that the canonical distributions Cr constructed there on

the jet bundles of functions Rn → R are regular in the sense of Tanaka [T]—have the

small growth vectors independent of points in the bundles. For 1-flags (n then should

be taken 1) it is precisely—see [KuRui], [Mu]—the simplest and generic situation sin-

gling out the geometry of the abstract Cartan distributions on spaces of jets of functions

R → R. That is, keeping singularities at bay by singling out, at all prolongation steps,

only non-vertical directions.

Acknowledgments. We wish to express our gratitude to Antonio Kumpera who

stressed the importance of multi-flags for underdetermined differential equations, sent us

in 1999 the first version of [KuRub], and with whom we discussed multi-flags on several

occasions, if only by correspondence.

2. Structural theorem. A sketch of the following theorem, attributed to Élie Car-

tan, is given in [BH] (and, to an extent, in [Sl] where, however, independence conditions

evoked in Remark 1 pervade the exposition). In its wording, and in the present text, too,

D1 means the Lie square [D, D] of a distribution D, and D2—the Lie square of D1. A fo-

liation F appearing in Theorem 1 is a classical object closely related to the hypothesis on

the deficient rank of D2 (4 instead of 5). Finally, for consistency reasons, we write s+ 1

instead of s+ 2 (and, consequently, Gr(D′, 1) instead of PD′).
Theorem 1 (Cartan-Bryant-Hsu). Let D be a rank 2 distribution on a manifold

Ms+1 and suppose that D1 and D2 have ranks 3 and 4, respectively. Furthermore, sup-

pose that there is a submersion f : M → N s with the property that the fibers of f are

the leaves of the canonical foliation F . Then there exists a unique rank 2 distribution D ′

on N with the property that D1 = f∗(D′) and, moreover, there exists a canonical smooth

map f (1) : M −→ Gr(D′, 1) which is a local diffeomorphism, which satisfies f = π ◦ f (1),

and which satisfies f
(1)
∗ D = (D′)(1).

(2) At one moment, p. 2421−4, Gromov steps out of the framework of integral manifolds V ′, of

[the Cartan distribution] Hr on the r-jets’ prolongation manifold V r, projecting diffeomorphi-

cally onto some submanifold V ′0 ⊂ V0. For V ′ ⊂ V r projecting badly he proposes to keep track

of ‘how badly’ by looking at [certain] s-th jets of V ′ that are represented by points in V r+s. And

fears complications from possible singularities of V r+s at points of V r+s\V r+s. In our approach,

that is to say, only for dimV ′0 = 1, the manifolds V r do have smooth closures—just towers of

projective spaces’ bundles over V0. Yet the distributions Hr, when extended to those closures

(as regular constant rank objects), start to feature pertinent to them, if covered, singularities.
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This theorem has wide applications, and most specifically to Goursat flags (see Re-

mark 3 in Section 3 below). Our objective is to formulate a local structural theorem

generalizing Cartan’s theorem and having even wider applications. The assumptions in

Theorem 1 can be rephrased , avoiding mentioning D2 and placing the foliation F in a

new context. In fact, these assumptions easily imply that there exists a (unique, besides)

line subdistribution E of D preserving D1, [E, D1] ⊂ D1. The foliation F is the integral

of E(3). Motivated by gCp’s constructed in Section 1 (hence, eventually by the semi-

nal [BH]) and, to an extent, by the works [KuRub] and [PR], we are going to replace a

line subdistribution of a rank 2 distribution by an involutive rank k subdistribution of a

rank k+1 one (that is, by its corank 1 involutive subdistribution).

Theorem 2. Suppose D is a rank k+1 distribution on a manifold M s+k such that

a) D1 is a rank 2k + 1 distribution on M,

b) there exists a corank 1 involutive subdistribution E ⊂ D that preserves D1,

[E, D1] ⊂ D1.

Then locally D is equivalent to the generalized Cartan prolongation
(
D1/E

)(1)
of D1

reduced modulo E (that lives on the quotient manifold M/F of dimension s, where F is

the local k-dimensional foliation in M defined by E).

Attention. M/F is to be understood only locally, to avoid topological complications.

Note that dimM = 2k + 1, i.e., s = k + 1 is not excluded in this theorem.

Proof. We work all the time locally around an arbitrarily chosen point p ∈M and use

a notation nearly identical to those appearing in [BH], Section 4.2. A far reaching affinity

of proofs should facilitate the comparison of the two theorems.

The (smooth) projection mapping f : M −→ N = M/F serves to define D′ = f∗D1.

By the assumptions on E, this is a well defined rank k+1 distribution on N (‘D1 descends

to N ’ in the language of [Mon]). Then π : Gr(D′, 1) −→ N is as in the definition of gCp,

and a smooth mapping between manifolds of the same dimension,

f (1) : (M,p) −→
(
Gr(D′, 1), df(p)D(p)

)
,

is defined by

f (1)(q) = df(q)D(q).(3)

So f (1)(q) is a line in the (k+1)-dimensional space D′(f(q)). From definition (3) it follows

directly that

π ◦ f (1) = f.(4)

The theorem will be proved upon showing that f (1) is a local diffeo sending D to (D′)(1).

We will first explain that df (1)(p) is an isomorphism. Clearly, since f is a submersion, in

view of (4),

im df (1)(p) contains an s-dimensional subspace transverse to ker dπ(f (1))(p).(5)

A more difficult question is whether the image of df (1)(p) contains that kernel. Indeed,

(3) These objects were discovered many decades ago in [Ca2], then were often rediscovered and

recently given new (and surprising) interpretations in [BH] and [Z].
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Lemma 1. ker dπ(f (1)(p)) is included in im df (1)(p).

Proof of the lemma. This key part is technically more involved than in [BH] because

the projective spaces being the fibers are now k-dimensional instead of 1-dimensional.

Maybe not surprisingly, arguments are clearer in local coordinates. Also, the necessary

geometric constructions are easier to describe in properly chosen coordinates.

Take a local basis of E of pairwise commuting vector fields v1, . . . , vk, and intro-

duce local ‘Frobenius’ coordinates x1, . . . , xk, xk+1, . . . , xk+s, say centered at p, such that

vi = ∂i, where (here and in the sequel) we use the shorthand notation ∂i = ∂/∂xi.

Visualise further by putting N = {x1 = . . . = xk = 0} ⊂M = Rk+s. Put also

Ni = {x1 = . . . = xi−1 = xi+1 = . . . = xk = 0}
and

Ni,ε = {x1 = . . . = xi−1 = xi − ε = xi+1 = . . . = xk = 0}.
Then the intersections

D ∩ TN, D ∩ TNi,ε, i = 1, . . . , k,(6)

are fields of lines on N , Ni,ε respectively (they are at least one-dimensional as the sums

of dimensions of factors are k + s + 1, and E, of corank 1 in D, is transverse to TN ,

TNi,ε). Let L be any smooth vector field, with values in D and everywhere independent

of v1, . . . , vk, spanning the fields of lines (6). Clearly, such an L (and even its direction,

when k > 1) is not defined uniquely.

By the hypotheses made on E andD1, the vector fields L, v1, . . . , vk, [L, v1], . . . , [L, vk]

form a local basis of D1. In these coordinates

f(x1, . . . , xk, xk+1, . . . , xk+s) = (0, . . . , 0, xk+1, . . . , xk+s).

Define fi = f |Ni . For q ∈ Ni, dfi(q)L(q) is a non-zero vector included in df(q)D(q) =

f (1)(q). Hence

f (1)(q) = span
(
dfi(q)L(q)

)
for q ∈ Ni, i = 1, . . . , k.

Now it is visible how the line f (1)(q) rotates inside D′(f(p)) when q approaches p along

the integral line of vi through p. According to the fisherman derivative’ definition of the

Lie bracket watched—it is important—in these special coordinates,

d

dt
dfi(p+ tvi)L(p+ tvi)

∣∣∣
t=0

= [L, vi](p).(7)

Attention. The mapping fi is not, naturally, the time −t flow of vi, but, in (7), dfi acts

on L exactly as that flow does.

The vectors on the right hand side of (7) sit in TpN , as all fi take values in N , and—we

recall—are linearly independent. (Saying differently, the (k+ 1)-dimensional space D′(p)
is spanned by the vectors L, [L, v1], . . . , [L, vk] at p.) Therefore, the evolutions of the lines

f (1)(q) inside the space D′(p), when q approaches p in the directions of v1, . . . , vk—are all

differentially independent. If we see these lines as points in Gr(D′, 1)(f(p)), the velocities

of the relevant curves in that projective space, naturally sitting in im df (1)(p), are also

linearly independent.
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On the other hand, all these k curves are mapped by π to a single point f(p). Thus

their velocities sit in ker dπ(f (1)(p)) which is exactly of dimension k. Being independent,

they span that space.

The lemma is now proved.

The information (5) together with Lemma 1 yield that df (1)(p) is a linear surjection

between two spaces of the same dimension k+s, hence is an isomorphism. Thus (remember

that the proof goes for any point p fixed in M)

f (1) is a local diffeomorphism in a neighborhood of p ∈M.(8)

Now we will explain that

df (1)(p) carries D(p) to D′
(1)

(f (1)(p)).(9)

Due to the equality of dimensions, it suffices to show that

df (1)(p)D(p) ⊂ D′ (1)
(f (1)(p)),(10)

that is (see the definition of gCp in Section 1), that

df (1)(p)D(p) ⊂
(
dπ(f (1)(p))

)−1
f (1)(p).(11)

The right hand side in (11) is equal to
(
dπ(f (1)(p))

)−1
df(p)D(p) =

(
dπ(f (1)(p))

)−1
dπ(f (1)(p))df (1)(p)D(p) ⊃ df (1)(p)D(p),

because df (1)(p)D(p) is clearly included in the domain of dπ(f (1)(p))—the latter being

the whole tangent space to Gr(D′, 1) at f (1)(p). So (9) holds. With (8) and (9) justified,

Theorem 2 is proved.

3. Special k-flags and extended Kumpera-Ruiz pseudo-normal forms for

them. Before the precise definition we want to give certain motivation. Exactly as 1-flags

(starting, to avoid redundancy, from a rank 2 object, cf. for instance [MonZ], p. 462) take

the main property of Cartan distributions on the jet spaces of functions R→ R as their

only defining property—see an extensive discussion of that in [Ku], likewise special k-flags

(starting from a rank k+1 object to avoid redundancy) will borrow only similar two main

properties of Cartan distributions on the jet spaces of functions R→ Rk as their defining

properties. For 1-flags, we mean

a) the regular big growth vector being [2, 3, 4, . . . ],

and, formally, also

b) the presence of a corank 1 involutive subflag preserving the (Lie) square of the

original flag(4).

For special k-flags, we mean

i) the big growth vector being everywhere [k + 1, 2k + 1, 3k + 1, . . . ] (a distribution

generates a k-flag),

(4) The Cauchy-characteristic subflag of a Goursat flag F , accompanied by one more involu-

tive distribution sitting in the corank 1 member of F (and not uniquely defined), does enjoy b).

So, only for 1-flags, this b) does not add any new condition. We write it down to have later a

uniform definition for all values of k, and just to notice that 1-flags are automatically special.
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ii) the presence of a corank 1 involutive subflag preserving the square of the

original flag.

These two conditions together lead to a rich but still tractable world of objects,

with local pseudo-normal forms with plenty of real parameters. The condition i) alone

is very vast, and even the short vector [3, 5] (k = 2, flag’s length 1) hides really wild,

not well understood geometries with a functional module in the local classification (firstly

rigorously evidenced in [JaPrz]). Distributions having this growth vector were extensively

investigated by É. Cartan in his famous ‘cinq variables’ paper [Ca1]; cf. also Section 1.1.

The condition ii) is, to the contrary, very restrictive, perfectly balancing i).

3.1. Terminological note. It is to be pointed out that ‘Cartan distributions’ in the

prevailing terminology of [KLV], are also called ‘canonical (differential) systems on jet

bundles’: in [Y1]—for the jets of one function of many variables, and in [Y2]—in the

general case of several functions of many variables. When the jets of k functions of just

one variable are concerned, Kumpera and Rubin say in [KuRub] about ‘k-flags satisfying

normality conditions’, while those distributions are called ‘regular contact systems for

curves’ in [PR].

As regards special k-flags generalizing the latter, in [PR] they are (somehow mis-

leadingly) called ‘contact [regular or singular] systems for curves’. In the optics of the

present paper (and, ultimately, [BH]), the verticality of lines ξ, allowed in the definition

in Section 1 at each prolongation step, goes well beyond the contact context, enrich-

ing enormously possible geometries of distributions—that can be so prolonged many

times, sometimes intermittently with contact (i.e., non-vertical) prolongations. See also

Remark 1 above.

Now we give the precise definition.

3.2. The definition of a special k-flag. A distribution D of rank k+1 on a manifold M

of dimension (r+1)k+1 generates a special k-flag of length r, r ≥ 1, when its consecutive

Lie squares

D = Dk+1 ⊂ D2k+1 ⊂ . . . ⊂ Drk+1 ⊂ D(r+1)k+1 = TM(12)

are all regular distributions of the respective ranks written as superscripts in (12) (this

is i)) and when there exists a subflag of involutive distributions

Ek ⊂ E2k ⊂ . . . ⊂ Erk

of ranks written also as superindices, such that Ejk ⊂ Djk+1 for j = 1, . . . , r, and Ejk

preserves D(j+1)k+1, [Ejk, D(j+1)k+1] ⊂ D(j+1)k+1 for j = 1, . . . , r − 1 (this is ii)).

It is useful to write down the diagram of inclusions that are assumed to hold in this

basic definition:

Dk+1 ⊂ D2k+1 ⊂ . . . ⊂ D(r−1)k+1 ⊂ Drk+1 ⊂ D(r+1)k+1 = TM

∪ ∪ ∪ ∪
Ek ⊂ E2k ⊂ . . . ⊂ E(r−1)k ⊂ Erk

Remark 2. In the work [PR] the definition of contact systems (for curves, cf. Sec-

tion 3.1) is weaker, replacing ii) by only the existence of corank 1 involutive subdistri-
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butions Ejk ⊂ Djk+1, j = 1, . . . , r. Yet we are going to show in this section (Proposi-

tion 1 (iv) and Corollary 1) that our formally more restrictive definition yields strictly

more, not less, objects than produced in [PR]. Note, therefore, that the inferential schemes

in [PR], and specifically in Theorem 2.3 there, must be flawed.

On the other hand, one can quickly show that Erk, the biggest among involutive dis-

tributions stipulated in our definition, is unique. It can be done via answering a (recent)

question of Zhitomirskii: given a two-step distribution D on M , [D, D] = TM , possess-

ing a corank one involutive subdistribution E ⊂ D, is it true that E is the covariant

subdistribution of D, in the precise sense of [KuRub], p. 5 ?

The answer is yes, provided corkD > 1, and inside E there sits then the Cauchy

characteristic distribution L(D) of D, having the rank

rkL(D) = rkE − corkD.(13)

(For D of corank 1 the covariant object D̂ is smaller—it coincides with L(D) that still

sits in E, relation (13) keeps holding, but E in the question is not unique.) In the setting

of special k-flags, corkDrk+1 = k > 1, hence Erk = D̂rk+1, the covariant subdistribution

of Drk+1. Cf. also Section 1.1.

3.3. Theorem 2 produces extended Kumpera-Ruiz pseudo-normal forms for special

k-flags. We will produce a huge variety of polynomially written germs at 0 ∈ RN , N pos-

sibly very large and always 1 (mod k), of rank k+1 distributions. Often certain variables

x will appear in them in a ‘shifted’ form X = c+ x. And always a capital letter X, typi-

cally with indices, will mean such a shifted variable, not excluding, incidentally, the value

c = 0. For each m ∈ {1, 2, . . . , k + 1} we are going to define an operation m producing

new rank k+1 distributions from older ones. The technical writing of its outcome, not

operation’s formal definition, will depend on how many operations were done before m.

More specifically, the outcome of m being performed as operation number l on a

distribution (Z1, . . . , Zk+1) defined in the vicinity of 0 ∈ Rs(y1, . . . , ys) is a new rank k+1

distribution defined in the vicinity of 0 ∈ Rs+k(y1, . . . , ys, x
l
1, . . . , x

l
k), generated by the

vector field

Z ′1 = xl1Z1 + . . .+ xlm−1Zm−1 + Zm +X l
mZm+1 + . . .+X l

kZk+1

and by Z ′2 = ∂/∂xl1, . . . , Z
′
k+1 = ∂/∂xlk. It is important that these local generators are

written precisely in this order, yielding together a new longer object (Z ′1, Z
′
2, . . . , Z

′
k+1).

For instance, when m = 1, the sum Z ′1 starts with Z1 and all new incoming variables

in Z ′1 are shifted. When m = k+ 1, the sum Z ′1 ends with Zk+1 and all new variables are

bare (with no shifting constants).

Extended Kumpera-Ruiz pseudo-normal forms (EKR for short)(5), of length r ≥ 1,

denoted by j1. j2 . . . jr, where j1, . . . , jr ∈ {1, 2, . . . , k+ 1}, are defined inductively, start-

ing from the empty label distribution

(
∂0, ∂1, . . . , ∂k

)
=
( ∂
∂t
,
∂

∂x0
1

, . . . ,
∂

∂x0
k

)

(5) The name borrowed from [PR], but meaning here much more geometrically different objects

than in that work, cf. Proposition 1 and Corollary 1.
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in the vicinity of 0 ∈ Rk+1(t, x0
1, . . . , x

0
k). Then, if we assume that j1 . . . jr−1 is already

known, j1 . . . jr−1. jr is the outcome of the operation jr performed as the operation

number r over the distribution j1 . . . jr−1.

The reader probably feels already that the operations 1, 2, . . . , k+1 are certain pro-

longations. In fact, they are just different gCp’s viewed in possible different affine charts

on the Grassmanians used in the gCp procedure. This will be explained in details in

the proof of Theorem 3 below. When k = 1, the two operations 1 and 2 applied inter-

weavingly lead to the well-known local Kumpera-Ruiz pseudo-normal forms, [KuRui], for

Goursat flags (to be precise: in certain raw, not polished form, cf. Proposition 1 below in

this respect).

For a moment, it is nearly directly visible that every EKR is a special k-flag of length

equal to the number of operations used to produce it (and equal to the length of the

relevant word encoding the sequence of operations). In particular, it is easy to guess

what are, for any EKR of length r, the involutive subdistributions of ranks k, 2k, . . . , rk.

The gist of the matter is that locally the converse is also true, and we have

Theorem 3. Let a rank k+1 distribution D generate a special k-flag, k ≥ 1, of length

r ≥ 1 on a manifold M (r+1)k+1. For every point p ∈ M , D in a neighborhood of p is

equivalent, by a local diffeomorphism that sends p to 0, to a certain EKR j1. j2 . . . jr in a

neighborhood of 0 ∈ R(r+1)k+1. Moreover, that EKR can be taken such that j1 = 1 and,

for l = 1, . . . , r − 1, if jl+1 > max(j1, . . . , jl), then jl+1 = 1 + max(j1, . . . , jl) (the rule

of the least possible new jumps upwards in the words j1. j2 . . . jr).

Note, however, that possible constants in such an EKR representing a given germ D

are not, in general, defined uniquely. On the other hand, we do not yet know if a given

distribution germ determines uniquely—its proper?—sequence of operations j1, . . . , jr
satisfying the rule of the least upward jumps(6). It certainly does when k = 1, see

Proposition 1 (ii).

Proof. The proof is by induction on r, starting from r = 0 (not mentioned in theorem’s

wording) where the empty word EKR (∂0, ∂1, . . . , ∂k) given in the vicinity of 0 ∈ Rk+1,

is, naturally, a local model for the full tangent bundle to a (k+ 1)-dimensional manifold.

In the sequel we consistently use the notation introduced in Section 3.2.

Let us assume the fact under proof for a value r−1 ≥ 0 (as remarked, in the beginning

of induction for r − 1 = 0 we have from the outset all the necessary information), take

a distribution Dk+1 generating a special k-flag of length r together with its involutive

subdistribution Ek, and apply to them Theorem 2. Then, watching the proof of that

theorem, (Dk+1, p) is equivalent to the generalized Cartan prolongation
((
D2k+1/Ek

)(1)
,
(
df(p)Dk+1(p), f(p)

))
,(14)

where f stands for the local submersion—passing to the quotient objects modulo Ek and

its k-dimensional foliation F . Since Ek preserves D2k+1, it preserves also all members

of the flag of D2k+1. Also it preserves the involutive distributions E2k, . . . , Erk (being

(6) Added in proof: yes, it does; in [M4] we construct such a sequence and call it the singularity

class of a special k-flag at a point.
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their involutive subdistribution). Therefore, D2k+1/Ek is a special k-flag of length r − 1

on the quotient manifold M/F of dimension rk + 1 (well defined locally around p ∈ M ,

considered locally around its point f(p)). By the inductive assumption, there exists a

local diffeomorphism ψ : (M/F , f(p)) −→ (Rrk+1, 0) such that

ψ∗
(
D2k+1/Ek

)
is an EKR j1 . . . jr−1 = (Z1, . . . , Zk+1) on (Rrk+1, 0)(15)

satisfying the rule of the least upward jumps (recall that for r = 1, in (15) there stands an

‘empty’ EKR—the full tangent bundle to Rk+1). This says, among others, that ψ∗ sends

the line directions in D2k+1/Ek to directions in (Z1, . . . , Zk+1) inducing the mapping

prolongation

ψ• : Gr
(
D2k+1/Ek, 1

)
−→ Gr

(
(Z1, . . . , Zk+1), 1

)

of ψ, being a local diffeomorphism of these Grassmannian bundles. (Recalling, we are

interested in ψ• in a neighborhood of the line df(p)Dk+1(p) at f(p).) Moreover, and this

is a general easily verifiable fact, this mapping prolongation sends the gCp’s one to the

other,

ψ•∗ :
(
D2k+1/Ek

)(1) −→ (Z1, . . . , Zk+1)(1).(16)

(The prolongation of a conjugating diffeo locally conjugates the relevant gCp’s. For k = 1,

see also Appendix in [M2] in this respect.) Returning to (15), the line df(p)Dk+1(p) is

sent by dψ(f(p)) to a line

span(Zj + cjZj+1 + . . .+ ckZk+1)(0),(17)

and 1 ≤ j ≤ k + 1 is uniquely defined. This integer j decides what prolongation op-

eration is bound to be performed over j1 . . . jr−1 (one will instantly see that it is the

operation j). What remains to be done in the proof is: firstly, to explicitly write down

the gCp (Z1, . . . , Zk+1)(1) in the vicinity of the line (17), and to identify it as a, longer,

EKR. And secondly, to take care that the eventual EKR constructed satisfies the rule of

the least upward jumps.

By introducing new ‘angle affine’ coordinates xr1, . . . , x
r
j−1, Xr

j = cj + xrj , . . . , X
r
k =

ck + xrk, one can parametrize all the line directions in (Z1, . . . , Zk+1) being close to the

direction (17) by k free, floating around 0, parameters (xr1, . . . , x
r
k) ∈ Rk. To have a gCp,

one has to add to the current direction the whole kernel ker dπ of the differential of the

projection π : Gr
(
(Z1, . . . , Zk+1), 1

)
−→ Rrk+1. That is to say, add the versors of the

new angle coordinates. In this way, in the vicinity of the line (17), (Z1, . . . , Zk+1)(1) is

equal to
(
xr1Z1 + . . .+ xrj−1Zj−1 + Zj +Xr

jZj+1 + . . .+Xr
kZk+1 ,

∂

∂xr1
, . . . ,

∂

∂xrk

)
.(18)

This, indeed, is an EKR j1 . . . jr−1. j understood in the vicinity of 0 ∈ Rrk+1+k. Thus

Dk+1 is locally equivalent to the distribution (14) which is equivalent—see (16)—to a

distribution identified as a j1 . . . jr−1. j. Now we pass to the least upward jumps rule.

When r = 1, it is easy to see that the obtained j is equivalent to certain 1: if j > 1

then there does to cyclicly change the first j coordinates t→ x0
1 → x0

2 → . . .→ x0
j−1 → t
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(and keep the remaining ones untouched). This change replaces the first generator in

our j,

x1
1

∂

∂t
+ x1

2

∂

∂x0
1

+ . . .+ x1
j−1

∂

∂x0
j−2

+
∂

∂x0
j−1

+X1
j

∂

∂x0
j

+ . . . ,

by the first generator in a 1,

x1
1

∂

∂x0
1

+ x1
2

∂

∂x0
2

+ . . .+ x1
j−1

∂

∂x0
j−1

+
∂

∂t
+X1

j

∂

∂x0
j

+ . . . .

When r > 1 and j > 1 + m = 1 + max(j1, . . . , jr−1), then one argues in a similar way

that the obtained EKR j1 . . . jr−1. j is equivalent to certain j1 . . . jr−1.m+1 (satisfying

the least upward rule by the inductive assumption).

Indeed, begin with a cyclic change of coordinates xr−1
m → xr−1

m+1 → . . . → xr−1
j−1 →

xr−1
m . Then the first vector field in (18),

xr1Z1 + . . .+ xrmZm + xrm+1Zm+1 + . . .+ xrj−1Zj−1 + Zj +Xr
jZj+1 + . . . ,

assumes the form

xr1 [Z1] + . . .+ xrmZm + xrm+1Zm+2 + . . .+ xrj−1Zj + Zm+1 +Xr
jZj+1 + . . . ,

where, as previously, Zl = ∂/∂xr−1
l−1 , l = 2, . . . , k + 1, and [Z1] is Z1 in the actual coordi-

nates. We are not yet done because [Z1] is not like in the EKRs construction. In fact, in

view of our basic underlying relation jr−1 ≤ m, the middle part of that vector field reads

[Z1] = . . .+Xr−1
m+1

∂

∂xr−2
m

+ . . .+Xr−1
j−1

∂

∂xr−2
j−2

+Xr−1
m

∂

∂xr−2
j−1

+ . . .

A simple remedy is to adjust the lower indices in the xr−2
∗ variables in this highlighted

part of [Z1] to these in the Xr−1
∗ variables. That is, to perform a subsequent (going

backwards with respect to the superscripts) change of coordinates, also cyclic xr−2
m →

xr−2
m+1 → . . .→ xr−2

j−1 → xr−2
m after which [Z1] assumes the form

. . .+Xr−1
m+1

∂

∂xr−2
m+1

+ . . .+Xr−1
j−1

∂

∂xr−2
j−1

+Xr−1
m

∂

∂xr−2
m

+ . . . .

And so on backwards, always taking into account (and profiting from the fact!) that

jl ≤ m, l = r − 1, r − 2, . . . , 1. The last, necessary for arriving again at an EKR, is

the cyclic change x0
m → x0

m+1 → . . . → x0
j−1 → x0

m. This terminates our bringing the

distribution germ Dk+1 to the (better) EKR form j1 . . . jr−1.m+1 satisfying the least

upward jumps rule. Theorem 3 is now proved by induction.

3.4. Examples of EKRs. A systematic theory of singularities of distributions generat-

ing special multi-flags remains to be developed (meaning geometric singularities assuredly

underlying the vast panoply of various EKRs constructed earlier in the present section;

see also footnote 6). Here we want but to state some first and basic properties of the

EKRs.

To begin with, note that, for k = 2, in the family of pseudo-normal forms 1 there sits

the distribution (1). Before continuing, let us recall one of principal tools in the entire

theory of geometric distributions, the small growth vector (s.gr.v.) of a distribution at

a point, in passing mentioned already in Remark 1. For a given distribution D, it is
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the sequence of linear dimensions, at a point in question, of the tower of modules (or:

sheaves) of vector fields D = V1 ⊂ V2 ⊂ V3 ⊂ . . . , with Vi+1 = Vi + [D, Vi], i = 1, 2, . . . .

For D completely nonholonomic (and such are, naturally, the distributions generating

special multi-flags) the s.gr.v.’s terminate, sooner or later in function of a point, by

the dimension of the underlying manifold. The length of that vector is then called the

nonholonomy degree of D at that point.

Proposition 1.

(i) Fix any k ≥ 1. All germs in 1. 1. . .1 (fixed length r) are equivalent regardless of

constants appearing in them. So appear the unique local models for Cartan distributions on

the spaces of r-jets of vector k-dimensional functions of one variable (or : curves in Rk).

For k = 1, thus we obtain so-called Goursat normal forms, or ‘chained systems’ still

actively used in geometric control theory.

(ii) For k = 1 (the Goursat case), the germs in 1. 1 and 1. 2 are all equivalent re-

gardless of constants (Engel’s theorem of 1889), but later, at places number 3, 4, . . . , r

in the encoding words, the alternatives 1 or 2 always create geometrically different ob-

jects, representing and leading to 2r−2 Kumpera-Ruiz classes of Goursat germs in the

terminology of [MonZ] (p. 466)(7).

(iii) For k ≥ 2, 1. 1 and 1. 2 are already different and disjoint (there is no Engel’s

theorem for multi-flags).

(iv) The first situation when the operation 3 brings in essentially new EKRs is 1. 2. 3.

If we speak for simplicity for k = 2, these distribution germs have at 0 ∈ R9 the small

growth vector [3, 5, 6, 7, 7, 8, 9] which does not appear among the s.gr.v.’s at 0 of the

EKRs of length 3 produced only via the operations 1 and 2.

Proof. Two first items are classical (by subtracting a vector polynomial, the r-jet at 0

of any given mapping R→ Rk can be assumed zero). Before proving the two last items, we

want to bring in two examples of families of distributions, already in extended Kumpera-

Ruiz form, generating special 2-flags of length 3. By writing the starting variables t, x0
1, x

0
2

as t, x1, y1 and then xj+1, yj+1 instead of xj1, x
j
2 for j = 1, 2, 3, the germs in 1. 1. 2 can,

with no loss of generality, be presented as(
x4

( ∂
∂t

+ x2
∂

∂x1
+ y2

∂

∂y1
+ x3

∂

∂x2
+ y3

∂

∂y2

)
+

∂

∂x3
+ Y4

∂

∂y3
,
∂

∂x4
,
∂

∂y4

)

(with no constants standing by x2, y2, x3, y3, precisely in view of Proposition 1 (i) ). And

here is the family of distribution germs 1. 2. 2, after a similar simplification:(
x4

(
x3

( ∂
∂t

+ x2
∂

∂x1
+ y2

∂

∂y1

)
+

∂

∂x2
+ Y3

∂

∂y2

)
+

∂

∂x3
+ Y4

∂

∂y3
,
∂

∂x4
,
∂

∂y4

)
.

Part (iii): All germs in 1. 1 have everywhere, hence also at 0 ∈ R3k+1, the s.gr.v. [k+1,

2k + 1, 3k + 1] coinciding with the big one, while a short calculus shows that the germs

(7) The question of true significance of constants in the EKRs is enormously involved

already in the Goursat case, to quote for instance [KuRui], [Gas], [ChMPR], [MonZ], [M2] (this

list is by far not exhaustive).
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in 1. 2 have at 0 the s.gr.v. [k + 1, 2k + 1, 2k + 2, 3k + 1] which, for k ≥ 2, is different

from the previous one.

Part (iv): The small growth vector at 0 ∈ R9 is:

[3, 5, 7, 9] for the germs in 1. 1. 1 ,

[3, 5, 7, 8, 9] and [3, 5, 7, 8, 8, 9] for those in 1. 2. 1 ,

[3, 5, 6, 7, 8, 9] for 1. 1. 2 ,

[3, 5, 6, 7, 8, 8, 9] for 1. 2. 2 .

Corollary 1. Regarding Theorem 3.2 in [PR], it is visible that, up to a reindexation

of coordinates, it produces only EKRs having codes built out of operations 1 and 2. Hence,

for k ≥ 2, that theorem does not give pseudo-normal forms for all germs of special k-flags.

(In Proposition 1 above the arguments are given only for k = 2, but the operation 3 is

essential for all k ≥ 2. In fact, for a given width k and starting from the length k+ 1, all

operations 1 through k+1 inclusively are necessary in the production of EKRs, see [M4].)

Remark 3. Another consequence of Theorem 2, modulo the arguments used already

in the proof of Theorem 3 above, is that, upon applying r times multi-dimensional Cartan

prolongation to the tangent bundle to a (k + 1)-dimensional manifold (for instance just

to Rk+1), one obtains a ‘Monster Special k-Flags Manifold’ (MSk FM) of dimension

(r + 1)k + 1 bearing a locally universal special k-flag. Such a universal object locally

models every special k-flag existing on ((r + 1)k + 1)-dimensional manifolds.

Concerning 1-flags (Goursat flags), a similar conclusion leading to ‘Monster Goursat

Manifolds’ (MGM) bearing locally universal Goursat flags can be drawn from Theorem 4.2

in [BH]; it is done independently in Section 5.4 in [MonZ].

(And, reiterating after Section 1, that same theorem virtually produces all local

Kumpera-Ruiz pseudo-normal forms for Goursat distributions—which served as the key

motivation for the present work.)

4. Nilpotent algebras in special k-flags and strong nilpotency at certain

places. Let us define a linear automorphism
←−
j of Rk+1 associated to any fixed operation

j ∈ {1, . . . , k+1}, by its values on a—fixed once for all—basis e1, . . . , ek+1 of Rk+1.

Namely, let
←−
j send: e1 7→ e1 +e2 + . . .+ek+1, e2 7→ e1, . . . , ej 7→ ej−1, ej+1 7→ ej+1, . . . ,

ek+1 7→ ek+1 (so that, naturally,
←−
1 sends e2 7→ e2, . . . , ek+1 7→ ek+1, and

←−−
k+1 sends

e2 7→ e1, . . . , ek+1 7→ ek). With this notation we have:

Theorem 4. Every rank k+1 distribution D generating a special k-flag of a length

r ≥ 1 is locally nilpotentizable (i.e., is locally weakly nilpotent in the sense of [M1])

and a local nilpotent basis around a point p is {Z1, . . . , Zk+1}, where (Z1, . . . , Zk+1) ∈
j1. j2 . . . jr issuing from Theorem 3 is an EKR form for D around p satisfying the least

upward jumps rule.

The nilpotency order of the real Lie algebra L( j1. j2 . . . jr)
def
= LR

(
Z1, . . . , Zk+1

)
is

equal to the component of ek+1 (i.e., the last one) in the vector
←−
j1
←−
j2 · · ·←−jr (e1 + . . . +

ek+1).

Moreover, if a germ of D at a certain point admits a local EKR form with no non-zero

constants, then that germ is also strongly nilpotent in the sense of [AGau] and [M1].
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Remark 4. The algebra L( j1. j2 . . . jr) appearing in this theorem is well defined.

Indeed, for two different EKRs (Z1, . . . , Zk+1) and (Z̃1, . . . , Z̃k+1) belonging to the same

EKR class j1. j2 . . . jr, it is easy to write down a simple translation in the space R(r+1)k+1

inducing an (inner) isomorphism of LR
(
Z1, . . . , Zk+1

)
and LR

(
Z̃1, . . . , Z̃k+1

)
, sending

every generator Zl to Z̃l, l = 1, . . . , k + 1. The translation vector has as components the

differences between the respective constants sitting in the fields Z1 and Z̃1 (and many

other components 0). Thus LR
(
Z1, . . . , Zk+1

)
and LR

(
Z̃1, . . . , Z̃k+1

)
are two identical

copies of one underlying Lie algebra [that turns out to be nilpotent by this very theorem].

In the light of (very recent) constructions [M4], all this is geometric and to any

distribution germ D generating a special k-flag there is associated such an algebra A. We

conjecture here, extending the partial results and conjectures of [M3], that A is always

minimal for D, in the sense of having the minimal nilpotency order among the Lie algebras

induced over R by all possible nilpotent bases for D.

It is also to be noted that when m = max(j1, . . . , jr) < k, then not only the last

component, but precisely k + 1−m last components in
←−
j1
←−
j2 · · ·←−jr (e1 + . . .+ ek+1) are

mutually equal and equal to the nilpotency order of L( j1. j2 . . . jr). This will be visible

in the proof.

Corollary 2. For distribution germs D as in the ‘Moreover’ part of Theorem 4 (for

k = 1 they are called ‘tangential’ in [M1]), one is able to effectively compute the degree

of nonholonomy of D, too. It is equal to the nilpotency order of the nilpotent Lie algebra

given by the nilpotent approximation of D, and in the discussed case that algebra is just

LR
(
Z1, . . . , Zk+1

)
. Hence the nonholonomy degree of such D equals the last component

in the vector
←−
j1
←−
j2 · · ·←−jr (e1 + . . .+ ek+1), too.

Still before proving Theorem 4, let us demonstrate how it works.

Example 1. Fix k = 2. The nilpotency order of the algebra L(1.1.2) is equal to 6,

because, computing in that fixed for ever basis e1, e2, e3, we obtain

←−
1
←−
1
←−
2




1

1

1


 =




1 0 0

1 1 0

1 0 1






1 0 0

1 1 0

1 0 1






1 1 0

1 0 0

1 0 1






1

1

1


 =




2

5

6


 .

Likewise, the nilpotency order of the algebra L(1.2.2) is equal to 7, because

←−
1
←−
2
←−
2




1

1

1


 =




1 0 0

1 1 0

1 0 1






1 1 0

1 0 0

1 0 1






1 1 0

1 0 0

1 0 1






1

1

1


 =




3

5

7


 .

Remark 5. For k = 1, the description of nilpotency orders of the EKRs given in

Theorem 4 allows to re-prove a part of Jean’s results [Je] on the nonholonomy degrees

of Goursat germs. A bridge to those results rests on certain simple algebraic identities

satisfied (for, we repeat, k = 1) by the operators
←−
1 and

←−
2 when applied to e1 + e2. The

details will be given elsewhere.

Proof of Theorem 4. The proof uses refinements of methods of [M1], [M3]. By Re-

mark 4, one can choose as handy an EKR in the class j1. j2 . . . jr as possible. Let us

choose, then, the uniquely defined EKR (Z1, . . . , Zk+1) ∈ j1. j2 . . . jr having all constants
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zero. (With such a choice, also minimized will be the work on the ‘Moreover’ part in the

theorem.)

We are going to associate weights w(·) to all coordinates t, x0
1, . . . , x

r
k, and to basic

vector fields (versors) w(∂/∂x) = −w(x) in such a way that—under the classical definition

of the weight of a monomial vector field that goes back to the 1970s,

w
(
yi1yi2 · · · yis

∂

∂x

)
= w(yi1) + w(yi2) + . . .+ w(yis) + w

( ∂
∂x

)
(19)

—all Z1, Z2, . . . , Zk+1 will be homogeneous of degree −1, and all vector fields appearing

in the stepwise construction of the involved field Z1 will be homogeneous, of growing

degrees, as we go backwards in that construction. The manner of growth will highly

depend on the EKR class, and the nilpotency order will be a function of that growth.

In our situation without constants,

Z1 = xr1Z
r−1
1 + xr2

∂

∂xr−1
1

+ . . .

+ xrjr−1

∂

∂xr−1
jr−2

+
∂

∂xr−1
jr−1

+ xrjr
∂

∂xr−1
jr

+ . . .+ xrk
∂

∂xr−1
k

,

(20)

where the involved vector field from the one before last step is denoted by Zr−1
1 (and

there are no constants in it, too). Let us start by declaring w(Z1) = w(Z2) = . . . =

w(Zk+1) = −1, hence also w(xr1) = . . . = w(xrk) = 1. By writing w(Z1) = −1, we

stipulate that all summands in (20) are of weight −1. In particular, −1 = w(xr1 Z
r−1
1 ) =

w(xr1) + w(Zr−1
1 ) = 1 + w(Zr−1

1 ), which allows to compute the weight of Zr−1
1 , and to

proceed further. The particulars of the entire definition can be formulated inductively as

follows, understanding by Zr1 the starting vector field Z1.

Fix an arbitrary s such that 1 ≤ s ≤ r and assume that Zs1 is a homogeneous vector

field of known weight w(Zs1), and that the weights of the coordinates xs1, . . . , x
s
k are

already defined. Recall that

Zs1 = xs1Z
s−1
1 + xs2

∂

∂xs−1
1

+ . . .+ xsjs−1

∂

∂xs−1
js−2

+
∂

∂xs−1
js−1

+ xsjs
∂

∂xs−1
js

+ . . .+ xsk
∂

∂xs−1
k

.

By analyzing the consecutive summands on the right hand side, the homogeneity of Zs1
implies that

w(Zs−1
1 ) = w(Zs1) + w

( ∂

∂xs1

)
(21)

and that

w
( ∂

∂xs−1
l

)
= w(Zs1) + w

( ∂

∂xsl+1

)
for l = 1, . . . , js − 2,(22)

w
( ∂

∂xs−1
js−1

)
= w(Zs1),(23)

w
( ∂

∂xs−1
l

)
= w(Zs1) + w

( ∂

∂xsl

)
for l = js, . . . , k.(24)

In this way we define inductively the negative weights of all (r+1)k+1 versors, including

∂/∂t = Z0
1 , and the positive (opposite to the former) weights of all coordinates. Now
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denote by d the biggest weight of a coordinate, say x (there can be, sometimes, several

coordinates of the weight d).

The key property of weights defined by (19) is the additivity under Lie multiplication.

So the Lie products of any s factors from among {Z1, . . . , Zk+1} are homogeneous vector

fields of weight −s. In particular, products of more than d factors automatically vanish

(our vector monomials have only weights greater than or equal to −d). On the other

hand, D, generating a special flag, is completely non-holonomic. In particular ∂/∂x at

0 ∈ R(r+1)k+1 should be a combination of products of factors from among {Z1, . . . , Zk+1}
evaluated at 0.

In such a combination, let us reiterate, only products of at most d factors count,

while products of any e < d factors have the ∂/∂x components of the form P ∂/∂x,

P—a homogeneous polynomial of degree d − e > 0. Those P ’s are, naturally, polyno-

mials in shifted variables (denoted by capital letters) of the EKR in question. But in

the present EKR the variables are actually not shifted!—there are no constants shifting

them. In consequence, all such P ’s vanish at 0. In this way only products of exactly d

factors contribute in the production(s) of ∂/∂x at 0. This implies a [modest if cardinal]

information that certain product(s) of exactly d factors from among {Z1, . . . , Zk+1} is

(are) non-zero.

At this point we know, therefore, that LR
(
Z1, . . . , Zk+1

)
is a nilpotent Lie algebra of

nilpotency order d and also, as a byproduct, that the small flag of D, D = V1 ⊂ V2 ⊂
V3 ⊂ . . . ends (locally, as a germ) on its term Vd,

Vd = T R(r+1)k+1.(25)

How can we better visualise that value d ?

In what follows we are going to use the matrix notation for the operators
←−
j1 , . . . ,

←−
jr

being written in the mentioned fixed basis e1, . . . , ek+1 of Rk+1. Observe that the formulas

(21)–(24) can be most compactly expressed as
[
w(Zs−1

1 ), w
( ∂

∂xs−1
l

)
l=1,...,k

]T
is the value of

←−
js at

[
w(Zs1), w

( ∂

∂xsl

)
l=1,...,k

]T
.(26)

Hence, by making the composition over s = r, r − 1, . . . , 1,

[
w
( ∂
∂t

)
, w
( ∂

∂x0
l

)
l=1,...,k

]T

is the value of
←−
j1
←−
j2 · · ·←−jr at [−1, −1, . . . , −1]Tl=1,...,k.

(27)

Each Zs−1
1 (s ≥ 2) has as a component the bare versor ∂/∂xs−2

js−1−1, and Z0
1 simply

is ∂/∂t. Thus w(Zs−1
1 ) is a weight of a versor, and in (26) one set of versors’ weights is

transformed into another set of versors’ weights.

Fact. The lowest negative versor weight −d occurs among the components of the

vector on the left hand side of (27).

Proof. Passing (for the reader’s convenience) to the positive weights of variables, one

starts from the vector [1, 1, . . . , 1]T and notes that each
←−
j evaluated at any vector
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[a1, . . . , ak+1]T with all positive components,
←−
j [a1, a2, . . . , ak+1]T = [a1 + a2, . . . , a1 + aj , a1, a1 + aj+1, . . . , a1 + ak+1]T ,

has the maximum of components bigger than a1, a2, . . . , aj , aj+1, . . . , ak+1, hence bigger

than max(a1, . . . , ak+1).

It remains to explain why the last component, and possibly not only it, on the left

hand side of (27) is the biggest in modulus. Not surprisingly, the least upward jumps rule

satisfied by our EKR is responsible for that. In fact, for m = max(j1, . . . , jr), the last

k + 1 − m components of
←−
j1
←−
j2 · · ·←−jr [1, 1, . . . , 1]T are pairwise equal (we work in the

sequel with positive weights of variables only).

If m appears for the first time in the sequence j1, . . . , jr as jl = m, then the m-th

component of
←−
jl
←−−
jl+1 · · ·←−jr [1, 1, . . . , 1]T

is smaller than the components with numbers m + 1, . . . , k + 1, and this relation keeps

holding after applying each of the subsequent operators
←−−
jl−1, . . . ,

←−
j1 .

Now either m = 1 (in which case we are already done) or, by the least upward jumps

rule, the value m− 1 does appear in the sequence j1, . . . , jr, and so let it appear for the

first time as js = m− 1, s < l. Then the (m− 1)-th component in
←−
js · · ·←−jl · · ·←−jr [1, 1, . . . , 1]T

is smaller than the components with numbers m,m + 1, . . . , k + 1, and this relation

keeps holding after applying each of the subsequent operators (if there remains any)←−−
js−1, . . . ,

←−
j1 .

Thus at this point we know that, in the eventual outcome
←−
j1 · · ·←−jr [1, 1, . . . , 1]T , the

(m − 1)-th component is smaller than the m-th component which in turn is smaller

than the k + 1 −m last components that are pairwise equal. Then we proceed likewise

downwards, constantly using the least upward jumps property of j1. j2 . . . jr, obtaining

in the end that, in the vector
←−
j1 · · ·←−jr [1, 1, . . . , 1]T , the first component is smaller than

the second which is smaller than . . . which is smaller than the m-th which is smaller than

the k + 1−m last, mutually equal, components.

The ‘Moreover’ part in Theorem 4. Thanks to the choice of an EKR in the beginning,

we can work all the time with the same {Z1, . . . , Zk+1}. Divide the constructed weights

of coordinates t, x0
1, . . . , x

r
k into groups of equal values, the highest value being d: w1 =

w2 = . . . = wn1
= 1, n1 = k + 1 (it is clear that, on top of 1 = w(xr1) = . . . = w(xrk),

precisely one more variable xr−1
jr−1 has weight 1), wn1+1 = . . . = wn2

= 2, . . . , wnl−1+1 =

. . . = wnl = l, . . . , wnd−1+1 = . . . = wnd = d, where nd = (r + 1)k + 1.

Attention. In this definition it may often happen that a given integer l is not the value

of a weight, and then simply nl−1 = nl.

Proposition 2. [n1, n2, . . . , nd] is the small growth vector of D at 0 ∈ R(r+1)k+1.

Moreover, all members Vj of the small flag of D have at 0 the description

Vj(0) =
( ∂
∂x

, x : w(x) ≤ j
)
.(28)

That is to say, the coordinates t, x0
1, . . . , x

r
k are—for D—linearly adapted at 0.
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Proof. Vj is spanned by the products of at most j factors from {Z1, Z2, . . . , Zk+1}.
Such products are, as we already know, homogeneous of weights greater than or equal

to−j and, evaluated at 0, are combinations of bare versors (because there are no constants

in (Z1, . . . , Zk+1)). Those are, therefore, the versors of coordinates x such that w(x) ≤ j.
This means the inclusions · ⊂ · in (28). Clearly, for j = 1, with rkV1 = k + 1, there is

an equality in (28). Suppose that j is the smallest positive integer such that we have  
in (28). (In view of (25), assuredly j < d.) That is, that there exists a combination

∑

x:w(x)=j

ax
∂

∂x
/∈ Vj(0).(29)

Then

Vj+s(0) = span
(
Vj(0), certain combinations of

∂

∂x
, j < w(x) ≤ j + s

)

for = 1, 2, . . . . In particular, for s = d− j,

Vd(0) = span
(
Vj(0), certain combinations of

∂

∂x
, j < w(x) ≤ d

)
.

This together with (29) imply
∑
x:w(x)=j ax ∂/∂x /∈ Vd(0) which contradicts (25).

The description (28), now shown to hold, allows to compute the s.gr.v. of D at 0.

For j = 2, . . . , d, dimVj(0) = n1 + (n2 − n1) + . . . + (nj − nj−1) = nj . Proposition 2 is

proved.

Summarizing now, we see that our weights w(·) are modelled on the pattern estab-

lished by the s.gr.v. of D at 0. With this knowledge, Proposition 2 says precisely that the

coordinates in question are linearly adapted for D at 0 (cf., for instance, [AGamS], [Bel],

[M1]). In fact, they are even adapted.

This (last) part is standard, because, on the one side, ‘linear adaptedness’ implies that

the nonholonomic orders of these variables t, x0
1, . . . , x

r
k do not exceed their respective

weights wi ([Bel], p. 35), that is—do not exceed our weights w(·). And, on the other side,

any nonholonomic derivative of a variable x from this set, with respect to {Z1, . . . , Zk+1}
and of order l < w(x), is—by our weights’ construction—a homogeneous polynomial of

positive weight w(x)− l in the variables that are not shifted by constants, and vanishes

as such (cf. the earlier argument in this long proof that certain products of d factors from

among {Z1, . . . , Zk+1} do not vanish). Thus the nonholonomic orders and the weights

wi coincide, and the coordinates are indeed adapted.

Once found (any) set of adapted coordinates for a distribution around a point, one can

compute the nilpotent approximation of that distribution at that point. In the present

case all terms in Z1, and in Z2, . . . , Zk+1, too, are of degree (weight) −1, so that the

nilpotent approximation of D at 0 simply coincides with D. This exactly means ([AGau];

see also [M1], Definition 5) that the germ D is strongly nilpotent.

5. Algorithmic issues. The last issue is that of more algorithmic ways of computing

the nilpotency orders, not via bringing in the entire matrices of operators
←−
j required in

Theorem 4. For k = 1 this task has been carried out in [M1], [M3]. In the same vein, we

will announce here an answer for k = 2. It is less compact (if, we believe, optimal) than
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in the Goursat case. For k = 3 the answer, not given here, is still more involved than for

k = 2, and so on when k grows further. It is important that the computation keeps being

recursive, although the recurrence patterns become (by far) more involved.

So, from now on, we set k = 2 and use the letter C for codes of different EKRs.

Moreover, we denote by f(C) the nilpotency order of the Lie algebra L(C) issuing from

Theorem 4. A string of l same ciphers, like for instance a string of l 1’s, going in row in

a code will be written shortly as 1l. Thus 12.23 is the EKR 1.1.2.2.2, and so on. Here

are the recipes for computing the nilpotency orders of L(C) from Theorem 4.

Theorem 5. In the situation k = 2, for any EKR C satisfying the least upward

jumps rule (C = ∅ not excluded), the nilpotency order of the Lie algebra L(C) equals

f(C), where the function f(·) is defined recursively below. In this definition an ∗ stands

for any cipher from among {1,2,3}, while a •—it is important—stands only for 2 or 3.

(i) f(∅) = 1, f(1) = 2,

(ii) f(C. ∗ .1) = 2f(C. ∗)− f(C),

(iii) f(1l. 2) = 2l + 2, l = 1, 2, 3, . . . ,

(iv) f(C. ∗ . • .1l.2) = (2l+ 2)f(C. ∗ . •)− 2lf(C. ∗)− f(C) for any l = 0, 1, 2, . . . ,

(v) f(C. ∗. •.1l.3) = (2l+1)f(C. ∗. •)−(2l−1)f(C. ∗)+f(C) for any l = 0, 1, 2, . . . .

A proof of this theorem will appear, in a more general setting, in author’s subsequent

paper. It can be useful to compare right now the above recurrencies with those governing

the case k = 1 (Theorem 1 in [M1]). In the Goursat case the nilpotency orders g(·) satisfy

the relations

g(∅) = 1, g(1) = 2,

g(C. ∗ .1) = 2g(C. ∗)− g(C),

g(C. ∗ .2) = g(C. ∗) + g(C),

where an ∗ is for 1 or 2, and C starts on the left from 1. 1, cf. Proposition 1 (ii).

Example 2. In order to illustrate the algorithm, let us compute in two ways the

nilpotency order of L(13.2.3.1.2.12.3.2.14.3). Firstly, according to Theorem 4,

(←−
1
)3 ←−

2
←−
3
←−
1
←−
2
(←−

1
)2 ←−

3
←−
2
(←−

1
)4 ←−

3




1

1

1


 =




328

1128

1193


 ,

which implies that the order in question is 1193. Secondly, according to Theorem 5, one

proceeds stepwise, expanding progressively the code to the right:

f(13.2) = 2 · 3 + 2 = 8 by (iii),

f(13.2.3) = f(13.2) + f(13) + f(12) = 8 + 4 + 3 = 15 by (v), l = 0,

f(13.2.3.1.2) = 4f(13.2.3)− 2f(13.2)− f(13) = 4 · 15− 2 · 8− 4 = 40 by (iv), l = 1.

Additionally, f(13.2.3.1) = 2 · 15− 8 = 22 by (ii), and so

f(13.2.3.1.2.12.3) = 5f(13.2.3.1.2)− 3f(13.2.3.1) + f(13.2.3)

= 5 · 40− 3 · 22 + 15 = 149

by (v), l = 2. Additionally, f(13.2.3.1.2.1) = 2 · 40− 22 = 58 and f(13.2.3.1.2.12) =

2 · 58− 40 = 76 by (ii) again, and so
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f(13.2.3.1.2.12.3.2) = 2f(13.2.3.1.2.12.3)− f(13.2.3.1.2.1) = 2 · 149− 58 = 240

by (iv), l = 0. Eventually, by (v), l = 4,

f(13.2.3.1.2.12.3.2.14.3)

= 9f(13.2.3.1.2.12.3.2)− 7f(13.2.3.1.2.12.3) + f(13.2.3.1.2.12)

= 9 · 240− 7 · 149 + 76 = 1193,

as in the first way.
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