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Introduction. The motivation of this paper is a question of M. Gromov, communi-
cated by Lev Birbrair. We shall state it after giving, rather informally, a few definitions.

We shall work with the following classes of sets: A1 subanalytic, A2 semianalytic,
A3 semialgebraic, A4 complex analytic, A5 complex algebraic.

Usually we shall not distinguish between sets and their germs at a precised point.
Two subsets A,B ⊂ Rn are Lipschitz equivalent if there exists a bi-Lipschitz homeo-

morphism h : Rn −→ Rn such that h(A) = B.
Consider now a family of subsets of Rn, i.e. a commuting diagram

X ⊂ T × Rn
↓ ↓ π
T ⊂ Rm

,

where π is the standard projection (t, x) 7−→ t and X,T ∈ Ai, i = 1, . . . , 5. Let Xt =

π−1(t) ∩X be the fibre over t.
X is locally Lipschitz trivial over a subset T0 ⊂ T if for every point t0 ∈ T0 there

exists a neighbourhood U0 ⊂ T0 of t0 and a bi-Lipschitz homeomorphism h : π−1(U0) −→
U0 × Rn such that the diagram

π−1(U0)

##GGGGGGGGG
h // U0 × Rn

pr
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U0

commutes, h : π−1(U0) ∩X −→ U0 ×Xt0 and h is the identity over Xt0 .
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Thus h induces a Lipschitz equivalence between Xt0 and the fibre Xt over every point t
sufficiently close to t0 in T0.

Similar definitions can be given for germs at 0 of families of germs at 0 of subsets in
each class Ai.

It is known (see [6] for a review of the results) that if X −→ T is a family of germs
at 0 of subsets in any class Ai, then there exists a stratification of T with skeletons in
the same class such that the family X is locally Lipschitz trivial over every stratum.

Now we pass to curves in the base T .
In this paper a (parametrised subanalytic, abbreviated as s.an.) curve in a set A ⊂ Rn

is a germ at µ = 0 of a subanalytic map

p : [0, ε) −→ A

such that p(µ) ∈ A for µ > 0.
Let p(µ), q(µ) be two curves in the base T ; we take an interval [0, ε) such that both

of them are defined on it. We shall say that X is Lipschitz equivalent over p and q (or,
that p and q are L-equivalent relX) if there exists a mapping H : (0, ε)×Rn −→ Rn such
that:

1◦ H is continuous,

2◦ for every µ > 0, H(µ, ·) : (Rn, Xp(µ)) = (Rn, Xq(µ)) is a bi-Lipschitz homeomor-
phism and the Lipschitz constant of both H(µ, ·) and its inverse is independent of µ.

Let us restrict ourselves for a moment to semialgebraic sets and semialgebraic curves.
A curve p(µ) in the base T is of complexity at most N if its graph can be described (set
theoretically) by at most N polynomial equations and inequalities of degree at most N .

We can now state Gromov’s question: is the set of L-equivalence classes rel X of
curves of complexity at most N finite?

The answer to this question is affirmative.
This answer is an immediate corollary to two propositions which we shall now state;

they hold in the subanalytic and semialgebraic categories and constitute the main results
of the paper.

To state the first proposition we fix some notation. Let us write Rm = Rmt , the ambient
space of the base T , and Rn = Rnx , the ambient space of the fibres; by t or x we shall
denote points of Rmt or Rnx .

A stratification Z = {Zj} of some Euclidean space RN with skeletons Zj in any of
the classes Ai is a sequence of sets

RN ⊃ ZN−1 ⊃ ZN−2 ⊃ . . .
such that all Zj ∈ Ai and every

Z̊j = Zj \ Zj−1

is either empty or smooth j-dimensional; Zj are skeletons of Z and Z̊j strata (thus strata
are not assumed to be connected).

A stratification Z is compatible with a set if this set is a union of some connected
components of strata.
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A vector field v defined on a subset of RN is tangent to Z (or compatible with Z)
if for every x ∈ Z̊j , v(x) ∈ TxZ̊

j , provided that v(x) is defined. More generally, if
v depends on some parameters µ, then v is tangent (compatible) to Z if for every x ∈ Z̊j ,
v(µ, x) ∈ TxZ̊j , provided that v(µ, x) is defined.

The flow of a vector field v will be denoted by χvλ; λ is “time”.
Let us now return to the family X −→ T . To be slightly more general, suppose we are

given finitely many subsets Xs ⊂ X, also considered as families over T , with fibres Xs,t.
Assume that X, Xs, T ∈ Ai , i = 1, 3, 4, 5.

Let Bnx ⊂ Rnx be the closed unit ball. Assume that X, Xs are subsets of Bnx .

Proposition 1. There exists a stratification T = {T j} of Rmt , compatible with T ,
with skeletons in Ai, with the following property : for every Lipschitz vector field v on Rmt ,
tangent to T, and every stratum T̊ j, there exists a function

Hλ : T̊ j × Rnx −→ Rnx , λ ∈ [0, 1],

such that :

1◦ Hλ(t, x) is continuous with respect to all variables,

2◦ for every λ and t ∈ T̊ j

Hλ(t, ·) : Rnx −→ Rnx
is a bi-Lipschitz homeomorphism, and the Lipschitz constants of Hλ(t, ·) and its inverse
are independent of λ, t,

3◦ for every λ, t

Hλ(t, ·) : Xt −→ Xχv
λ

(t)

and, more generally,

Hλ(t, ·) : Xs,t −→ Xs,χv
λ

(t).

Remarks.

1◦ It is pleasant to consider the map

(λ, x) 7−→
(
χvλ(t), Hλ(t, x)

)

as a lifting of the isotopy λ 7−→ χvλ(t) of the point t; this lifting is thus bi-Lipschitz and
preserves fibres of X and Xs’s.

2◦ The Lipschitz constant of Hλ(t, ·) and its inverse depend only on X, Xs, T , T

and v.

3◦ In the sequel we shall need a slight generalisation of Proposition 1 to the case
of Lipschitz families of vector fields which depend continuously on one parameter µ (of
course one could treat in the same way the case of more parameters).

Definition. A Lipschitz family vµ of vector fields is a function vµ(x), continuous
with respect to all variables, Lipschitz with respect to x, with a Lipschitz constant inde-
pendent of µ.
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Proposition 1′. In the notation of Proposition 1, there exists a stratification T

of Rmt , compatible with T , with the following property : for every Lipschitz family vµ of
vector fields on Rmt , µ ∈ (0, ε), tangent to T, and every stratum T̊ j, there exists a function

Hµ,λ : T̊ j × Rnx −→ Rnx , λ ∈ [0, 1], µ ∈ (0, ε),

which depends continuously on all variables µ, λ, t, x and has all the properties of Propo-
sition 1; in particular the Lipschitz constant of Hµ,λ(t, ·) and its inverse are independent
of µ, λ, t.

Since the sets Xs present no difficulty, we shall simply omit them in the sequel.
The second problem that we shall study deals with the following situation. Suppose we

have two curves p = p(µ) and q = q(µ) in a stratum of some stratification of a space Rn.
We want to know when one of these curves, say p, can be “pushed” to the other one by
the flow of a Lipschitz family vµ of vector fields tangent to this stratification, i.e.

q(µ) = χ
vµ
1

(
p(µ)

)
for all µ > 0.

There is an obvious obstacle: orders of distances of p(µ) and q(µ) to skeletons of this
stratification must be the same.

Let us precise this point.
If p : [0, ε) −→ Rn is a curve and A ⊂ Rn a set in any class Ai, then, by Puiseux,

dist(p(µ), A) = cµγ + o(µγ)

for some c > 0, γ ∈ Q ∪ {∞}, γ ≥ 0. The exponent γ is the order of the distance from
p(µ) to A.

Now let q(µ) be another (s.an.) curve in Rn related to p(µ) by the formula

q(µ) = χ
vµ
1 (p(µ)),

where vµ is a Lipschitz family of vector fields which preserve A, i.e. for all µ and λ

χ
vµ
λ (A) ⊂ A.

Then, as we shall see in detail in Section 1.5, the distances of p(µ) and q(µ) to A are of
the same order.

In particular, if vµ is tangent to a stratification with skeletons in Ai, then the distances
of p(µ) and q(µ) to every skeleton are of the same order.

Definition. A subset A ⊂ Z̊j is Lipschitz homogeneous with respect to Z = {Zj}
(abbreviated as LHrel Z) if there exists an N with the following property: for every pair
p(µ), q(µ) of curves in A having the same orders of distances to all skeletons Zk, k < j,
there exists a sequence of curves in A:

p = p1, p2, . . . , pN = q

and N − 1 families v1,µ, . . . , vN−1,µ of Lipschitz vector fields on Rn, tangent to Z, such
that for all i = 1, . . . , N − 1

pi+1(µ) = χ
vi,µ
1 (pi(µ)).

Remark. We do not require vi,µ’s to preserve A.

Our second result is the following proposition.
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Proposition 2. Given any finite number of sets in Rn in any class Ai, i = 1, 3, there
exists a stratification Z = {Zj} of Rn, compatible with all of these sets, with skeletons Zj

in Ai, such that every stratum Z̊j is a finite union, not necessarily disjoint, of sets in Ai
which are LHrel Z:

Z̊j =
⋃
Ajβ , Ajβ are LHrel Z.

Corollary 1. Let X −→ T be a family as in Proposition 1′, X,T ∈ Ai, i = 1, 3.
Then there exists a stratification T of Rmt having both properties of Propositions 1′ and 2.

In fact, take any stratification of Rmt satisfying the conclusion of Proposition 1′; by
Proposition 2 we can refine it to get also the conclusion of Proposition 2.

Another Lipschitz homogeneity property of subanalytic sets will be given in Proposi-
tion 4; it will be used in the proof of Proposition 2.

We shall now show how the above corollary yields an answer to Gromov’s question.
LetX,T ∈ A3. Take a stratification T = {T j} of Rmt as in the corollary and decompose

every T̊ j

T̊ j =
⋃
Ajβ , Ajβ are LHrel T.

The space FN of all curves in T of complexity not greater than N is the union of the
spaces FNjβ of curves of complexity not greater than N in Ajβ . The bound of complexity
implies that there are only finitely many rationals which are orders of distances of curves
in FN to skeletons of T. In other words, if

γ̃ = (γ(0), γ(1), . . . , γ(m))

is any sequence of rationals and F
Njβγ̃

⊂ FNjβ the space of all curves in Ajβ having γ(k)

(for every k < j) as the order of distance to T k, then, for only finitely many γ̃, F
Njβγ̃

6= ∅
and

FNjβ =
⋃

F
Njβγ̃

.

It is enough to prove that any two p, q ∈ F
Njβγ̃

are L-equivalent relX.

Let p = p1, . . . , pN = q be curves in Ajβ such that

pi+1(µ) = χ
vi,µ
1 (pi(µ)).

By Proposition 1′ to every vi,µ there corresponds a function

Hi
µ,λ : T̊ j × Rnx −→ Rnx , λ ∈ [0, 1], µ ∈ (0, ε).

If

H(i)
µ = H

(i)
µ,1

(
pi(µ), ·

)
: Rnx −→ Rnx ,

then the composition of the H(i)
µ :

Hµ = H(N−1)
µ ◦ . . . ◦H(1)

µ : Rnx −→ Rnx

establishes L-equivalence of p and q rel X.
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Remark. As was pointed out by K. Kurdyka and A. Parusiński, the answer to
Gromov’s question can be obtained directly from Proposition 1.

In fact, the space C of all (germs of) curves in T of complexity at most N has a natural
structure of a finite-dimensional semi-algebraic set. For every p ∈ C choose ε = ε(p) such
that p(µ) is defined on [0, ε(p)] and ε(p) is a semi-algebraic function. Let

T̃ =
{

(p, µ) : p ∈ C, µ ∈ [0, ε(p)]
}

and let T̃ → T be defined by

(p, µ)→ p(µ).

It is enough to apply Proposition 1 to the family over T̃ induced from X by this map.

Acknowledgements. It is a pleasure to thank Professor Gromov for stating a beau-
tiful problem, and my friends Lev Birbrair, Jean-Pierre Henry, Krzysztof Kurdyka and
Adam Parusiński for very valuable and interesting discussions.

1. Preliminaries

1.1. The symbols .,'. We write, for non-negative functions,
ϕ . ψ ⇔ ϕ ≤ Cψ for some constant C,
ϕ ' ψ ⇔ ϕ . ψ and ψ . ϕ.

If ϕ, ψ depend also on parameters, we ask C to be independent of them.

1.2. Boundary of a set. ∂A = A \A.

1.3. Distance to a set. It is denoted by d(x,A) = dA(x); the Hausdorff distance of
two (non-empty) sets A,B is d(A,B), i.e. d(A,B) = inf{d(a,B) : a ∈ A}; distance dZi
to a skeleton Zi in a stratification will be abbreviated as di.

1.4. Kirszbraun’s theorem. (See [1].) We need only a weak version of it. If f : A −→ R
is Lipschitz with a constant C, A ⊂ Rn, then the formula

F (x) = sup
a∈A

(
f(a)− C|x− a|

)
, x ∈ Rn

gives an extension of f being Lipschitz with the same constant C.
It follows that if f depends continuously on some parameters µ, i.e. f(x, µ), x ∈ A,

is continuous as a function of all variables, and is Lipschitz with respect to x with a
Lipschitz constant independent of µ, then f has a Lipschitz extension F (x, µ), x ∈ Rn,
with a Lipschitz constant independent of µ.

We shall write usually a vector field in the form

v =
∑

vi ∂/∂xi

and identify it with the sequence (v1, . . . , vn) of its components; so v can be identified
with a mapping with values in Rn.

Applying Kirszbraun’s theorem to every component of v we get the following obser-
vation:
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Let v be a Lipschitz vector field defined on a subset A ⊂ Rn, which depends continu-
ously on some parameters µ, with a Lipschitz constant C (as on p. 181); then there exists
a Lipschitz vector field V on Rn, which depends continuously on µ, with the Lipschitz
constant C

√
n (of course we use the Euclidean metric on Rn).

1.5. Estimates for Lipschitz vector fields. Let v be a Lipschitz vector field on Rn,
with a Lipschitz constant C; its flow χvλ satisfies the equation

χvλ(x) = x+

∫ λ

0

v
(
χvs(x)

)
ds.

A standard calculation based on this formula gives

χvλ(x) = x+ uvλ(x), uvλ is Lipschitz with a Lipschitz constant eCλ − 1;

e−Cλ|x1 − x2| ≤ |χvλ(x1)− χvλ(x2)| ≤ eCλ|x1 − x2|.
Suppose now that p(µ), q(µ) are two curves in Rn; let |p(µ) − q(µ)| ' µγ . Suppose

that vµ is a Lipschitz family of vector fields on Rn with a Lipschitz constant C. Put

p̃(µ) = χ
vµ
1 (p(µ)), q̃(µ) = χ

vµ
1 (q(µ))

(they need not be subanalytic). Then

e−C |p(µ)− q(µ)| ≤ |p̃(µ)− q̃(µ)| ≤ eC |p(µ)− q(µ)|(1.1)

so |p̃(µ)− q̃(µ)| ' µγ .
It follows that if vµ preserve A ∈ Ai (i = 1, . . . , 5), p(µ) is a curve in Rn and

p̃(µ) = χ
vµ
1 (p(µ)), then

d(p(µ), A) ' d(p̃(µ), A).

In fact, to prove ., we take a (subanalytic) curve q(µ) in A such that |p(µ) − q(µ)| =

d(p(µ), A); then for q̃(µ) = χ
vµ
1 (q(µ)) we have: q̃(µ) ∈ A for µ > 0 and |p̃(µ)− q̃(µ)| '

µγ ' d(p(µ), A).
If & were wrong, there would exist a sequence µν ↘ 0 such that

d(p̃(µν), A)/d(p(µν), A) −→ 0.

Let aν ∈ A be points such that

|aν − p̃(µν)| ≤ 2d(p̃(µν), A);

if a∗ν = χ
−vµ
1 (aν), then a∗ν ∈ A and

|a∗ν − aν |/d(p(µν), A) −→ 0

which is impossible.

1.6. Derivatives of subanalytic functions. Let f : U −→ R be a subanalytic function,
U ∈ A1 open, f ∈ C∞(U), and |f | . 1. Then for every integer k > 0 there exists a
Y ∈ A1, dim Y < n, such that for all x ∈ U

|Dαf(x)| . dY (x)−|α|,(1.2)

|α| ≤ k. If f is semialgebraic, then Y can be chosen semialgebraic. A proof is given in [2].
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1.7. Lipschitz functions with denominators. In principle this notion will not be used,
but we hope it may be helpful.

Let X be a metric space with distance denoted by |x − y|. Let % : X −→ R+ be a
bounded Lipschitz function, where R+ is the set of nonnegative reals.

Definition. f ∈ Lip(X, %, C) if f : X −→ R is bounded and for all x, y ∈ X,

|f(x)− f(y)| ≤ C|x− y|/min(%(x), %(y)).

We shall write f ∈ Lip(X, %) if either the value of C is clear or f ∈ Lip(X, %, C) for
some C. In particular, f ∈ Lip(X, 1) means that f is bounded and Lipschitz.

If f : X −→ Rk, f = (f1, . . . , fk), we shall write f ∈ Lip(X, %) if all components fi
are in Lip(X, %).

We list some obvious properties of the class Lip(X, %) of scalar valued functions.

1◦ if f, g ∈ Lip(X, %), |g| . %, then fg ∈ Lip(X, 1); in particular, if f ∈ Lip(X, %),
then %f ∈ Lip(X, 1);

2◦ if f, g ∈ Lip(X, %), then fg ∈ Lip(X, %);

3◦ if f ∈ Lip(X, 1), |f | . %, then f/% ∈ Lip(X, %),

4◦ if h : Y −→ X is Lipschitz, f ∈ Lip(X, %), then f ◦ h ∈ Lip(Y, % ◦ h).

1.8. Lipschitz stratifications. We refer to [6] for review of the subject. A stratification
X = {Xj} of Rn is Lipschitz if it has the following extension property of Lipschitz vector
fields: there exists a constant C such that for every compact K, X l−1 ⊂ K ⊂ X l for
some l, and every Lipschitz vector field v, defined on K, with a Lipschitz constant M1,
bounded by M2 (i.e. |v(x)| ≤ M2 for all x ∈ K), tangent to X, there exists a Lipschitz
extension ṽ, defined on Rn, with a Lipschitz constant C(M1 +M2).

This definition was first introduced in [5]. There is a simple way of constructing ṽ. To
describe it, define for every x ∈ X̊ l

Px : Rn = TxRn −→ TX̊ l ⊂ Rn

as orthogonal projection.
Using Kirszbraun’s theorem, we extend v to a Lipschitz vector field V , defined on Rn;

of course it need not be tangent to X. Put, for x ∈ X l,

ṽl(x) =

{
v(x) : x ∈ K
PxV (x) : x ∈ X̊ l.

For Lipschitz stratifications this formula gives a Lipschitz vector field ṽl. We can proceed
further in a similar way. Extend ṽl to a Lipschitz vector field V1 defined on Rn, and put

ṽl+1(x) =

{
ṽl(x) : x ∈ X l

PxV1(x) : x ∈ X̊ l+1

etc. At the end we get ṽn = ṽ.
We note that original definition of a Lipschitz stratification ((1.6,k),(1.7,k) in [4],

Def. 1.1 in [5], Def. 1.1 in [6]), equivalent to the above one (as proved in [5]), consisted
of a big system of estimates on angles between tangent spaces to strata; this system
guarantees that the above construction produces Lipschitz vector fields at every step.
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It is known that for every set A ∈ Ai in Rn there exists a Lipschitz stratification of Rn,
compatible with A, with skeletons in Ai; in general this stratification is not unique.

Remark. The above construction gives also a similar extension property for Lips-
chitz families of vector fields. Let X = {Xj} be a Lipschitz stratification of Rn. Let K
be compact, X l ⊂ K ⊂ X l+1, and vµ a Lipschitz family of vector fields of uniformly
bounded length, tangent to X, defined for all x ∈ K; then there exists a Lipschitz family
of vector fields ṽµ, extending vµ, defined for all x ∈ Rn, tangent to X. The construction
of ṽµ is as above; suppose namely that ṽµ,k is an extension defined for all x ∈ Xk; first
we extend ṽµ,k to a Lipschitz family Vµ, defined for all x ∈ Rn, and then we put

ṽµ,k+1(x) =

{
ṽµ,k(x) : x ∈ Xk

PxVµ(x) : x ∈ X̊k+1.

Again, the estimates of the original definition of a Lipschitz stratification, mentioned
above, imply that ṽµ,k+1 is a Lipschitz family of vector fields.

Example. Let X̊j be a stratum of a Lipschitz stratification. Let % : X̊j −→ R be
the distance to Xj−1. Then the matrix-valued function X̊j 3 x 7−→ Px is in the class
Lip(X̊j ; %) as the estimates of the original definition show.

1.9. L-regular sets. They are well-known cylinders with an extra property introduced
by A. Parusiński in [5].

A subanalytic set A ⊂ Rn is a k-dimensional L-regular set (k ≤ n) if, possibly after
a linear change of coordinates, it is of the following form:

1◦ if k = n, then

A =
{

(x′, xn) : x′ = (x1, . . . , xn−1) ∈ A′, ϕ(x′) < xn < ψ(x′)
}

(1.3)

where A′ is an (n − 1)-dimensional L-regular set in Rn−1, and ϕ, ψ are subanalytic
functions on A′ (or semialgebraic, semianalytic), smooth, bounded together with their
first derivatives:

|ϕ|, |ψ|,
∣∣∣ ∂ϕ
∂xα

∣∣∣,
∣∣∣ ∂ψ
∂xα

∣∣∣ . 1, α = 1, . . . , n− 1,

and ϕ < ψ on A′.

2◦ if k < n, then A is the graph of F , where

F : A′ −→ Rn−k

is bounded subanalytic (or semialgebraic, or semianalytic) smooth function on an L-
regular set A′ ⊂ Rk of dimension k, and the first derivatives of F are bounded:

∣∣ ∂F
∂xα

∣∣ . 1.
Of course Rk is identified with the subspace {(x1, . . . , xk, 0, . . . , 0)} ⊂ Rn and Rn−k with
{(0, . . . , 0, xk+1, . . . , xn)} ⊂ Rn.

Remark. If we drop the condition of boundedness of first derivatives, we get the
familiar notion of a cylinder. However, L-regular sets have very useful properties which
cylinders in general do not have; some of them we shall mention below.

A basic fact ([5], [7]) states that every set in Ai, i = 1, 2, 3, can be decomposed into a
finite union of L-regular sets in Ai; these sets can be chosen to be disjoint.
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Every L-regular set A has Whitney’s property with exponent 1, i.e. every pair of
points x, y ∈ A can be joined by a piecewise C1 curve in A of length . |x− y|.

We shall now make an observation concerning the distance to the boundary ∂A of an
L-regular set.

Suppose that A ⊂ Rn is n-dimensional,

A =
{

(x′, xn) : x′ ∈ A′, ϕ(x′) < xn < ψ(x′)
}

as before. Let π : Rn −→ Rn−1 be the canonical projection. Then

∂A =
(
π−1(∂A′) ∩A

)
∪ graphϕ ∪ graphψ.

Put, for every x = (x′, xn) ∈ A
hordist(x, ∂A) = d(x′, ∂A′) = d(π(x), ∂A′),(1.4)

vertdist(x, ∂A) = min (ψ(x′)− xn, xn − ϕ(x′)) .(1.5)

Clearly

d(x, ∂A) ' min (hordist(x, ∂A), vertdist(x, ∂A)) ;

in particular, d(x, ∂A) . d(π(x), ∂A′).
If A is k-dimensional, k < n, then, after a coordinate change, A is the graph of

F : A′ −→ Rn−k, as before. Let π : Rn −→ Rk be the standard projection. Then

∂A = π−1(∂A′) ∩A,
and, for x ∈ A,

d(x, ∂A) ' d(π(x), ∂A′).(1.6)

Finally we make a remark concerning tangent spaces to k-dimensional L-regular sets
A in Rn. Suppose X = {Xj} is a Lipschitz stratification of Rn and A is an open subset of
X̊k which is the graph of F as above. Let again π : Rn −→ Rk be the standard projection.
Let πA be the restriction of π to A. Then the norms of the differentials (πA)∗x, x ∈ A,
are bounded. The vector fields

eα = (πA)−1
∗ (∂/∂xα), α = 1, . . . , k,

constitute a basis of tangent vector fields to A and

eα ∈ Lip(A, %), % = dXk−1 .

This follows again from the estimates of the original definition.

2. Liftings of vector fields in Lipschitz stratifications. In this section we shall
work with the product space Rmt ×BNy , where BNy is the closed unit ball in Rny , centred
at 0; let π : Rmt ×BNy −→ Rmt be the standard projection.

Let Z = {Zj} be a Lipschitz stratification of Rmt ×BNy with skeletons in Ai, i = 1, 3.
Let T = {T j} be any Lipschitz stratification of Rmt compatible with all π(Zj), with
skeletons in the same Ai (it is important here to exclude semi-analytic sets). Very often
we shall identify Rmt with Rmt × 0 ⊂ Rmt ×BNy ; remark that then every stratum of T is a
submanifold of some stratum of Z.
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If v is a vector field defined on a subset of Rmt , then a lift of v is a vector field
v̂ = v̂(t, y), defined on a subset of Rmt × RNy such that

π∗v̂(t, y) = v(t)

for all (t, y) where both sides are defined. In other words, identifying a vector field on
Rmt ×RNy with a mapping with values in Rmt ×RNy and similarly on Rmt , we may say that
v̂(t, y) is a lift of v(t) if v̂ is of the form

v̂(t, y) =
(
v(t), V (t, y)

)
.

Now fix a stratum T̊ j ⊂ Rmt . For every ε0 > 0 put

Uε0(T̊ j) =
{

(t, y) : t ∈ T̊ j , |y| < ε0dj−1(t)
}
,

where, as in Section 1.3, dj−1(t) = dT j−1(t).
Remark that

dZj−1(t, 0) ≥ dT j−1(t, 0) = dj−1(t)(2.1)

because

dZj−1(t, 0) ≥ dπ(Zj−1)(t) ≥ dj−1(t).

It follows that for (t, y) ∈ Uε0(T̊ j)

dZj−1(t, y) ' dj−1(t)

provided that ε0 < 1/2 as we shall further suppose; more exactly the ratio of these
distances is between 1/2 and 2.

The aim of this section is the following proposition.

Proposition 3. There exists an ε0 such that every Lipschitz vector field v on Rmt ,
tangent to T, lifts to a Lipschitz vector field v̂, defined on Uε0(T̊ j), tangent to Z.

Remark. We may consider U jε0(T̊ j) as a subanalytic neighbourhood of T̊ j × 0 in
π−1(T̊ j). More generally, for every rational ρ > 0, the sets

Uε0,ρ(T̊
j) =

{
(t, y) : t ∈ T̊ j , |y| < ε0d

ρ
j−1(t)

}

are also subanalytic neighbourhoods of T̊ j × 0 in π−1(T̊ j). So it is worth noticing that a
lifting v̂ exists not only on some subanalytic neighbourhood of T̊ j × 0 in π−1(T̊ j) but on
a neighbourhood “with exponent” ρ = 1.

We shall start the proof with a slight strengthening of a lemma of A. Parusiński [8].
Quite generally, consider a Lipschitz stratification X = {X j} in Rn with skeletons

in any Ai. We shall say that Lipschitz vector fields e0, . . . , ej−1, defined on Rn, tangent
to X, satisfy condition P (C, ε) at a point q ∈ X̊j if there exist a k < j and a point
q′ ∈ X̊k such that |q − q′| = dk(q) and

1◦ e0, . . . , ej−1 are orthonormal in B(q, εdk(q)),

2◦ for every i, ei has C/di(q) as a Lipschitz constant,

3◦ e0, . . . , ek−1 satisfy P (C, ε) at q′.
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Lemma 2.1. There exist C, ε, depending only on the stratification, such that for
every j and every q ∈ X̊j there exist vector fields e0, . . . , ej−1 which satisfy P (C, ε)

at q.

Remark. The index k appearing in the definition of condition P (C, ε) will be chosen
at the beginning of the proof of the lemma; this choice will be also used in the proof of
Lemma 2.2 below.

Proof of the lemma. We shall use increasing induction with respect to j; if j = 0 or 1

the lemma is obvious. Clearly it is enough to prove the lemma with the constants C, ε
depending on j; for if the lemma is true for C = C(j), ε = ε(j), we may put at the end
C = maxC(j), ε = min ε(j).

By [8], there exists a C2, depending only on the stratification, such that for every
q ∈ X̊j there exist vector fields e∗0, . . . , e

∗
j−1, tangent to X, orthonormal at q and e∗i has

C2/di(q) as a Lipschitz constant.
Let C1, ε1 be constants such that the conclusion of the lemma holds with C1 and ε1

instead of C, ε for all q ∈ X̊ l, l < j.
Let A be any constant such that

A > 1, 2/(A− 1) < ε1.

Define k as the smallest number such that k < j and

di(q) ≤ Adi+1(q) for all i, k ≤ i ≤ j − 1.

Let q′ ∈ X̊k realise the distance of q to Xk:

|q − q′| = dk(q).

By induction hypothesis, there exist vector fields e0, . . . , ek−1 which satisfy P (C1, ε1)

at q′; in particular, they are orthonormal in B
(
q′, ε1dl(q

′)
)

for some l < k.
Remark that

dl(q
′) ≥ dl(q)− |q − q′| = dl(q)− dk(q) ≥ (A− 1)dk(q);

thus if |x− q| ≤ dk(q), then

|x− q′| ≤ |x− q|+ |q − q′| ≤ 2dk(q) ≤ 2

A− 1
dl(q) ≤ ε1dl(q

′),

so B
(
q, dk(q)

)
⊂ B(q′, ε1dl(q

′)) and therefore e0, . . . , ek−1 are orthogonal in B
(
q, dk(q)

)
.

We have to add to them suitably chosen fields ek, . . . , ej−1.
Replacing the vector fields e∗i by

∑
aije

∗
j , where (aij) is a suitable orthogonal matrix

(with constant entities) we may assume that

e0(q), . . . , ek−1(q), e∗k(q), . . . , e∗j−1(q)

are orthonormal. We have, for all x ∈ B(q, di(q)/2C2)

∣∣e∗i (x)− e∗i (q)
∣∣ ≤ C2

|x− q|
di(q)

≤ 1

2
.

For i ≤ k we have di(q) ≥ dk(q); for i ≥ k we have di(q) ≥ A−ndk(q). Thus for all i

di(q) ≥ A−ndk(q)
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and therefore

B
(
q,
di(q)

2C2

)
⊃ B

(
q,

dk(q)

2C2An

)
.(2.2)

Remark that e0, . . . , ek−1, e
∗
k, . . . , e

∗
j−1 are all Lipschitz with a Lipschitz constant

L

dk(q)
, L = An(C1 + C2)

(this is, of course, a very rough estimate); we may assume that C1 + C2 ≥ 1.
Put

M = (100n)nL, ε =
1

100nM

(again these choices are very far from the best).
In B2 = B(q, 2εdk(q)) we have, for all i ≥ k,

∣∣e∗i (x)− e∗i (q)
∣∣ ≤ 1

2
.

Let

B1 = B(q, εdk(q)), D = Rn \B2, ϕ =
dD

dD + dB1

,

where, for every subset A ⊂ Rn, dA is, as before, the distance to A. Clearly ϕ has the
following properties:

ϕ = 0 outside B2 (i.e. on D), ϕ = 1 on B1, 0 ≤ ϕ ≤ 1,
ϕ is Lipschitz with the constant

1

εdk(q)
+

2

εdk(q)
=

3

εdk(q)
.

Now we apply the Gram-Schmidt orthonormalisation procedure to e∗k, . . . , e
∗
j−1 in the

following way: we put

ĕk = e∗k −
k−1∑

i=0

〈e∗k, ei〉 ei, ẽk =
ĕk
|ĕk|

,

ĕk+1 = e∗k+1 −
k−1∑

i=0

〈
e∗k+1, ei

〉
ei −

〈
e∗k+1, ẽk

〉
ẽk, ẽk+1 =

ĕk+1

|ĕk+1|
,

etc.
By induction on m (where m ≥ k) we shall prove that in B2

1◦ ẽm has

(100n)m−k

dk(q)
L

as a Lipschitz constant,

2◦
1

2
≤ |ĕm| ≤

3

2
;

this of course implies that all ẽi are defined in B2 and have M/dk(q) as a Lipschitz
constant.
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We shall treat only the induction step, since it covers also the first step; assume thus
that 1◦ and 2◦ hold for ẽm−1.

Clearly both 〈e∗m, ei〉 ei (for i < k) and 〈e∗m, ẽi〉 ẽi (for k ≤ i ≤ m − 1) are Lipschitz
with a Lipschitz constant

2 · 3

2

(100n)m−k−1L

dk(q)
+

L

dk(q)
≤ 4× 100m−k−1nm−k−1L

dk(q)
,

so for a Lipschitz constant of ĕm we may take

Lm = n
4× 100m−k−1nm−k−1L

dk(q)
=

4× 100m−k−1nm−kL
dk(q)

.

Since |ĕm(q)| = |e∗m(q)| = 1 and εLm < 1/2dk(q), it follows that in B2

1

2
≤ |ĕm| ≤

3

2
as claimed. Thus for a Lipschitz constant of ẽm we may take

Lm
1
2

+
3

2

Lm

( 1
2 )2

< 10Lm <
(100n)m−kL

dk(q)
.

1◦ and 2◦ are thus proved, and with them we know, as remarked above, that ẽm are
defined in B2, Lipschitz with a Lipschitz constant M/dk(q).

Finally we put, for k ≤ i ≤ j − 1,

ei = ϕẽi + (1− ϕ)e∗i in B2, 0 outside of B2.

In B1 all e0, . . . , ej−1 are orthonormal and the Lipschitz constant of every ei is, for i ≥ k,

3

εdk(q)
+

M

dk(q)
+

3

εdk(q)
sup
B2

|e∗i |+
C1

dk(q)
,

so is of the form const.
dk(q) , where const. depends only on the stratification.

The lemma is proved.

Let v be a Lipschitz vector field on Rn, tangent to X. We shall study now its compo-
nents λi in an orthonormal basis that satisfies condition P (C, ε).

Lemma 2.2. Let q ∈ X̊j and ei satisfy P (C, ε) at q; then in B
(
q, εdk(q)

)
∩ Xj we

may write

v =
∑

λiei, λi = 〈v, ei〉 ,
and λi have the following properties :

1◦ |λi(x)| ≤ Kdi(q) for all x ∈ B
(
q, εdk(q)

)
and i = 0, . . . , j − 1;

2◦ λi is Lipschitz ;

moreover, K and the Lipschitz constant of λi depend only on the Lipschitz constant of
v, C and ε.

Proof. To prove the first estimate we use induction on j; we choose k, l and q′ as in the
proof of the previous lemma and we may assume that the statement is correct for i < k in
B
(
q′, ε1dl(q

′)
)
. Since the latter ball contains B

(
q, εdk(q)

)
(see p. 190) and di(q′) ' di(q)

[recall that |di(q′)− di(q)| ≤ |q′ − q| = dk(q) and di(q) ≥ Adk(q), A > 1], our statement
is true for i < k.
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Let i ≥ k. For x ∈ B(q, εdk(q))

|λi(x)| = |〈v(x), ei(x)〉| ≤ |〈v(x)− v(q′), ei(x)〉|+ |〈v(q′), ei(x)〉|
. |x− q′|+

∑

s<k

|λs(q′)| |〈es(q′), ei(x)〉|

. dk(q) +
∑

s<k

ds(q) |〈es(q′)− es(x), ei(x)〉+ 〈es(x), ei(x)〉| .

Since s < k and i ≥ k, 〈es(x), ei(x)〉 = 0. From

|es(q′)− es(x)| ≤ C |q
′ − x|
ds(q)

we get

|λi(x)| . dk(q) ' di(q), i ≥ k.
To prove that λi are Lipschitz in B

(
q, εdk(q)

)
∩Xj we write, for x, x′ ∈ B

(
q, εdk(q)

)
,

|λi(x)− λi(x′)| = |〈v(x), ei(x)〉 − 〈v(x′), ei(x
′)〉|

≤ |〈v(x)− v(x′), ei(x)〉|+ |〈v(x′), ei(x)− ei(x′)〉| .
The first summand is . |x− x′|. We write the second as

∣∣∣
j−1∑

s=0

λs(x
′) 〈es(x′), ei(x)− ei(x′)〉

∣∣∣.

Since 〈es, ei〉 = δsi in B
(
q, εdk(q)

)
, we have

0 = 〈es(x), ei(x)〉 − 〈es(x′), ei(x′)〉
= 〈es(x)− es(x′), ei(x)〉 − 〈es(x′), ei(x′)− ei(x)〉 .

Thus for every s we have

|λs(x′) 〈es(x′), ei(x)− ei(x′)〉| = |λs(x′)| |〈es(x)− es(x′), ei(x)〉|
. ds(q) |es(x)− es(x′)| . |x− x′| .

The lemma is proved.

We return now to the situation of the beginning of this section; thus we have the
spaces Rmt × BNy , Rmt , with stratifications Z and T, respectively, and the projection
π : Rmt ×BNy −→ Rmt . We shall apply Lemmas 2.1 and 2.2 to Rn = Rmt , X = T; we shall
write t0 instead of q.

Take a stratum T̊ j and a point t0 ∈ T̊ j ; let e0, . . . , ej−1 be the vector fields on Rmt
constructed in Lemma 2.1 which satisfy P (C, ε) at t0. The symbol di(t0) denotes, as
before, dT i(t0).

Lemma 2.3. The vector fields ei extend from B
(
t0, εdk(t0)

)
⊂ Rmt to Lipschitz vector

fields Ei(t, y), defined on Rmt ×BNy , tangent to Z, such that the Lipschitz constant of Ei
is C0/di(t0), where C0 depends only on the stratifications Z and T.

Proof. We keep the notation of Lemma 2.1; in particular the index k and the constants
A and ε have the same meaning. By an induction argument on j we may assume that
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e0, . . . , ek−1 extend as stated. Consider ek, . . . , ej−1; their Lipschitz constant does not
exceed C/dj−1(t0).

Consider the vector fields e′k, . . . , e
′
j−1 defined on B(t0, εdk(t0))∪Zj−1 by the formula:

e′i = ei on B
(
t0, εdk(t0)

)
, e′i = 0 on Zj−1. We shall show that the Lipschitz constant of e′i

is
max(C, 2An)

dk(t0)
.

To prove this estimate it is enough to show that for every t ∈ B
(
t0, εdk(t0)

)

d(t, Zj−1) ≥ dk(t0)

2An
;

of course we are identifying t with (t, 0) ∈ Rmt ×BNy .
Recall that dj−1(t0) ≥ A−ndk(t0), so

B
(
t0, εdk(t0)

)
⊂ B

(
t0, εA

ndj−1(t0)
)
⊂ B

(
t0,

dj−1(t0)

2

)
;

also d(t, Zj−1) ≥ d(t, T j−1) as remarked in (2.1). Therefore

B
(
t0, εdk(t0)

)
⊂ B

(
(t0, 0),

d(t0, Z
j−1)

2

)

which implies the desired estimate.
Clearly every e′i is tangent (where defined) to strata of dimension not exceeding j

in Z. Thus it extends, by the basic property of Lipschitz stratifications, to a Lipschitz
vector field Ei, defined on Rmt ×BNy , tangent to Z, with the Lipschitz constant

C2
max(C, 2An)

dk(t0)
,

where C2 depends only on Z. This proves the lemma with C0 = C2 max(C, 2An).

We keep the previous notation; we have thus t0 ∈ T̊ j with vector fields ei which satisfy
P (C, ε) at t0. Let

Uε0(T̊ j , t0) = Uε0(t0) =
{

(t, y) : t ∈ B
(
t0, εdk(t0)

)
∩ T̊ j , |y| < ε0dj−1(t0)

}
;

alternatively,

Uε0(t0) = Uε0(T̊ j) ∩ π−1
(
B(t0, εdk(t0))

)
.

Lemma 2.4. There exists an ε0, depending only on the stratifications, such that for
every t0 ∈ T̊ j, every ei has a Lipschitz lifting êi(t, y), defined on Uε0(t0), tangent to Z,
with a Lipschitz constant C1/di(t0), where C1 depends only on Z and T.

Proof. Let Ei(t, y) be the extensions of ei(t) constructed in Lemma 2.3; the constant
C0 has the same meaning as in Lemma 2.3. We may assume that C0 ≥ C. Let

E′i(t, y) = π∗Ei(t, y) for (t, y) ∈ Uε0(t0).

Since E′i(t, 0) = ei(t), we have in Uε0(t0)

|E′i(t, y)− ei(t)| ≤ C0ε0
dj−1(t0)

di(t0)
.
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Thus we may write, for i = 0, . . . , j − 1,

E′i(t, y) = ei(t) +

j−1∑

p=0

aip(t, y)ep(t),

|aip(t, y)| ≤ C0ε0
dj−1(t0)

di(t0)
≤ C0ε0

for all p.
Obviously

ei(t) =
∑

bip(t, y)E′p(t, y),

where bip(t, y) are elements of the matrix (I +A)−1, where A = (aip(t, y)). The fields

êi(t, y) =
∑

bip(t, y)E′p(t, y)

are liftings of ei, tangent to Z.
It remains to prove that for ε0 sufficiently small I + A is invertible and to estimate

the Lipschitz constant of every êi.
The first fact is obvious: since dj−1 ≤ di for all i ≤ j,

|aip(t, y)| ≤ C0ε0,

so if ε0 is small enough (for instance if C0ε0 < 1/(2m) as we shall further suppose),
‖A‖ ≤ 1/2, and

(I +A)−1 =
∞∑

s=0

(−A)s.

We shall now prove that every aip(t, y) is Lipschitz in Uε0(t0) with the Lipschitz
constant C0(2 + Cε0)/di(t0). In fact, writing z for (t, y) and z′ for (t′, y′), we have

|aip(z)− aip(z′)| = |〈E′i(z)− ei(t), ep(t)〉 − 〈E′i(z′)− ei(t′), ep(t′)〉|
≤ |〈E′i(z)− E′i(z′)− ei(t) + ei(t

′), ep(t)〉|+ |〈E′i(z′)− ei(t′), ep(t)− ep(t′)〉|

≤ 2C0

di(t0)
|z′ − z|+ |E′i(z′)− ei(t′)|

C |t′ − t|
dp(t0)

≤ 2C0 + CC0ε0

di(t0)
|z′ − z| = C0(2 + Cε0)

di(t0)
|z′ − z|.

Let a(s)
ip (z) be the elements of the matrix (−A)s. We shall prove by induction on s

that for every s > 0 and z ∈ Uε0(t0)

∣∣a(s)
ip (z)

∣∣ ≤ mC0ε0

2s−1

dj−1(t0)

di(t0)
≤ 1

2s

and that a(s)
ip (z) is Lipschitz with the Lipschitz constant

sm2

2s−1

C0(2 + Cε0)

di(t0)
.

In fact, first of all
∣∣a(s)
ip

∣∣ =
∣∣∣
∑

q

aiqa
(s−1)
qp

∣∣∣ ≤ m C0ε0dj−1(t0)

di(t0)
‖A‖s−1 ≤ mC0ε0

2s−1

dj−1(t0)

di(t0)
.
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Then, a(s)
ip (z)− a(s)

ip (z′) are elements of the matrix

(−A)s(z)− (−A)s(z′) =
∑

k+l=s−1

(−A)k(z)
[
(−A)(z)− (−A)(z′)

]
(−A)l(z′)

so
∣∣a(s)
ip (z)− a(s)

ip (z′)
∣∣

≤
∑

k+l=s−1

∑

q,r

∣∣∣a(k)
iq (z)

(
aqr(z)− aqr(z′)

)
a(l)
rp (z′)

∣∣∣

≤
∑

k+l=s−1

∑

q,r

mC0ε0

2k−1

dj−1(t0)

di(t0)

C0(2 + Cε0)

dq(t0)

mC0ε0

2l−1

dj−1(t0)

dr(t0)
|z − z′|

≤
∑∑ 1

2k
C0(2 + Cε0)

di(t0)

1

2l
|z − z′| ≤ sm2

2s−1

C0(2 + Cε0)

di(t0)
|z − z′|.

After summing over s we deduce that bip are Lipschitz with a Lipschitz constant
K/di(t0), where K depends only on the stratifications. It follows that

|bip| ≤ K
dj−1(t0)

di(t0)
on Uε0(t0).

It is now easy to prove that êi are Lipschitz; in fact, remembering that on Uε0(t0)

|Ep(z)| ≤ 1 + C0
dj−1(t0)

di(t0)
≤ 1 + C0,

|êi(z)− êi(z′)| ≤
∑
|bip(z)− bip(z′)| |Ep(z′)|+

∑
|bip(z′)| |Ep(z)− Ep(z′)|

≤
∑(

K|z − z′|
di(t0)

|Ep(z′)|+K
dj−1(t0)

di(t0)
C0
|z − z′|
dp(t0)

)

≤ (1 + 2C0)K
|z − z′|
di(t0)

and the lemma is proved with C1 = (1 + 2C0)K.

Corollary 2. Let v be a Lipschitz vector field on Rmt , tangent to T. Then, for every
t0 ∈ T̊ j, v has a lift v̂t0 , defined on Uε0(t0), Lipschitz and tangent to Z.

Proof. We write v =
∑
λiei in B

(
t0, εdk(t0)

)
∩T j , λi = 〈v, ei〉. Let êi(t, y) = êi(z) be

the lifts of ei constructed in Lemma 2.4. The field

v̂t0(t, y) =
∑

λi(t)êi(t, y)

is clearly a lift of v, tangent to Z. The estimates of Lemmas 2.2 and 2.4 imply that v̂t0 is
Lipschitz.

To prove Proposition 3 we shall glue together the v̂t0 ’s by means of a partition of
unity. The following lemma is similar to Lemma 3.1 in [3]; the latter treats only the case
α = 2, but the proof requires almost no change.

Lemma 2.5. Let K ⊂ Rn be compact, α > 0. There exist numbers M0,M1 > 0 and a
family of functions ϕi ≥ 0 (i ∈ I) with the following properties:



LIPSCHITZ ISOTOPIES 197

1◦ the family of all supports suppϕi ∩ K = ∅ for all i, and for every x ∈ Rn \ K
there exist at most M0 functions ϕi such that x ∈ suppϕi,

2◦
∑
ϕi = 1 on Rn \K,

3◦ for every i ∈ I, diam(suppϕi) ≤ αd(K, suppϕi),

4◦ every ϕi is Lipschitz with a Lipschitz constant

M1

d(K, suppϕi)
.

Proof (after [3]). For every p = 0, 1, 2, . . . let Cp be the family of all cubes obtained
by cutting Rn by all hyperplanes xi = m/2p, m ∈ Z. The diameter of every cube in Cp
is of course

√
n/2p. Let K0 be the family of all S ∈ C0 such that

d(S,K) ≥ 2
√
n

α
.

Inductively, let Kp be the family of all S ∈ Cp such that

d(S,K) ≥
√
n

2p−1α
and S *

⋃

j<p

Kj .

For every S ∈ I we have, obviously, d(S,K) ≥ 2 diam(S)/α.
Let xS be the centre of S and let S ′ be the cube centred at xS with diam(S′) =

λ diam(S), where λ = (2 + α)/(1 + α); then

diam(S′) ≤ αd(S′,K).

In fact,

d(S′,K) ≥ d(S,K)− (λ− 1) diam(S) ≥ 2

α
diam(S)− (λ− 1) diam(S)

=
( 2

α
− λ+ 1

)
λ−1 diam(S′) = α−1 diam(S′).

For every S ∈ I let fS(x) = d(x, S), gS(x) = d(x,Rn \ S′),

ψS =
gS

fS + gS
, ϕS =

ψS∑
T∈I ψT

.

The family ϕS, S ∈ I, satisfies all the requirements of the lemma.
We shall now apply this lemma taking Rmt instead of Rn and Zj−1∩Rmt instead of K;

for α we take ε.
Let S ∈ I and let tS be its centre (denoted before by xS); let S′ be the cube defined

in the proof of Lemma 2.5. We note that

S′ ⊂ B
(
tS , εdk(tS)

)
.

In fact, to prove it one has to know that

diam(S′) < εdk(tS) = εd(tS ,K).

This follows at once from

diam(S′) = λ diam(S) <
1

2
λεd(S,K) ≤ εd(tS ,K).
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Now the required lifting v̂ of v is given by

v̂(t, y) =
∑

S∈I
ϕS(t)v̂TS (t, y), (t, y) ∈ Uε0 .

It is obvious that v̂ is a lifting of v and that v̂ is tangent to Z. To prove that v̂ is
Lipschitz, it is enough to write

v̂(t, y) = v(t) +
∑

S∈I
ϕS(t)

(
v̂TS (t, y)− v(t)

)

and to recall that v, v̂ are Lipschitz, |v̂(t, y)− v(t)| . dj−1(tS) on Uε0(tS), and that the
Lipschitz constant of ϕS is . 1/dj−1(tS) since

d(suppϕS,K) ≥ d(S′,K) ≥ (1− ε)dj−1(tS).

Proposition 3 is thus proved.

A minor generalisation of it is a version for Lipschitz families of vector fields.

Proposition 3′. There exists an ε0 such that every Lipschitz family vµ on Rmt ,
tangent to T, lifts to a Lipschitz family v̂µ of vector fields on Uε0(T̊ j), tangent to Z.

3. Proof of Proposition 1. As mentioned on p. 181, we shall prove it only for one
family X −→ T . Proposition 1′ can be proved along the same lines, using Proposition 3′

instead of Proposition 3.
We start with the given family

X ⊂ Rnt × Rnx
↓ ↓ π
T ⊂ Rmt ,

X, T ∈ Ai, i = 1, 3, 4, 5. Let R1
s be a copy of R and we introduce the family CX ⊂

Rmt × R1
s × Rnx of cones over X:

CX =
{

(t, s, sx) : t ∈ T, s ∈ R1
s, x ∈ Xt

}
.

We shall consider CX as family over T :

CX ⊂ Rmt × R1
s × Rnx

↓ ↓ π
T ⊂ Rmt .

Thus the fibre (CX)t is the cone over the fibre Xt. T imbeds in CX in the obvious way:
t 7−→ (t, 0, 0); of course (t, 0, 0) is the vertex of the cone (CX)t.

Also X imbeds in CX: (t, x) 7−→ (t, 1, x).
We put y = (s, x), R1

s × Rnx = RNy . Let BNy be the closed unit ball in RNy centred
at 0. Let Z = {Zj} be a Lipschitz stratification of Rmt × BNy compatible with CX with
skeletons in Ai; as in the previous section, let T be any Lipschitz stratification of Rmt
compatible with T and all π(Zj).

Let v be any Lipschitz vector field on Rmt , tangent to T . Fix a stratum T̊ j of T . By
Proposition 3, there exists an ε0 such that v lifts to a Lipschitz vector field v̂, tangent
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to Z, defined on Uε0(T j). Put

dj−1(t) = %(t)

v̂(t, s, x) =
(
v(t), V (t, s, x)

)
, where V (t, s, x) ∈ T(s,x)

(
R1
s × Rnx

)(3.1)

for simplicity of notation, and denote the flow of v̂ by

λ 7−→ (χvλ, ϕλ, hλ),

i.e. the image of a point (t, s, x) after time λ is

(χvλ(t), ϕλ(t, s, x), hλ(t, s, x)).

We make three remarks.

1. Observe that for |s| sufficiently small and all t ∈ T̊ j , x ∈ Xt and λ ∈ [0, 1] (actually
any finite interval would do, for the price of choosing an appropriate constant appearing
implicitly in the signs .,' below)

|ϕλ(t, s, x)| ' |s|, |hλ(t, s, x)| . |s|.(3.2)

In fact, the flow of v̂ is bi-Lipschitz and preserves the family of vertices of cones (CX)t,
i.e. T × {0} × {0}; clearly for (s, x) ∈ (CX)t

|(s, x)| = distance of (s, x) to the vertex of (CX)t ' |s|.
2. Recall (1.1) that for λ ∈ [0, 1]

wλ(t, s, x) = ϕλ(t, s, x)− s, uλ(t, s, x) = hλ(t, s, x)− x(3.3)

have Lipschitz constant Cλ, where C depends only on v̂.

3. %(χvλ(t)) ' %(t) for t ∈ T̊ j , λ ∈ [0, 1]. In fact, if t′ ∈ T j−1 is one of the closest
points in T̊ j−1 to t, then %(t) = |t− t′|; since χvλ preserves T j−1, χvλ(t′) ∈ T̊ j and

%(χvλ(t)) ≤ |χvλ(t)− χvλ(t′)| . |t− t′| = %(t).

To prove the converse inequality it is enough to reverse the direction of “time” λ.

It follows that if ε1 is sufficiently small, then for all t ∈ T̊ j , all x such that |x| ≤ 1, all
s such that |s| < ε1%(t), the trajectory of (t, s, sx) under the flow of v̂ stays in Uε0(T j)

for time λ in [0, 1].
Now define a map H̃λ by the formula

H̃λ(t0, x) =
hλ
(
t0, ε1%(t0), ε1%(t0)x

)

ϕλ
(
t0, ε1%(t0), ε1%(t0)x

) ,

where t0 ∈ T̊ j , x ∈ Xt0 , λ ∈ [0, 1].
Remark that H̃λ is well defined: %(t0) 6= 0 and, by our first remark above,

ϕλ
(
t0, ε1%(t0), ε1%(t0)x

)
' ε1%(t0),

so the denominator does not vanish. Obviously H̃λ(t0, x) is a continuous function of
(λ, t0, x) ∈ [0, 1]× T̊ j ×Xt0 ; clearly H̃0(t0, x) = x.

It is easy to see that H̃λ(t0, x) ∈ Xχv
λ

(t0). In fact, x ∈ Xt0 , so
(
ε1%(t0), ε1%(t0)x

)
∈ (CX)t0
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and therefore
(
ϕλ (ε1%(t0), ε1%(t0)x) , hλ (ε1%(t0), ε1%(t0)x)

)
∈ (CX)χv

λ
(t0)

because the flow of v̂ preserves CX. Thus, writing

hλ
(
ε1%(t0), ε1%(t0)x

)
= ϕλ

(
ε1%(t0), ε1%(t0)x

)
H̃λ(t0, x)

we get H̃λ(t0, x) ∈ Xχv
λ

(t0).

We shall now prove that H̃λ(t0, x)− x is Lipschitz with respect to x with a constant
Kλ, where K is independent of (λ, t0). We may write

H̃λ(t0, x) =
x+ uλ(t0,ε1%(t0),ε1%(t0)x)

ε1%(t0)

1 + wλ(t0,ε1%(t0),ε1%(t0)x)
ε1%(t0)

.

It is enough to prove that both

uλ (t0, ε1%(t0), ε1%(t0)x)

ε1%(t0)
,

wλ (t0, ε1%(t0), ε1%(t0)x)

ε1%(t0)

are Lipschitz with respect to x with a constant Cλ. So let x, x′ ∈ Xt0 ; we have
∣∣∣∣
uλ (t0, ε1%(t0), ε1%(t0)x)

ε1%(t0)
− uλ (t0, ε1%(t0), ε1%(t0)x′)

ε1%(t0)

∣∣∣∣

≤ Cλε1%(t0)|x− x′|
ε1%(t0)

= Cλ|x− x′| ,

and similarly for wλ/ε1%(t0).
Now it is easy to construct Hλ of Proposition 1. Recall that Hλ(t0, ·) should be

defined on Rnx while H̃λ(t0, ·) is defined only on Xt0 . Choose an integer N so big that for
all t0 ∈ T̊ j and λ ∈ [0, 1/N ], the Lipschitz constant with respect to x of H̃λ(t0, x)− x is
smaller than 1/2

√
n. We may write, for λ ∈ [0, 1/N ],

H̃λ(t0, x) = x+ G̃λ(t0, x),

where the Lipschitz constant of G̃λ with respect to x is smaller than 1/2
√
n. By Kirsz-

braun’s theorem we can extend G̃λ to a function Gλ(t0, x), defined for all x ∈ Rnx , t0 ∈ T̊ j ,
λ ∈ [0, 1/N ], continuous with respect to all variables and Lipschitz with respect to x with
a Lipschitz constant 1

2 . Put

H∗λ(t0, x) = x+Gλ(t0, x), x ∈ Rnx , λ ∈ [0, 1/N ];

then H∗λ : Rnx −→ Rnx is bi-Lipschitz.
Finally, for λ ∈ [0, 1] and any x ∈ Rnx , t0 ∈ T̊ j , we put for i = 1, . . . , N , x = x0,

ti+1 = χvλ/N (ti), xi+1 = H∗λ/N (ti, xi)

and

Hλ(t0, x) = xN .

Proposition 1 is proved.
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4. Proof of Proposition 2

4.1. Notation

1◦ If v1, . . . , vN are Lipschitz vector fields on Rn, we define the “joint flow” χ
v
λ of

v = (v1, . . . , vN ). Let x0 ∈ Rn; we put, inductively,

xi+1 = χvi1 (xi), i = 1, . . . , N.

For λ ∈ [0, N ] define

χ̃
v
λ(x0) = χ

vi+1

λ−i (xi)

if i ≤ λ < i+ 1, 0 ≤ i ≤ N − 1,

χ̃
v
N (x0) = xN .

Thus for λ ∈ [i, i + 1], the curve λ 7−→ χ̃
v
λ(x0) is a trajectory of vi+1. Finally we nor-

malise λ:

χ
v
λ(x0) = χ̃

v
Nλ(x0), λ ∈ [0, 1].

The map (x0, λ) 7−→ χ
v
λ(x0), λ ∈ [0, 1], is the joint flow of v.

2◦ Let p, q ∈ Rn. We shall say that v = (v1, . . . , vN ) moves p to q if q = χ
v
1(p). We

shall say that v moves p to q regularly if, moreover, the map

λ 7−→ h
v
λ(p), λ ∈ [0, 1],(4.1)

is a bi-Lipschitz homeomorphism onto its image, i.e. for some C

C−1|λ1 − λ2| ≤ |hvλ1
(p)− hvλ2

(p2)| ≤ C|λ1 − λ2|;(4.2)

of course the last inequality is superfluous since it follows at once from the assumption
that all vi’s are Lipschitz.

If v moves p to q regularly, then the length of the curve λ 7−→ χ
v
λ(p) is of order

|p− q|.
We shall say that v moves p to q in a controlled way if, for some constant K,

|vi(x)| ≤ K|p− q|(4.3)

for all x ∈ Rn and i = 1, . . . , N ; this condition is a tautology here, but will become
significant in 3◦.

We shall say that p can be moved to q (regularly, in a controlled way) if there
exists a v which moves p to q (regularly, in a controlled way).

3◦ We shall now replace points p, q in 2◦ by (subanalytic) curves in Rn, Lipschitz
vector fields by one-parameter Lipschitz families of vector fields and repeat definitions
of 2◦ in a parametrised way.

Let p(µ), q(µ) be curves, vµ = (v1,µ, . . . , vN,µ), where vi,µ are Lipschitz families of
vector fields on Rn.

We shall say that vµ moves p(µ) to q(µ) if, for all µ > 0,

χ
vµ
1 (p(µ)) = q(µ).
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vµ moves p(µ) to q(µ) regularly if, moreover, (4.2) holds for all µ > 0 with a
constant C independent of µ:

C−1|λ1 − λ2| ≤
∣∣χvµλ1

(p(µ))− χvµλ2
(p(µ))

∣∣ ≤ C|λ1 − λ2|;(4.2′)

again the second inequality follows at once from the fact that the Lipschitz constants of
every vi,µ are independent of µ.

vµ moves p(µ) to q(µ) in a controlled way if (4.3) holds for all x and µ, with K

independent of µ:

|vi,µ(x)| ≤ K|p(µ)− q(µ)|(4.3′)

for all x ∈ Rn, µ > 0. This condition implies that the lengths of the curves

[0, 1] 3 λ 7−→ χ
v
µ

λ (p(µ))

are of order of |p(µ)− q(µ)|.
4◦ In the introduction we defined the notion of Lipschitz homogeneity (LH); we shall

now define a related notion.
A subset A ⊂ Rn is WLH (weakly Lipschitz homogeneous) if for every pair of

curves p(µ), q(µ) in A such that, for some C,

|p(µ)− q(µ)| ≤ Cd∂A
(
{p(µ), q(µ)}

)
,(4.4)

p(µ) can be moved to q(µ), regularly, in a controlled way, by some vµ = (v1,µ, . . . , vN,µ),
such that all vi,µ vanish on ∂A and every vi,µ preserves A: χvi,µλ (A) ⊂ A for all λ ∈ [0, 1]

and all µ > 0. Of course d∂A
(
{p(µ), q(µ)}

)
= min

(
d∂A(p(µ)), d∂A(q(µ))

)
.

Remark. If p(µ), q(µ) are in A and p(µ) can be moved to q(µ) by a vµ such that all
vi,µ vanish on ∂A then d∂A(p(µ)) ' d∂A(q(µ)).

4.2. A homogeneity property

Proposition 4. Every set A in Ai, i = 1, 3, is a finite union of not necessarily
disjoint WLH sets Bj in the same class Ai.

Remarks.

1◦ As follows from proofs below, the number N which appears in the definition of
WLH sets is bounded by n for every Bj .

2◦ We shall prove also that Bj are smooth (non-compact if dimBj > 0) manifolds
and vi,µ are smooth on them.

Proof of Proposition 4. We use induction on the dimension of the set; the proposition
is obvious for 0-dimensional sets. Since every A is a finite union of L-regular sets, we can
at once assume that A is L-regular of dimension m, i.e.

A = graph(F : A′ −→ Rk),

where A′ ⊂ Rm is open L-regular, m+ k = n, F is smooth and bounded on A′ together
with its first derivatives. Let π : Rn −→ Rm be as usual the standard projection.

Let Z ′ ⊂ A′ satisfy:

dimZ ′ < m, |D2F | . 1/dZ′ , Z ′ ∈ Ai,
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as in (1.2).
Decompose A′ \Z ′ into a union of L-regular sets A′β ; for each of them fix a projection

π′β : Rm −→ Rm−1 such that A′β is a cylinder over A′′β = π′β(A′β) as in (1.3).
Since A is the union of all (π′βπ)−1(A′′β) ∩ A, it is enough to prove Proposition 4 for

each of the latter sets instead of A. Take any one of them. To simplify notation, let us
omit the index β; thus we are in the following situation: we have the standard projections

Rn π−→ Rm π′−→ Rm−1,

L-regular sets A,A′, A′′, surjections

A
π−→ A′

π′−→ A′′

and

A′ =
{

(x′′, xm) : x′′ ∈ A′′, ϕ(x′′) < xm < ψ(x′′)
}
,(4.5)

ϕ, ψ are smooth, bounded on A′′ together with |Dϕ|, |Dψ|,
A = graph(F : A′ −→ Rk),

F smooth, bounded on A′ together with |DF |, and

|D2F | . 1/d∂A′ .(4.6)

Let Y ′′1 ⊂ A′′ satisfy:

|D2ϕ|, |D2ψ| . 1/dY ′′1 , dim Y ′′1 < m− 1, Y ′′1 ∈ Ai.(4.7)

It follows that
∣∣D2(ψ − ϕ)

∣∣ . 1/dY ′′1 .(4.8)

Consider A′ as a family A′
π′−→ A′′ over A′′ with one-dimensional fibres. Let Â′ be

the family obtained from A′ by replacing its fibres (i.e. the open intervals (ϕ(x′′), ψ(x′′)))
by their closures [ϕ(x′′), ψ(x′′)]. We apply Proposition 1′ to this family; thus we put
T = A′′, X = Â′. Let T be a stratification of Rm−1 which satisfies the conclusion of this
proposition and let Y ′′2 be its skeleton of dimension m − 2 (more precisely, union of all
strata of dimension smaller than m− 1). Let

Y ′′ = Y ′′1 ∪ Y ′′2 .
The following observation, which is a special case of the conclusion of Proposition 1, is
basic for the proof.

Let v be any Lipschitz vector field on Rm−1 vanishing on Y ′′; then there exists a
family of maps

Hλ : (A′′ \ Y ′′)× R −→ R,

where R is the xm-axis, and this family satisfies all requirements of Proposition 1; in
particular 3◦ reads:

Hλ(x′′0 , ·) :
[
ϕ(x′′), ψ(x′′)

]
−→

[
ϕ(χvλ(x′′0)), ψ(χvλ(x′′0))

]
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is bi-Lipschitz for λ ∈ [0, 1]. It follows that for some C, independent of x′′0 ∈ A′′ \ Y ′′ and
λ ∈ [0, 1],

C−1
∣∣(ψ − ϕ)(x′′0)

∣∣ ≤
∣∣(ψ − ϕ)(χvλ(x′′0))

∣∣ ≤ C
∣∣(ψ − ϕ)(x′′0)

∣∣;(4.9)

intuitively: the intervals
[
ϕ(x′′), ψ(x′′)

]
,
[
ϕ(χvλ(x′′0)), ψ(χvλ(x′′0))

]
are of comparable length.

By induction hypothesis A′′ \ Y ′′ is a finite union of WLH sets:

A′′ \ Y ′′ =
⋃
A′′α.(4.10)

The following lemma implies Proposition 4:

Lemma 4.1. Every Aα = (π′π)−1(A′′α) ∩A is WLH.

In fact, A =
⋃
A′′α ∪

[
π−1(Y ′′)∩A

]
and π−1(Y ′′)∩A is of dimension smaller than m.

To simplify notation, we omit α and write A instead of Aα, A′ instead of π(A) and
A′′ instead of A′′α.

Proof of Lemma 4.1. Let p(µ), q(µ) be curves in A which satisfy (4.4); we have to
prove that p(µ) is moved to q(µ) by a vµ such that all vi,µ = 0 on ∂A and their flows
preserve A.

Let p′(µ), q′(µ) (resp. p′′(µ), q′′(µ)) be the projections of p(µ), q(µ) under π (resp. π′π).
Then, by (1.6), p′′(µ), q′′(µ) satisfy (4.4) with A′′ instead of A, and similarly p′(µ), q′(µ).

Since A′′ is WLH, there is a v′′µ which moves p′′(µ) in q′′(µ), χ
v′′µ
λ preserves A′′ and

v′′i,µ vanish on ∂A′′.

Step 1. We shall prove that p′(µ) can be moved to q′(µ) by a v′µ with similar properties.
We shall do it as follows. First we shall find, for every µ > 0, a continuous piecewise C1

curve Γ′µ joining p′(µ) to q′(µ), and then we shall show that the tangent vector fields
to C1 segments of Γ′µ extend to Lipschitz vector fields vi,µ, defined on Rn, with desired
properties.

Let us write

p′(µ) =
(
p′′(µ), pm(µ)

)
, q′(µ) =

(
q′′(µ), qm(µ)

)
.

For every µ > 0 we have a curve

Γ′′µ(λ) = χ
v′′
µ

λ (p′′(µ))

joining p′′(µ) with q′′(µ); it consists of segments Γ′′i,µ, i = 1, . . . , N , which are integral
curves of v′′i,µ; the total length of Γ′′µ is' |p′′(µ)−q′′(µ)| (cf. Remark 1◦ after Proposition 4)
and the mapping λ 7−→ Γ′′µ(λ) is bi-Lipschitz homeomorphism onto its image.

It is convenient to write

Γ′′µ = p′′(µ;λ).

The curve Γ′µ joining p′(µ) and q′(µ) consists of N+1 C1 segments Γ′i,µ, i = 1, . . . , N+1.
The first N segments are liftings of Γ′′i,µ constructed as follows.
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We may write

pm(µ) = ϕ
(
p′′(µ)

)
+ θ(µ)(ψ − ϕ)

(
p′′(µ)

)
,

where θ(µ) takes values in [0, 1].
We lift Γ′′µ to a curve Γ̃′µ in Rm by the formula

Γ̃′µ : p′ = p′(µ;λ) =
(
p′′(µ;λ), ϕ(p′′(µ;λ))

)
+ θ(µ)(ψ − ϕ)

(
p′′(µ;λ)

)
.

Of course Γ̃′µ is piecewise C1; its C1 segments Γ̃′i,µ project on Γ′′i,µ.

The curve Γ̃′µ does not join in general p′(µ) with q′(µ). Let q̃′(µ) be its end, i.e.

q̃′(µ) = p′(µ; 1).

This point projects under π′ into q′′(µ); the point q′(µ) has also the same property. So
q̃′(µ) and q′(µ) are joined by a segment parallel to the xm-axis. We take this “vertical”
segment for Γ′N+1,µ; the curve Γ′µ is defined as the curve consisting of Γ̃′µ and the added
segment Γ′N+1,µ.

The curve Γ′µ is supposed to be parametrised by the unit interval. So on Γ̃′µ we change
the parametrisation by λ above into the parametrisation by λ∗ = N

N+1λ. The vertical

interval Γ′N+1,µ is parametrised linearly by λ∗ ∈
[

N
N+1 , 1

]
. Thus finally we have the curve

Γ′µ(λ∗) joining p′(µ) and q′(µ) consisting of N + 1 C1 segments Γ′i,µ, i = 1, . . . , N + 1.
Now we shall show that the tangent vector field to every segment Γ′i,µ extends to a

Lipschitz family of vector fields v′i,µ, vanishing on ∂A′.

I. We start with the segments Γ′i,µ, i ≤ N . Of course, for the existence of v′i,µ the
reparametrisation λ 7−→ λ∗ does not matter, and we shall use the parameter λ. The
tangent vector field to Γ′i,µ is given (component-wise, as on p. 184) by

tµ(λ) =
(
v′i,µ(p′′(µ;λ)),

(
dϕ+ θ(µ)d(ψ − ϕ)

)
(v′i,µ)(p′′(µ;λ))

)
.

We claim that it is enough to prove the following two statements:

1◦ tµ(λ) is Lipschitz on Γ̃′i,µ (with a Lipschitz constant independent of µ) and con-
tinuous with respect to λ, µ;

2◦ |tµ(λ)| . d∂A′(Γ̃
′
i,µ(λ)), with a constant appearing implicitly in the sign . inde-

pendent of λ, µ.

In fact, if 1◦ and 2◦ hold, we may define a Lipschitz family of vector fields on ∂A′∪Γ̃′i,µ
by putting 0 on ∂A′ and tµ(λ) on Γ̃′i,µ. By Kirszbraun’s theorem it extends to a family
v′i,µ we are looking for.

ad 1◦. Continuity of tµ(λ) with respect to λ, µ is obvious. To prove the Lipschitz
estimate it is enough to bound the derivative with respect to λ of the m-th component
of tµ(λ) (recall, Remark 2◦ after Proposition 4, that v′′i,µ are smooth on A′′).

Let v′′j be the components of v′′i,µ, i.e.

v′′i,µ =
∑

j≤m−1

v′′j ∂/∂xj .
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We have
d

dλ

{[
dϕ+ θ(µ)d(ψ − φ)

]
(v′′i,µ)(p′′(µ;λ))

}

=
∑

j,k≤m−1

∂2

∂xj ∂xk

[
ϕ+ θ(µ)(ψ − φ)

]
v′′j v
′′
k

+
∑

j≤m−1

∂

∂xj

[
ϕ+ θ(µ)(ψ − φ)

]d(v′′j )

dλ
,

where, of course, the right-hand side is evaluated at p′′(µ;λ).
The second term on the right-hand side is bounded since |Dϕ|, |Dψ| are bounded and

v′′i,µ is Lipschitz.
To bound the first term we use (4.7), (4.8) and the estimates

|v′′i,µ| . d∂A′′ ≤ dY ′′1 ;

the first one follows from the fact that v′′i,µ are Lipschitz and vanish on ∂A′′, and the
second from the inclusion Y ′′1 ⊂ ∂A′′ which follows from (4.10).

ad 2◦. Since |Dϕ|, |D(ψ − ϕ)| are bounded,

|tµ(λ)| .
∣∣v′′i,µ(p′′(µ;λ))

∣∣ .(4.11)

Since p′′(µ) is moved by v′′µ to q′′(µ) regularly and in a controlled way,

|v′′i,µ| . |p′′(µ)− q′′(µ)| ≤ |p′(µ)− q̃′(µ)|.

It is thus enough to show that for all x′ ∈ Γ̃′i,µ, i ≤ N ,

|p′(µ)− q̃′(µ)| . d∂A′(x′).
This is true not only on the segment Γ̃′i,µ, but on the whole curve Γ̃′µ, i.e. for all

points x′ of the form p′(µ;λ).
In fact,

hordist(p′(µ;λ), ∂A′) = d∂A′′(p
′′(µ;λ)) ' d∂A′′(p′′(µ))

since, for every µ, the curve λ 7−→ p′′(µ;λ) consists of segments being integral curves of
Lipschitz vector fields preserving ∂A′′. Further,

vertdist(p′(µ;λ), ∂A′) = θ(µ)
∣∣(ψ − φ)(p′′(µ;λ))

∣∣
' θ(µ) |(ψ − φ)(p′′(µ))| ' vertdist(p′(µ), ∂A′),

as follows from (4.9) after taking for x0 the end-points of successive segments Γ′′i,µ and
taking v′′i,µ for v. Thus for all x′ ∈ Γ′µ

d∂A′(x
′) ' d∂A′(p′(µ)) ≥ d∂A′′(p′′(µ)) & |p′′(µ)− q′′(µ)| ' |p′(µ)− q̃′(µ)| .

The case of segments Γ̃′i,µ, i ≤ N , is finished.

II. Now we consider the last segment Γ′N+1,µ. The tangent vector field to it is given
by

(N + 1)[qm(µ)− q̃m(µ)] ∂/∂xm,(4.12)
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where, of course, qm(µ), q̃m(µ) are the m-coordinates of the points q′m(µ), q̃′m(µ). We
claim that for the existence of v′N+1,µ it is enough to prove that

|qm(µ)− q̃m(µ)| . d∂A′
(
{q̃′(µ), q(µ)}

)
.(4.13)

In fact, if (4.13) holds, then the family of vector fields equal to (4.12) on Γ′N+1,µ and
0 on ∂A′ is Lipschitz (and of course continuous with respect to µ), so, by Kirszbraun’s
theorem, it extends to a Lipschitz family of vector fields.

Formula (4.13) is proved as follows:

|qm(µ)− q̃m(µ)| ≤ |q′(µ)− q̃′(µ)| ≤ |q̃′(µ)− p′(µ)|+ |p′(µ)− q′(µ)|
. |q′′(µ)− p′′(µ)|+ |p′(µ)− q′(µ)|,

the inequality . follows from the fact that the direction of tangents to the segments Γ′i,µ,
i ≤ N , (i.e. tµ(λ)) are bounded away from the vertical direction (i.e. the direction of the
xm-axis) according to (4.11). Thus

|qm(µ)− q̃m(µ)| . |p′(µ)− q′(µ)| . d∂A′
(
{p′(µ), q′(µ)}

)
,

because, as remarked at the beginning of the proof, p′(µ), q′(µ) satisfy (4.4). Finally,

d∂A′ (q̃
′(µ)) ' d∂A′ (p̃′(µ)) ,

because p′(µ) is moved to q̃′(µ) by a Lipschitz family of vector fields (v′1,µ, . . . , v
′
N,µ)

which vanish on ∂A′.
Step 1 of the proof of Lemma 4.1 is complete.

Step 2. We shall prove that p(µ) can be moved to q(µ) in A regularly and in a
controlled way. We lift the curve Γ′µ to A via π, i.e. we put

Γµ(λ∗) = π−1Γ′µ(λ∗), λ∗ ∈ [0, 1].

In other words,

Γµ(λ∗) =
(
Γ′µ(λ∗), FΓ′µ(λ∗)

)

in the splitting Rn = Rm × Rk.
Clearly Γµ starts at p(µ) and ends at q(µ).
Again, using Kirszbraun’s theorem, it is enough to prove that the tangent vector field

to Γµ(λ∗), i.e.

d

dλ∗
Γµ(λ∗)

is Lipschitz on Γµ and its length is bounded, up to a multiplicative constant, by d∂A.
The latter statement is almost immediate: since |DF | is bounded, we get, by Step 1,

∣∣∣ d
dλ∗

Γµ(λ∗)
∣∣∣ .

∣∣∣ d
dλ∗

Γ′µ(λ∗)
∣∣∣ . d∂A′(Γ′µ(λ∗)) . d∂A(Γµ(λ∗)).

To prove the first statement we shall show that

d2

dλ∗2
Γi,µ(λ∗)
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is bounded on every segment Γi,µ, i ≤ N + 1. Of course it is enough to prove that d2F
dλ∗2 ,

or, in a more exact notation,

d2

dλ∗2
F (Γ′µ(λ∗))

is bounded.
Take any of these segments, Γi,µ, and for simplicity of notation put

v′i,µ = v′ =
∑

k≤m
v′k ∂/∂xk.

Denote by ∂wϕ the directional derivative of a function ϕ, i.e.
∑ ∂ϕ

∂xk
wk, and by ∇wz the

covariant derivative in the flat (Euclidean) connection. Then we have

d2

dλ∗2
F = ∂v′ ∂v′F =

∑

k≤m

∂

∂xk

(∑

l≤m

∂F

∂xl
v′l

)
v′k = ∂∇v′v′F +

∑

k,l

∂2F

∂xk ∂xl
v′kv
′
l.

The first term of the last expression is bounded because |DF | is bounded and ∇v′v′ is
bounded because v′ is Lipschitz and |v′| is bounded. The second term is bounded because
of (3.6) and |v′| . d∂A′ .

The proof of Proposition 4 is complete.

4.3. Proof of Proposition 2. Let Xs ⊂ Rn be a given finite family of sets in Ai,
i = 1, 3. By induction with respect to d we shall prove the existence of a Lipschitz
stratification Z = {Zj} of Rn, compatible with all Xs, with skeletons Zj in Ai, such that
every stratum Z̊j , j < d, is a finite union of LHrel Z sets in Ai.

The case d = 1 is obvious.
For the induction step we start with any stratification S = {Sj}, compatible with all

Xs’s, Sj ∈ Ai. By Proposition 4, S̊d is a finite union of WLH sets:

S̊d =
⋃
Mr.

Let

Y =
⋃
∂Mr.

Let Z = {Zj} be any stratification of Rn compatible with all Xs’s and Y , such that
every stratum Z̊k, k < d, is a union of WLH sets:

Z̊k =
⋃

β∈Bk
Akβ , Akβ ∈ Ai, Akβ is LHrel Z, Bk finite.

We shall prove that Z̊d also is a union of LHrel Z-sets, and this will end the proof.
For every sequence β =

(
β(1), . . . , β(d− 1)

)
such that β(i) ∈ Bi for all i, put

Zdrβ̄ =
{
x ∈Mr : dk(x) = d(x,A

k

β(k)) for all k < d
}
,

where, as usual, dk(x) = d(x, Zk). Since Z̊d is the union of all Zd
rβ̄

’s, it is enough to prove
the following lemma:

Lemma 4.2. Every Zd
rβ̄

is LHrel Z.
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Proof. Let p(µ), q(µ) be two curves in Zd
rβ̄

having distances to skeletons of Z of di-
mension less than d of the same order. Let l be the smallest integer, naturally smaller
than d, such that

ord dl(p(µ)) = ord dd−1(p(µ));

in other words,

dl(p(µ)) ' dd−1(p(µ)),

dl−1(p(µ))� dl(p(µ))

(i.e. dl(p(µ))/dl−1(p(µ)) −→ 0 as µ −→ 0). By the hypothesis on orders of distances of
p(µ), q(µ) to skeletons, l is also the smallest integer for which

ord dl(q(µ)) = ord dd−1(q(µ)).

Let us choose curves p∗(µ), q∗(µ) in Alβ(l) such that

|p(µ)− p∗(µ)| ≤ 2d(p(µ), A
l

β(l)),

|q(µ)− q∗(µ)| ≤ 2d(q(µ), A
l

β(l)).

Remark that for all k < l

dk(p∗(µ)) ' dk(p(µ)),(4.14)

dk(q∗(µ)) ' dk(q(µ)),(4.15)

because

dk(p(µ))− |p(µ)− p∗(µ)| ≤ dk(p∗(µ)) ≤ dk(p(µ)) + |p(µ)− p∗(µ)|.
By hypothesis, there exists a v = (v1,µ, . . . , vN,µ) which moves p∗(µ) to q∗(µ), and

all vi,µ are Lipschitz families of vector fields, tangent to Z.
Put

q̃(µ) = χ
vµ
1 (p(µ)).

Observe that q̃(µ) ∈ Mr for µ > 0; in fact, p(µ) ∈ Mr and the sets Mr are invariant
under the flow of every vi,µ since Mr ⊂ Z̊d and ∂Mr ⊂ Zd−1.

For all k < d,

dk(q̃(µ)) ' dk(p(µ)) ' dk(q(µ));

this is proved as (4.14) and (4.15).
We claim that

|q̃(µ)− q(µ)| . d
(
{q(µ), q̃(µ)}, Zd−1

)
' d(q(µ), Zd−1).

In fact,

|q̃(µ)− q(µ)| ≤ |q̃(µ)− q∗(µ)|+ |q∗(µ)− q(µ)|
=
∣∣χvµ1 (p(µ))− χvµ1 (p∗(µ))

∣∣+ |q∗(µ)− q(µ)|
. |p(µ)− p∗(µ)|+ |q∗(µ)− q(µ)|
≤ 2d

(
p(µ), Zd−1

)
+ 2d

(
q(µ), Zd−1

)
' d
(
q(µ), Zd−1

)
.
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Since q̃(µ), q(µ) lie in the same Mr, it follows that

|q̃(µ)− q(µ)| . d
(
q(µ), ∂Mr

)
.

By hypothesis, Mr is WLH, so q̃(µ) can be moved to q(µ) by a w = (w1,µ, . . . , wN1,µ).
wi,µ vanish on ∂Mr, so we may ask that they are defined on ∂Mr ∪ Zd−1 and take the
value 0 on Zd−1 \Mr. Now we extend every wi,µ to a Lipschitz family, tangent to Z.

Now the N +N1 vector fields (vµ, wµ) = (v1,µ, . . . , vN,µ, w1,µ, . . . , wN1,µ), after being
multiplied by suitable numbers, move p(µ) to q(µ); this “normalisation” is similar to the
introduction of the parameter λ∗ on p. 205, so we omit the details.

Proposition 2 is thus proved.
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