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AND GRÖBNER BASES

ICHIRO SHIMADA

Division of Mathematics, Graduate School of Science, Hokkaido University

Sapporo 060-0810, Japan

E-mail: shimada@math.sci.hokudai.ac.jp

Abstract. Let X be a general complete intersection of a given multi-degree in a complex

projective space. Suppose that the anti-canonical line bundle of X is ample. Using the cylinder

homomorphism associated with the family of complete intersections of a smaller multi-degree

contained in X, we prove that the vanishing cycles in the middle homology group of X are

represented by topological cycles whose support is contained in a proper Zariski closed subset

T of X with certain codimension. In some cases, by means of Gröbner bases, we can find such

a Zariski closed subset T with codimension equal to the upper bound obtained from the Hodge

structure of the middle cohomology group of X. Hence a consequence of the generalized Hodge

conjecture is verified in these cases.

1. Introduction. There are only few non-trivial examples that can be used as sup-

porting evidence for the generalized Hodge conjecture formulated by Grothendieck [8]. In

this paper, we deal with complete intersections of small multi-degrees in a complex pro-

jective space, and prove, in some cases, a consequence of the generalized Hodge conjecture

for these complete intersections by means of cylinder homomorphisms.

We work over the complex number field C. Let X be a general complete intersection

of multi-degree a = (a1, . . . , ar) in Pn with min(a) ≥ 2. Suppose that X is Fano, that is,

the total degree
∑r

i=1 ai of X is less than or equal to n. We put

m := dimX = n− r and k :=
[ 1

max(a)

(
n−

r∑

i=1

ai

)]
+ 1,

where [ ] denotes the integer part. It is known that the Hodge structure of the middle
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cohomology group Hm(X,Q) of X satisfies the following ([6, Corollaire 2.8]):

Hν,m−ν(X) = 0 ⇐⇒ 0 ≤ ν < k or 0 ≤ m− ν < k.(1.1)

If the generalized Hodge conjecture is true, then there should exist a Zariski closed

subset T of X with codimension k such that the inclusion T ↪→ X induces a surjective

homomorphism Hm(T,Q)� Hm(X,Q).

We will try to verify this consequence of the generalized Hodge conjecture by means of

cylinder homomorphisms. Let b = (b1, . . . , bs) be another sequence of integers satisfying

min(b) ≥ 1 and r < s < n. We denote by Fb(X) the scheme parametrizing all complete

intersections of multi-degree b in Pn that are contained in X, and by Zb(X) ⊂ X×Fb(X)

the universal family with

Zb(X)
αX−→ X

πX
y

Fb(X)

(1.2)

being the diagram of the projections. We put

l := n− s.
Suppose that Fb(X) is non-empty, and that m > 2l holds. Since πX is proper and flat of

relative dimension l, we have a homomorphism

Hm−2l(Fb(X),Z) → Hm(Zb(X),Z)

that maps a homology class [τ ] ∈ Hm−2l(Fb(X),Z) represented by a topological (m−2l)-

cycle τ in Fb(X) to the homology class [π−1
X (τ)] ∈ Hm(Zb(X),Z) represented by the

topological m-cycle π−1
X (τ) in Zb(X). We define a homomorphism

ψb(X) : Hm−2l(Fb(X),Z) → Hm(X,Z)

by

ψb(X)([τ ]) := αX∗([π
−1
X (τ)]),

and call ψb(X) the cylinder homomorphism associated with the family of algebraic cycles

πX : Zb(X)→ Fb(X).

It was remarked in [18] that there exists a Zariski closed subset T of X with codimen-

sion greater than or equal to l such that the image of the homomorphism Hm(T,Q) →
Hm(X,Q) induced from the inclusion T ↪→ X contains Imψb(X) ⊗ Q. (See also Corol-

lary 5.4 of this paper.) Therefore, in view of the generalized Hodge conjecture, it is an

interesting problem to find a sequence b with l as large as possible (hopefully l = k) such

that the cylinder homomorphism ψb(X) has a “big” image.

Our Main Theorem, which will be stated in Section 2, gives us a sufficient condition

on (n, a,b) for the image of ψb(X) to contain the module of vanishing cycles

Vm(X,Z) := Ker
(
Hm(X,Z)→ Hm(Pn,Z)

)
.

This sufficient condition can be checked by means of Gröbner bases. Combining Main

Theorem with a theorem of Debarre and Manivel [5, Théorème 2.1] about the variety

of linear subspaces contained in a general complete intersection, we also give a simple
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numerical condition on (n, a,b) that is sufficient for Imψb(X) ⊇ Vm(X,Z) to hold (The-

orem 7.2). In many cases, our method yields b with l larger than any previously known

results, and sometimes we can verify the consequence of the generalized Hodge conjecture.

See Section 8 for the examples.

After the work of Clemens and Griffiths [2] on the family of lines in a cubic threefold,

many authors have studied the cylinder homomorphisms of type ψb(X), and proved that

the image contains the module of vanishing cycles ([1], [3], [4], [10], [11], [12], [13], [14],

[15], [16], [19], [21]). Our method provides us with a unified proof and a generalization of

these results.

This paper is organized as follows. In Section 2, we state Main Theorem. In Section 3,

we study a connection between vanishing cycles and cylinder homomorphisms in general

setting. Theorem 3.1 in this section is essentially same as the result of [17]. However we

present a complete and improved proof for readers’ convenience. In Section 4, we construct

the universal family of the families Zb(X) → Fb(X) over the scheme parametrizing

all complete intersections of multi-degree a in Pn, which is a Zariski open subset of a

Hilbert scheme, and study its properties. Combining the results of Sections 3 and 4,

we prove Main Theorem in Section 5. In Section 6, we explain a method for checking

the conditions on (n, a,b) required by Main Theorem by means of Gröbner bases. In

Section 7, an application of the theorem of Debarre and Manivel is presented. Examples

are investigated in relation to the generalized Hodge conjecture in Section 8.

Conventions

(1) We work over C. A point of a scheme means a C-valued point unless otherwise

stated.

(2) For an analytic space X or a scheme X over C, let TpX denote the Zariski tangent

space to X at a point p of X.

(3) The multi-degree of a complete intersection is always denoted in the non-decreas-

ing order.

2. Statement of Main Theorem. We fix an integer n ≥ 4. Let a = (a1, . . . , ar)

and b = (b1, . . . , bs) be sequences of integers satisfying

2 ≤ a1 ≤ . . . ≤ ar, 1 ≤ b1 ≤ . . . ≤ bs and r < s < n.(2.1)

We put

m := n− r and l := n− s.
We denote by Hn,a the scheme parametrizing all complete intersections of multi-degree a

in Pn. For a point t of Hn,a, we denote by Xt the corresponding complete intersection.

Let Sn,a denote the Zariski closed subset of Hn,a parametrizing all singular complete

intersections. It is well-known that Sn,a is an irreducible hypersurface of Hn,a, and that,

if u is a general point of Sn,a, then Xu has only one singular point p. For t ∈ Hn,a, we

denote by Fb(Xt) the scheme parametrizing all complete intersections of multi-degree b

in Pn that are contained in Xt as subschemes. If m > 2l and Fb(Xt) 6= ∅, then we have
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the cylinder homomorphism

ψb(Xt) : Hm−2l(Fb(Xt),Z) → Hm(Xt,Z).

We put ta := Card{i | ai = ar} and tb := Card{j | bj = ar}.
Main Theorem. Suppose that the following inequalities are satisfied :

ai ≥ bi (i = 1, . . . , r), ar ≥ bs,(2.2)

m− 2l ≥ tb − ta, m > 2l.(2.3)

Suppose also that, for a general point u of Sn,a, there exists a complete intersection of

multi-degree b in Pn that is contained in Xu, passing through the unique singular point p

of Xu, and smooth at p. Then, for a general point t of Hn,a, the scheme Fb(Xt) is

non-empty, and the image of the cylinder homomorphism ψb(Xt) contains the module of

vanishing cycles Vm(Xt,Z).

Remark 2.1. In Remark 4.12 and Proposition 4.15, we will give several conditions

equivalent to the second condition of Main Theorem. One of them can be easily tested

by means of Gröbner bases, as will be explained in Section 6.

3. Vanishing cycles and a cylinder homomorphism. In this section, we work in

the category of complex analytic spaces and holomorphic maps. We study in general set-

ting the problem when the image of a cylinder homomorphism contains a given vanishing

cycle. For the detail of the classical theory of vanishing cycles, we refer to [9].

Let ϕ : Y → ∆ be a proper surjective holomorphic map from a smooth irreducible

complex analytic space of dimension m+ 1 ≥ 2 to the open unit disk ∆ ⊂ C. For a point

a ∈ ∆, we denote by Ya the fiber ϕ−1(a). Suppose that ϕ has only one critical point p,

that p is on the central fiber Y0, and that the Hessian

H : TpY × TpY → C

of ϕ at p is non-degenerate. We put

∆× := ∆ \ {0}.
For any ε ∈ ∆×, the kernel of the homomorphism Hm(Yε,Z)→ Hm(Y,Z) induced from

the inclusion Yε ↪→ Y is generated by the vanishing cycle [Σε] ∈ Hm(Yε,Z) associated to

the non-degenerate critical point p of ϕ.

Let % : F → ∆ be a surjective holomorphic map from a smooth irreducible complex

analytic space F of dimension k to the unit disk, and let W be a reduced closed analytic

subspace of Y ×∆ F such that the projection $ : W → F is flat of relative dimension

l > 0. Since ϕ is proper, so is $. Let γ : W → Y be the projection onto the first factor.

We obtain the following commutative diagram:

W
γ−→ Y

$
y yϕ

F −→
%

∆.

(3.1)
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For u ∈ F , the fiber $−1(u) can be regarded as a closed l-dimensional analytic subspace

of Y%(u) by γ. For a ∈ ∆, we put

Fa := %−1(a) and Wa := $−1(Fa).

Then we obtain a family of l-dimensional closed analytic subspaces of Ya:

Wa −→ Ya

$a
y

Fa.

(3.2)

Since the restriction $a : Wa → Fa of $ to Wa is proper and flat of relative dimension l,

we have the cylinder homomorphism

ψa : Hm−2l(Fa,Z) → Hm(Ya,Z)

associated with the family (3.2) for any a ∈ ∆.

Theorem 3.1. We assume m > 2l > 0.

(1) Suppose that there exists a point q of W0 such that γ(q) is the critical point p

of ϕ, that $ is smooth at q, and that γ is an immersion at q. Then k = dimF is less

than or equal to m− 2l + 1.

(2) Suppose moreover that k = m− 2l+ 1. Then $(q) is a critical point of %, and the

Hessian of % at $(q) is non-degenerate. Let ε be a point of ∆× with |ε| small enough, and

let [σε] ∈ Hm−2l(Fε,Z) be the vanishing cycle associated to the non-degenerate critical

point $(q) of %. If the vanishing cycle [Σε] ∈ Hm(Yε,Z) is not a torsion element, then

ψε([σε]) is equal to [Σε] up to sign.

Proof. (1) Let UW,q be a small open connected neighborhood of q in W . We can

assume that $ is smooth at every point of UW,q, and that γ embeds UW,q into Y . We put

o := $(q) and Z := $−1(o).

Then γ(UW,q ∩ Z) and γ(UW,q) are smooth locally closed analytic subsets of Y passing

through p. Let T1 and T2 be the Zariski tangent spaces to γ(UW,q ∩Z) and γ(UW,q) at p,

respectively. We have T1 ⊆ T2 ⊆ TpY and dimT1 = l, dimT2 = k + l. We will show

that T1 and T2 are orthogonal with respect to the Hessian H of ϕ at p. Let v be an

arbitrary vector of T1. Since the structure $|UW,q : UW,q → F of the smooth fibration

on UW,q is carried over to γ(UW,q), there exists a holomorphic vector field ṽ defined in a

small open neighborhood UY,p of p in Y such that ṽp is equal to v, and that, if q′ ∈ UW,q
satisfies γ(q′) ∈ UY,p, then ṽγ(q′) is tangent to the smooth locally closed analytic subset

γ
(
UW,q ∩ $−1($(q′))

)
of Y . Since the diagram (3.1) is commutative, the function ϕ is

constant on γ($−1($(q′))) for any q′ ∈ UW,q , and hence the holomorphic function ṽ(ϕ) is

constantly zero on γ(UW,q)∩UY,p, which means that the following holds for any w ∈ T2:

H(w, v) := w(ṽ(ϕ)) = 0.

Thus T1 is contained in the orthogonal complement T⊥2 of T2 with respect to H. Since

H is non-degenerate, we have

l = dimT1 ≤ dimTpY − dimT2 = (m+ 1)− (k + l).
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Therefore we obtain k ≤ m+ 1− 2l.

(2) From now on, we assume k = m+1−2l. Then we have T1 = T⊥2 . Hence H induces

a non-degenerate symmetric bilinear form

H ′ : T2/T1 × T2/T1 → C.

Since $ is smooth at q, there is a local holomorphic section s : UF,o → W of $ defined

in a small open neighborhood UF,o of o = $(q) in F such that s(o) = q. We take UF,o so

small that s(UF,o) ⊂ UW,q holds. Let S be the image of γ ◦ s, which is a smooth locally

closed analytic subset of Y passing through p, and let T3 be the Zariski tangent space

to S at p. We have T2 = T1 ⊕ T3. It follows from the non-degeneracy of H ′ that the

restriction H|T3 : T3 × T3 → C of H to T3 is also non-degenerate. Since γ ◦ s yields an

isomorphism from UF,o to S, and % coincides on UF,o with

UF,o
γ◦s−→ S

ϕ|S−→ ∆,

the point o is a critical point of %. Moreover, the Hessian of % at o is equal to H|T3 via

the isomorphism (d (γ ◦ s))o : ToF
∼→ T3, and hence is non-degenerate.

We will describe the holomorphic maps in the diagram (3.1) in terms of local co-

ordinates. Let t be the coordinate on ∆. There exist local analytic coordinates x =

(x1, . . . , xk) on F with the center o such that % is given by

%∗t = x2
1 + . . .+ x2

k.(3.3)

Since $ is smooth at q, there exists a local analytic coordinate system

(w,w′) = (w1, . . . , wk, w
′
1, . . . , w

′
l)

on W with the center q such that $ is given by

$∗xi = wi (i = 1, . . . , k).(3.4)

Since γ is an immersion at q, there exist local analytic coordinates

(y, y′, y′′) = (y1, . . . , yk, y
′
1, . . . , y

′
l, y
′′
1 , . . . , y

′′
l )

on Y with the center p such that γ is given by




γ∗yi = wi (i = 1, . . . , k),

γ∗y′j = w′j (j = 1, . . . , l),

γ∗y′′j = 0 (j = 1, . . . , l).

(3.5)

(Note that dimY is equal to m + 1 = k + 2l.) Then the locally closed analytic subset

γ(UW,q) of Y is defined by y′′1 = . . . = y′′l = 0 locally around p. From the commutativity

of the diagram (3.1), it follows that ϕ∗t and y2
1 + . . .+ y2

k coincide on γ(UW,q). Therefore,

in a small neighborhood of p, the function ϕ∗t is written as follows:

y2
1 + . . .+ y2

k + a1y
′′
1 + . . .+ aly

′′
l ,

where a = (a1, . . . , al) is a system of holomorphic functions defined locally around p.

Since p is a critical point of ϕ, we have a1(p) = . . . = al(p) = 0. The non-degeneracy of
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the Hessian H of ϕ at p implies that the l × l matrix
(∂ai
∂y′j

(p)
)
i,j=1,... ,l

is non-degenerate. Hence (y, a, y′′) is another local analytic coordinate system on Y with

the center p. We replace y′ with a. Then we have

ϕ∗t = y2
1 + . . .+ y2

k + y′1y
′′
1 + . . .+ y′ly

′′
l .(3.6)

We can make coordinate transformation on w′ according to the coordinate transformation

on y′ so that (3.5) remains valid. We put




zi := yi (i = 1, . . . , k),

zk+j := (y′j + y′′j )/2 (j = 1, . . . , l),

zk+l+j :=
√
−1 (y′j − y′′j )/2 (j = 1, . . . , l).

(3.7)

Then we have

ϕ∗t = z2
1 + . . .+ z2

m+1.(3.8)

Let η be a sufficiently small positive real number, and let Bη be the closed ball in Y

defined by

|z1|2 + . . .+ |zm+1|2 ≤ η.
Let ε be a positive real number that is small enough compared with η. Let s be a real

number satisfying 0 < s ≤ ε. The closed subset

Ys ∩Bη =
{

(z1, . . . , zm+1)
∣∣ |z1|2 + . . .+ |zm+1|2 ≤ η, z2

1 + . . .+ z2
m+1 = s

}

of Ys = ϕ−1(s) is homeomorphic to the total space

E :=
{

(u, v) ∈ Rm+1 × Rm+1
∣∣ ‖u‖ = 1, ‖v‖ ≤ 1, u ⊥ v

}

of the unit disk tangent bundle τ : E → Sm of the m-dimensional sphere

Sm :=
{
u ∈ Rm+1

∣∣ ‖u‖ = 1
}
,

where the projection τ is given by τ(u, v) = u. We identify Sm with the zero section of

τ : E → Sm. The homeomorphism hs : Ys ∩Bη ∼→E is written explicitly as follows:

u =
Re(z)

‖Re(z)‖ , v =

√
2

η − s Im(z).(3.9)

Its inverse h−1
s : E ∼→Ys ∩Bη is given by the following:

z =

√
s+

(η − s
2

)
‖v‖2 · u+

√
−
(η − s

2

)
· v.(3.10)

The sphere Sm ⊂ E is mapped by h−1
s to the closed submanifold

Σs :=
{

(z1, . . . , zm+1) ∈ Y
∣∣ z2

1 + . . .+ z2
m+1 = s, Im(zi) = 0 (i = 1, . . . ,m+ 1)

}

of Ys. We put an orientation on Σs. Then this topological m-cycle Σs represents the

vanishing cycle [Σs] ∈ Hm(Ys,Z), which generates the kernel of the homomorphism

Hm(Ys,Z)→ Hm(Y,Z) induced from Ys ↪→ Y .
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For s ∈ (0, ε], let σs denote the (m− 2l)-dimensional sphere contained in Fs = %−1(s)

defined by

σs :=
{

(x1, . . . , xk) ∈ F
∣∣ x2

1 + . . .+ x2
k = s, Im(xi) = 0 (i = 1, . . . , k)

}
.

With an orientation, this topological (m − 2l)-cycle σs represents the vanishing cycle

[σs] ∈ Hm−2l(Fs,Z) associated to the non-degenerate critical point o of %. Since $ is

proper and flat of relative dimension l, the inverse image$−1(σs) of the oriented sphere σs
can be considered as a topological m-cycle in Ws = $−1(Fs). The image ψε([σε]) of

[σε] ∈ Hm−2l(Fε,Z) by the cylinder homomorphism ψε : Hm−2l(Fε,Z) → Hm(Yε,Z) is

represented by the topological m-cycle

γ|$−1(σε) : $−1(σε) → Yε.

Since the sphere σε bounds an (m− 2l+ 1)-dimensional closed ball in F , the topological

m-cycle γ|$−1(σε) is a boundary of a topological (m + 1)-chain in Y ; that is, ψε([σε])

belongs to the kernel of Hm(Yε,Z)→ Hm(Y,Z). Hence there exists an integer c such that

the following holds in Hm(Yε,Z):

ψε([σε]) = c [Σε].(3.11)

We will show that, if [Σε] is not a torsion element in Hm(Yε,Z), then c is ±1.

We put

Y[0,ε] := ϕ−1([0, ε]) =
⋃

s∈[0,ε]

Ys.

For any closed subset A of Y[0,ε], we set

A] := A \ (A ∩B◦η), A[ := A ∩Bη and ∂BA := A ∩ ∂Bη,
where B◦η is the interior of the closed ball Bη, and ∂Bη is the boundary of Bη. The

sharp ] means “outside the ball”, and the flat [ means “inside the ball”. The explicit

descriptions (3.9) and (3.10) of the homeomorphism hs : Y [s
∼→E for s ∈ (0, ε] show that

the restriction hs|∂BYs : ∂BYs
∼→ ∂E of hs to ∂BYs can be extended to a homeomorphism

from

∂BY0 =
{

(z1, . . . , zm+1)
∣∣ |z1|2 + . . .+ |zm+1|2 = η, z2

1 + . . .+ z2
m+1 = 0

}

to ∂E =
{

(u, v) ∈ E
∣∣ ‖v‖ = 1

}
smoothly. We denote these homeomorphisms by

∂Bhs : ∂BYs
∼→ ∂E (s ∈ [0, ε]).

The homeomorphism ∂Bh0 : ∂BY0
∼→ ∂E is given by:

u =

√
2

η
Re(z), v =

√
2

η
Im(z), and z =

√
η

2
(u+

√
−1 v).

Putting these homeomorphisms ∂Bhs (s ∈ [0, ε]) together, we obtain a trivialization

∂Bh : ∂BY[0,ε]
∼→ ∂E × [0, ε]

of the restriction ϕ|∂BY[0,ε] : ∂BY[0,ε] → [0, ε] of ϕ to ∂BY[0,ε] over [0, ε]. Let

∂Bf : ∂BY[0,ε]
∼→ ∂BYε × [0, ε]
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be the trivialization of ϕ|∂BY[0,ε] obtained by composing ∂Bh and (∂Bhε × id)−1. Since

the only critical point p of ϕ is not contained in Y ][0,ε], we can show by Ehresmann’s

fibration theorem for the manifolds with boundaries that the trivialization ∂Bf extends

to a trivialization

(f ], ∂Bf) : (Y ][0,ε], ∂
BY[0,ε])

∼→ (Y ]ε , ∂
BYε)× [0, ε](3.12)

of ϕ|Y ][0,ε] : Y ][0,ε] → [0, ε] in such a way that the restriction of (f ], ∂Bf) to the fiber over ε

is the identity map. For s ∈ [0, ε], let

(f ]s , ∂
Bfs) : (Y ]s , ∂

BYs)
∼→ (Y ]ε , ∂

BYε)

denote the restriction of (f ], ∂Bf) to the fiber over s.

We put

Cs := γ($−1(σs)) ⊂ Ys.
When s approaches 0, this closed subset Cs degenerates into C0 := γ($−1(o)), which is

an l-dimensional closed analytic subset of Y0. We decompose $−1(σs) into the union of

$−1(σs)
(]) and $−1(σs)

([), where

$−1(σs)
(]) := $−1(σs) \ (γ−1(B◦η) ∩$−1(σs)),

$−1(σs)
([) := γ−1(Bη) ∩$−1(σs).

Since η and ε are small enough, and W is a subspace of Y × F , we have

$−1(σs)
([) = W ∩ (Bη × σs) ⊂ UW,q(3.13)

for all s ∈ [0, ε], where UW,q is the open neighborhood of q in W that was introduced at

the beginning of the proof. Recalling that γ embeds UW,q into Y , we see that the map γ

yields a homeomorphism from $−1(σε)
([) to C[ε. By definition, γ maps $−1(σε)

(]) to C]ε.

We then define a closed subset C̃ε of Yε by

C̃ε := C[ε ∪
( ⋃

s∈[0,ε]

∂Bfs(∂
BCs)

)
∪ f ]0(C]0).(3.14)

Note that we have

∂BC̃ε =
⋃

s∈[0,ε]

∂Bfs(∂
BCs) and C̃[ε = C[ε ∪ ∂BC̃ε, C̃]ε = ∂BC̃ε ∪ f ]0(C]0).

Using the trivialization (f ], ∂Bf), we can “squeeze” the topological m-cycle

γ|$−1(σε) : $−1(σε)→ Yε

outside the ball so that the image is contained in C̃ε. More precisely, we can construct a

homotopy from γ|$−1(σε) : $−1(σε)→ Yε to a continuous map β : $−1(σε)→ Yε with

the following properties:

(β-1) The image β($−1(σε)) of β coincides with C̃ε.

(β-2) The homotopy is stationary on $−1(σε)
([). In particular, β yields a homeomor-

phism from $−1(σε)
([) to the first piece C[ε of the decomposition (3.14).

(β-3) The image β($−1(σε)
(])) of $−1(σε)

(]) by β is contained in C̃]ε.
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(See Figure 1.) Since ψε([σε]) is represented by γ|$−1(σε), it is also represented by the

topological m-cycle β.

BηBη

γ($−1(σε))

−→

β($−1(σε))

Figure 1. Homotopy from γ|$−1(σε) to β

From (3.13) and (3.3), (3.4), (3.5), (3.7), we see that C[s (s ∈ [0, ε]) is given in terms

of the local coordinate system z by




|z1|2 + . . .+ |zm+1|2 ≤ η,
z2

1 + . . .+ z2
k = s,

Im(zi) = 0 (i = 1, . . . , k),

y′′j = zk+j +
√
−1 zk+l+j = 0 (j = 1, . . . , l).

For s ∈ [0, ε], let Gs be the closed subset of E defined by the following equations:




(
2s+ (η − s)‖v‖2

)(
u2

1 + . . .+ u2
k

)
= 2s,

v1 = . . . = vk = 0,

vk+j = −gs(‖v‖) · uk+l+j (j = 1, . . . , l),

vk+l+j = gs(‖v‖) · uk+j (j = 1, . . . , l),

where

gs(‖v‖) :=

√
2s

η − s + ‖v‖2 .

Then, for s ∈ (0, ε], the homeomorphism hs : Y [s
∼→E maps C[s to Gs. In particular,

the first piece C[ε of the decomposition (3.14) of C̃ε is mapped homeomorphically to Gε
by hε. It is easy to check that, for any s ∈ [0, ε] (including s = 0), the homeomorphism

∂Bhs : ∂BYs
∼→ ∂E maps ∂BCs to Gs ∩ ∂E. We put

Tε :=
{
u ∈ Sm | u2

1 + . . .+ u2
k < 2ε/(η + ε)

}
,

and let T−ε be the closure of Tε. We can easily check that the projection τ : E → Sm

induces a homeomorphism from Gε to Sm\Tε, and that, for any s ∈ [0, ε], Gs∩∂E is con-

tained in τ−1(T−ε )∩∂E. In particular, the second piece ∂BC̃ε of the decomposition (3.14)

is mapped by ∂Bhε into τ−1(T−ε ) ∩ ∂E.
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Let a be a point of Sm \T−ε . Then the closed subset h−1
ε (τ−1(a)) of Y [ε intersects the

first piece C[ε of the decomposition (3.14) at only one point, which is in the interior of C [ε,

and the intersection is transverse. Moreover, h−1
ε (τ−1(a)) is disjoint from the second

piece ∂BC̃ε of the decomposition (3.14). The third piece f ]0(C]0) is a topological 2l-cycle

in (Y ]ε , ∂
BYε), because C0 is a topological 2l-cycle in Y0.

If [Σε] ∈ Hm(Yε,Z) is zero, then ψε([σε]) = 0 by (3.11) and hence there is nothing

to prove. Suppose that [Σε] is not zero and not a torsion element. Then there exists

a homology class [Θ] ∈ Hm(Yε,Z) such that the intersection number [Σε] · [Θ] of [Σε]

and [Θ] in Yε is not zero. In order to show that the integer c in (3.11) is ±1, it is enough

to prove that

ψε([σε]) · [Θ] = ±[Σε] · [Θ].(3.15)

Multiplying [Θ] by a positive integer if necessary, we can assume that [Θ] is represented

by a compact oriented m-dimensional differentiable submanifold Θ of Yε ([20]). By the

elementary transversality theorem (see, for example, [7]), we can move Θ in Yε in such a

way that the following hold:

(Θ-1) The closed subset hε(Θ
[) of E is a union of finite number of fibers of τ : E → Sm

over points in Sm \ T−ε .

(Θ-2) The topological m-cycle Θ] of (Y ]ε , ∂
BYε) is disjoint from the topological

2l-cycle f ]0(C]0). Here we use the assumption m > 2l.

From (Θ-1) and (Θ-2), the points Θ ∩ C̃ε are contained in the interior of the first

piece C[ε of the decomposition (3.14) of C̃ε, and the intersections are all transverse.

Moreover, the total intersection number of Θ and C̃ε is equal to that of Θ and Σε up to

sign, because both of them are equal, up to sign, to the number of fibers of τ constitut-

ing hε(Θ
[) (counted with signs according to the orientation). Combining these with the

properties (β-1)–(β-3) of the topological m-cycle β, we see that [β] · [Θ] = ±[Σε] · [Θ]. We

have seen that ψε([σε]) is represented by β. Thus we obtain (3.15).

4. The universal family. In this section, we will construct the universal family of

the incidence varieties of complete intersections in a complex projective space Pn.

First we fix some notation. Let

R =

∞⊕

d=0

Rd := C[x0, . . . , xn]

be the polynomial ring of n + 1 variables with coefficients in C graded by the degree d

of polynomials. We set Rd := 0 for d < 0. Let M be a graded R-module. We denote

by Md the vector space consisting of homogeneous elements of M with degree d. For an

integer k, let M(k) be the R-module M with grading shifted by

M(k)d := Mk+d.

For another graded R-module N , let Hom(M,N)0 denote the vector space of degree-

preserving homomorphisms from M to N . Let c = (c1, . . . , ct) be a sequence of positive
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integers. We assume t < n. Let us define the graded free R-module Mc by

Mc :=

t⊕

i=1

R(ci).

An element of Mc is written as a column vector. Let f = (f1, . . . , ft)
T be an element of

(Mc)0 =
⊕
Rci , where fi is a homogeneous polynomial of degree ci. We denote by Jf

the homogeneous ideal of R generated by f1, . . . , ft. There exists a Zariski open dense

subset (Mc)ci0 of the vector space (Mc)0 consisting of all f ∈ (Mc)0 such that the ideal Jf
defines a complete intersection of multi-degree c in Pn = ProjR. For f ∈ (Mc)ci0 , let Y〈f〉
denote the complete intersection defined by Jf . It is well-known that, for any integer ν,

the dimension of the vector space

H0
(
Y〈f〉,O(ν)

)
=
(
(R/Jf )(ν)

)
0

is independent of the choice of f ∈ (Mc)ci0 .

Let Hn,c denote the scheme parametrizing all complete intersections of multi-degree c

in Pn. It is well-known that Hn,c is a smooth irreducible quasi-projective scheme. For

an element f ∈ (Mc)ci0 , let 〈f〉 denote the point of Hn,c corresponding to the complete

intersection Y〈f〉. We have a surjective morphism

qc : (Mc)ci0 � Hn,c

that maps f to 〈f〉. Let Yc ⊂ Pn×Hn,c be the universal family of complete intersections

of multi-degree c in Pn with the diagram of the projections

Yc
τc−→ Pn

φc

y

Hn,c.

Proposition 4.1.

(1) The morphism qc is smooth.

(2) The morphism τc is smooth.

In particular, Yc is smooth.

Proof. (1) The Zariski tangent space to Hn,c at 〈f〉 is given by

T〈f〉Hn,c = H0
(
Y〈f〉,NY〈f〉/Pn

)
= (Mc/JfMc)0,(4.1)

where NY〈f〉/Pn is the normal sheaf of Y〈f〉 in Pn, which is isomorphic to
⊕t

i=1O(ci).

By (4.1) and Tf (Mc)ci0
∼= (Mc)0, the linear map (dqc)f : Tf (Mc)ci0 → T〈f〉Hn,c is identified

with the quotient homomorphism (Mc)0 � (Mc/JfMc)0. Hence qc is smooth.

(2) Let P = (p, 〈f〉) be a point of Yc, where p is a point of Y〈f〉, and let Ip be

the homogeneous ideal of R defining the point p. The kernel of (dτc)P : TPYc → TpPn
is mapped isomorphically to a subspace of T〈f〉Hn,c by (dφc)P : TPYc → T〈f〉Hn,c.

This subspace coincides with the subspace (IpMc/JfMc)0 of (Mc/JfMc)0 under the

identification (4.1). Since dim(Mc/IpMc)0 = t, dim Ker(dτc)P is equal to dimHn,c − t =

dimYc − n for any point P ∈ Yc.
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Let a = (a1, . . . , ar) and b = (b1, . . . , bs) be two sequences of integers satisfying

condition (2.1). Instead of Ya and Yb, we denote by

X τ−→ Pn

φ
y

Hn,a

and

Z τ ′−→ Pn

φ′
y

Hn,b

(4.2)

the universal families over Hn,a and Hn,b. For f ∈ (Ma)ci0 and g ∈ (Mb)ci0 , we denote by

X〈f〉 and Z〈g〉 the complete intersections corresponding to 〈f〉 ∈ Hn,a and 〈g〉 ∈ Hn,b,

respectively.

An element h of Hom(Mb,Ma)0 is expressed by an r×smatrix (hij) with hij ∈ Rai−bj .
When g ∈ (Mb)0 is fixed, the image of the linear map Hom(Mb,Ma)0 → (Ma)0 given by

h 7→ h(g) coincides with (JgMa)0. The following proposition is then obvious:

Proposition 4.2. The following three conditions on the pair (f, g) of f ∈ (Ma)ci0
and g ∈ (Mb)ci0 are equivalent :

(i) X〈f〉 contains Z〈g〉 as a subscheme,

(ii) f is contained in (JgMa)0,

(iii) there exists an element h ∈ Hom(Mb,Ma)0 such that f = h(g).

Let Fb,a be the contravariant functor from the category of locally Noetherian schemes

over C to the category of sets that associates to a locally Noetherian scheme S → SpecC
the set of pairs (ZS , XS), where ZS ⊂ Pn × S and XS ⊂ Pn × S are families of complete

intersections in Pn with multi-degrees b and a, respectively, parametrized by S such that

ZS is a subscheme of XS . This functor Fb,a is represented by a closed subscheme Fb,a

of Hn,b × Hn,a. (The scheme Fb,a may possibly be empty.) We denote the projections

by ρ′ : Fb,a → Hn,b and ρ : Fb,a → Hn,a. The universal family over Fb,a is the pair

(Z̃, X̃ ) of Z̃ := Z ×Hn,b Fb,a and X̃ := X ×Hn,a Fb,a. We denote by π : Z̃ → Fb,a and

β : Z̃ → Z the natural projections. We also denote by α : Z̃ → X the composite of

the closed immersion Z̃ ↪→ X̃ and the natural projection X̃ → X . Thus we obtain the

following commutative diagram:

Pn τ ′←− Z β←− Z̃ α−→ X τ−→ Pn

φ′
y �

yπ yφ

Hn,b ←−
ρ′

Fb,a −→
ρ

Hn,a,

(4.3)

in which τ ◦ α = τ ′ ◦ β holds. A point of Z̃ is a triple
(
p, 〈g〉, 〈f〉

)
∈ Pn ×Hn,b ×Hn,a

that satisfies p ∈ Z〈g〉 ⊂ X〈f〉. The projection π maps
(
p, 〈g〉, 〈f〉

)
to
(
〈g〉, 〈f〉

)
∈ Fb,a,

and the morphism α maps
(
p, 〈g〉, 〈f〉

)
to
(
p, 〈f〉

)
∈ X .

The right square of the diagram (4.3) is the universal family of the families (1.2)

of complete intersections of multi-degree b contained in complete intersections of multi-

degree a. Remark that the linear automorphism group PGL(n + 1) of Pn acts on the

diagram (4.3).
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Remark 4.3. If (n, a,b) satisfies the first inequality ai ≥ bi (i = 1, . . . , r) of the

condition (2.2) in Main Theorem, then Fb,a is non-empty. Indeed, we choose linear forms

`1, . . . , `r, `
′
1, . . . , `

′
s ∈ R1 generally. We define g ∈ (Mb)ci0 by gj := `′j

bj . Since ai ≥ bi,

we can define f ∈ (Ma)ci0 by fi := `′i
bi`i

ai−bi . Then (〈g〉, 〈f〉) is a point of Fb,a.

From now on to the end of this section, we assume that Fb,a is non-empty. We define

a vector space U with a natural morphism ν : U → (Ma)0 by

U := (Mb)0 ×Hom(Mb,Ma)0 and ν(g, h) := h(g).

We then put

U ci :=
(
(Mb)ci0 ×Hom(Mb,Ma)0

)
∩ ν−1

(
(Ma)ci0

)
.

Note that U ci is a Zariski open subset of U , and hence is irreducible. By Proposition 4.2,

the map

σ(g, h) :=
(
〈g〉, 〈h(g)〉

)

defines a surjective morphism σ : U ci � Fb,a, which makes the following diagram com-

mutative:

U ci
ν|Uci−→ (Ma)ci0

σ
y
y y

yqa

Fb,a −→
ρ

Hn,a.

In particular, the scheme Fb,a is irreducible.

Proposition 4.4. The morphism ρ′ : Fb,a → Hn,b is smooth.

Proof. For a non-negative integer k, we set Ak := C[t]/(tk+1), and for a scheme T

over C, we denote by T (Ak) the set of Ak-valued points of T . If we are given 〈g〉[k+1] ∈
Hn,b(Ak+1) and

(
〈g〉[k], 〈f〉[k]

)
∈ Fb,a(Ak) satisfying 〈g〉[k] = 〈g〉[k+1] mod tk+1, it

is enough to show that
(
〈g〉[k], 〈f〉[k]

)
extends to an element

(
〈g〉[k+1], 〈f〉[k+1]

)
of

Fb,a(Ak+1) over the given point 〈g〉[k+1] ∈ Hn,b(Ak+1). Since both of

qa : (Ma)ci0 � Hn,a and qb : (Mb)ci0 � Hn,b

are smooth, there exist

g[k+1] ∈ (Mb)0 ⊗C Ak+1 and f [k] ∈ (Ma)0 ⊗C Ak
that satisfy qb(g[k+1]) = 〈g〉[k+1] and qa(f [k]) = 〈f〉[k]. We put

g[k] := g[k+1] mod tk+1 ∈ (Mb)0 ⊗C Ak,
which satisfies 〈g[k]〉 = 〈g〉[k]. By the definition of Fb,a, the ideal Jg[k] of R ⊗C Ak gen-

erated by the components of g[k] contains the ideal Jf [k] . Hence there exists h[k] ∈
Hom(Mb,Ma)0 ⊗C Ak such that f [k] = h[k](g[k]) holds. Let h[k+1] be any element of

Hom(Mb,Ma)0 ⊗C Ak+1 satisfying h[k+1] mod tk+1 = h[k]. We put

f [k+1] := h[k+1](g[k+1]) ∈ (Ma)0 ⊗C Ak+1.

Since being a complete intersection is an open condition on defining polynomials, the

ideal Jf [k+1] of R ⊗C Ak+1 defines a family of complete intersections of multi-degree a

over SpecAk+1. Thus
(
〈g[k+1]〉, 〈f [k+1]〉

)
is the hoped-for Ak+1-valued point of Fb,a.
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Corollary 4.5.

(1) The scheme Fb,a is smooth.

(2) The morphism β : Z̃ → Z is smooth.

In particular, Z̃ is smooth.

Let (g, h) be a point of U ci. We have the following natural identifications of vector

spaces:

H0
(
Z〈g〉,NZ〈g〉/Pn

)
= T〈g〉Hn,b = (Mb/JgMb)0,(4.4)

H0
(
Z〈g〉,NX〈h(g)〉/Pn |Z〈g〉

)
= (Ma/JgMa)0,(4.5)

H0
(
X〈h(g)〉,NX〈h(g)〉/Pn

)
= T〈h(g)〉Hn,a = (Ma/Jh(g)Ma)0.(4.6)

The restriction homomorphism NX〈h(g)〉/Pn → NX〈h(g)〉/Pn |Z〈g〉 of coherent sheaves in-

duces, via (4.6), a linear map

ζ ′ : T〈h(g)〉Hn,a → H0
(
Z〈g〉,NX〈h(g)〉/Pn |Z〈g〉

)
.

Under the identifications (4.6) and (4.5), the linear map ζ ′ is identified with the natural

quotient homomorphism

(Ma/Jh(g)Ma)0 � (Ma/JgMa)0.

In particular, ζ ′ is surjective. On the other hand, since Z〈g〉 is a subscheme of X〈h(g)〉,
there is a natural homomorphism

NZ〈g〉/Pn → NX〈h(g)〉/Pn |Z〈g〉
of coherent sheaves over Z〈g〉, which induces, via (4.4), a linear map

ζ : T〈g〉Hn,b → H0
(
Z〈g〉,NX〈h(g)〉/Pn |Z〈g〉

)
.

Under the identifications (4.4) and (4.5), the linear map ζ is identified with the homo-

morphism

〈h〉g : (Mb/JgMb)0 → (Ma/JgMa)0

induced from h : Mb →Ma.

Proposition 4.6. Let (g, h) be a point of U ci, and P the point σ(g, h) =
(
〈g〉, 〈h(g)〉

)

of Fb,a. Then we have the following diagram of fiber product :

TPFb,a
(dρ)P−→ T〈h(g)〉Hn,a

(dρ′)P
y
y �

y
yζ′

T〈g〉Hn,b −→
ζ

H0
(
Z〈g〉,NX〈h(g)〉/Pn |Z〈g〉

)
.

(4.7)

Proof. By the identifications (4.4) and (4.6), any vectors of T〈g〉Hn,b and T〈h(g)〉Hn,a

are given as elements

ḡ′ := g′ mod (JgMb)0 and f̄ ′ := f ′ mod (Jh(g)Ma)0

of (Mb/JgMb)0 and (Ma/Jh(g)Ma)0 by some g′ ∈ (Mb)0 and f ′ ∈ (Ma)0, respectively.

Let ε be a dual number: ε2 = 0. The vectors ḡ′ and f̄ ′ correspond to the infinitesimal
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displacements

Z〈g+εg′〉 → SpecC[ε] and X〈h(g)+εf ′〉 → SpecC[ε]

of Z〈g〉 and X〈h(g)〉 defined by the homogeneous ideals Jg + εJg′ and Jh(g) + εJf ′ of

R⊗C C[ε], respectively. Then the vector (ḡ′, f̄ ′), regarded as a tangent vector to

Hn,b ×Hn,a at
(
〈g〉, 〈h(g)〉

)
, is tangent to Fb,a if and only if Z〈g+εg′〉 is contained in

X〈h(g)+εf ′〉 as a subscheme; that is, there exist elements h1, h2 ∈ Hom(Mb,Ma)0 such

that h1 + εh2 ∈ Hom(Mb,Ma)0 ⊗C C[ε] satisfies

(h1 + εh2)(g + εg′) = h(g) + εf ′.(4.8)

Suppose that h1 +εh2 satisfies (4.8). Because h1(g) = h(g), each row vector of the matrix

h1 − h is contained in the syzygy of the regular sequence (g1, . . . , gs), and hence every

component of h − h1 is contained in Jg. Therefore the two linear maps 〈h〉g and 〈h1〉g
from (Mb/JgMb)0 to (Ma/JgMa)0 are the same. The equality h1(g′) + h2(g) = f ′ then

tells us that f ′ mod (JgMa)0 is equal to 〈h〉g(ḡ′), because h2(g) ∈ (JgMa)0. Hence (ḡ′, f̄ ′)
is contained in the fiber product of ζ and ζ ′. Conversely, if (ḡ′, f̄ ′) is contained in the fiber

product of ζ and ζ ′, then it is easy to find an element h2 ∈ Hom(Mb,Ma)0 satisfying

(h+ εh2)(g + εg′) = h(g) + εf ′.

Since Fb,a is reduced by Corollary 4.5 (1), we obtain the following:

Corollary 4.7. Let (g, h) be an arbitrary point of U ci.

(1) The dimension of Fb,a is equal to

dim(Ma/Jh(g)Ma)0 + dim(Mb/JgMb)0 − dim(Ma/JgMa)0

= dimHn,a + dimHn,b − dim(Ma/JgMa)0.
(4.9)

(2) Let P be the point σ(g, h) of Fb,a. Then the dimension of the cokernel of the linear

map (dρ)P : TPFb,a → T〈h(g)〉Hn,a is equal to

dim Coker ζ = dim Coker〈h〉g = dim(Ma/(JgMa + h(Mb)))0.

Proposition 4.8. Let (g, h) be a point of U ci, and let p be a point of Z〈g〉. We put

Q :=
(
p, 〈g〉, 〈h(g)〉

)
,

which is a point of Z̃. Let Ip denote the homogeneous ideal of R defining the point p.

Then the dimension of the kernel of (dα)Q : TQZ̃ → Tα(Q)X is equal to

dimFb,a − dimHn,a − s+ dim
(
Ma/(JgMa + Iph(Mb))

)
0
.(4.10)

Proof. Since Z̃ is a closed subscheme ofHn,b×X with ρ′◦π and α being the projections,

the kernel of (dα)Q is mapped isomorphically to a subspace of T〈g〉Hn,b by the linear map

d(ρ′ ◦ π)Q. We will show that this subspace

(d(ρ′ ◦ π)Q) (Ker(dα)Q) ⊂ T〈g〉Hn,b(4.11)

coincides with the subspace

(IpMb/JgMb)0 ∩Ker〈h〉g ⊂ (Mb/JgMb)0(4.12)

under the identification (4.4). Let g′ be an element of (Mb)0. We put

ḡ′ := g′ mod (JgMb)0 ∈ (Mb/JgMb)0,
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which gives the corresponding displacement Z〈g+εg′〉 → SpecC[ε] of Z〈g〉. The sub-

space (4.11) consists of vectors corresponding to infinitesimal displacements with p in

Z〈g+εg′〉 and with Z〈g+εg′〉 remaining in X〈h(g)〉. The displacement Z〈g+εg′〉 contains p

if and only if Jg′ ⊂ Ip holds, which is equivalent to ḡ′ ∈ (IpMb/JgMb)0. On the other

hand, by Proposition 4.6, the displacement Z〈g+εg′〉 remains in X〈h(g)〉 if and only if the

corresponding vector of T〈g〉Hn,b is contained in Ker ζ. Since ζ is identified with 〈h〉g,
this holds if and only if ḡ′ ∈ Ker〈h〉g. Therefore (4.11) coincides with (4.12) by (4.4). The

cokernel of the homomorphism

(IpMb/JgMb)0 ↪→ (Mb/JgMb)0
〈h〉g−→ (Ma/JgMa)0

is (Ma/(JgMa + Iph(Mb)))0. On the other hand, dim(Mb/IpMb)0 is equal to s. These

lead us to the conclusion that dim Ker(dα)Q is equal to

dim(Mb/JgMb)0 − s− dim(Ma/JgMa)0 + dim(Ma/(JgMa + Iph(Mb)))0,

which coincides with (4.10) by Corollary 4.7 (1).

In the sequel, we use the following notation. For positive integers d and e, let Mat(d, e)

denote the vector space of all d × e matrices with entries in C, and D(d, e) the Zariski

closed subset of Mat(d, e) consisting of matrices whose rank is less than min(d, e). It is

easy to see that D(d, e) is irreducible. We set

o := [1 : 0 : . . . : 0] ∈ Pn.
For a homogeneous polynomial a ∈ R, we put

a(o) := the coefficient of xdeg a
0 in a.

Let Io be the homogeneous ideal of R defining o in Pn:

Io := 〈x1, . . . , xn〉 ⊂ R.
We define linear maps λi : (IoMa)0 → Cn for i = 1, . . . , r and µj : (IoMb)0 → Cn for

j = 1, . . . , s by

λi(f) :=
( ∂fi
∂x1

(o), . . . ,
∂fi
∂xn

(o)
)

and µj(g) :=
( ∂gj
∂x1

(o), . . . ,
∂gj
∂xn

(o)
)
.

Let λ : (IoMa)0 → Mat(r, n) and µ : (IoMb)0 → Mat(s, n) be linear maps defined by

λ(f) :=



λ1(f)

...

λr(f)


 and µ(g) :=



µ1(g)

...

µs(g)


 .

Both of λ and µ are surjective. We define a linear map η : Hom(Mb,Ma)0 → Mat(r, s)

by

η(h) := (hij(o)),

when h is expressed by an r × s matrix (hij) with hij ∈ Rai−bj . Note that, if g is an

element of (IoMb)0, then, for any h ∈ Hom(Mb,Ma)0, we have h(g) ∈ (IoMa)0 and

λ(h(g)) = η(h) · µ(g).
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We define an R-submodule Na of Ma by

Na :=

r−1⊕

i=1

R(ai)⊕ Io(ar).

Note that Kerλr = (IoNa)0 holds in (IoMa)0, and that an element h of Hom(Mb,Ma)0

is contained in Hom(Mb, Na)0 if and only if the r-th row vector of η(h) is the zero vector.

We put

(IoMb)ci0 := (IoMb)0 ∩ (Mb)ci0 ,

(IoMa)ci0 := (IoMa)0 ∩ (Ma)ci0 ,

(IoNa)ci0 := (IoNa)0 ∩ (Ma)ci0 .

For f ∈ (Ma)ci0 and g ∈ (Mb)ci0 , we have the following:

(o, 〈f〉) ∈ X ⇐⇒ f ∈ (IoMa)ci0 , (o, 〈g〉) ∈ Z ⇐⇒ g ∈ (IoMb)ci0 .(4.13)

Let Γ be the Zariski closed subset of X consisting of critical points of φ : X → Hn,a, and

Γ′ the Zariski closed subset of Z consisting of critical points of φ′ : Z → Hn,b. We put

Γo := τ−1(o) ∩ Γ, Γ′o := τ ′
−1

(o) ∩ Γ′.

For f ∈ (IoMa)ci0 and g ∈ (IoMb)ci0 , we have the following:

(o, 〈f〉) ∈ Γo ⇐⇒ λ(f) ∈ D(r, n),

(o, 〈g〉) ∈ Γ′o ⇐⇒ µ(g) ∈ D(s, n).
(4.14)

If f ∈ (IoNa)ci0 , then λ(f) ∈ D(r, n). Hence we can define a morphism γ : (IoNa)ci0 → Γo
by

γ(f) := (o, 〈f〉).

Proposition 4.9. The Zariski closed subset Γo of X is irreducible, and the morphism

γ : (IoNa)ci0 → Γo is dominant.

Proof. By (4.13) and (4.14), the map f 7→ (o, 〈f〉) gives a surjective morphism from

λ−1(D(r, n)) ∩ (IoMa)ci0 to Γo. Because λ is a surjective linear map and D(r, n) is irre-

ducible, λ−1(D(r, n)) is also irreducible. Since λ−1(D(r, n)) ∩ (IoMa)ci0 is Zariski open

in λ−1(D(r, n)), Γo is also irreducible. Let f be a general element of λ−1(D(r, n)). Then

λ(f) is of rank r − 1, and the vector λr(f) can be written as a linear combination

of λ1(f), . . . , λr−1(f). Since ar ≥ ai for i < r, there exist homogeneous polynomials

c1, . . . , cr−1 with ci ∈ Rar−ai such that, if we put

f ′r := fr − c1f1 − . . .− cr−1fr−1 and f ′ := (f1, . . . , fr−1, f
′
r)
T ,

then λr(f
′) = 0 holds, which means f ′ ∈ (IoNa)0. From Jf = Jf ′ , we conclude that

(o, 〈f〉) = (o, 〈f ′〉) belongs to the image of γ. Since (o, 〈f〉) is a general point of Γo, the

morphism γ is dominant.

Remark 4.10. The irreducibility of Γ and that of Sn,a = φ(Γ) follow from Proposi-

tion 4.9 and the action of PGL(n+ 1) on the diagram (4.3).
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Corollary 4.11. Suppose that (o, 〈f〉) is a general point of Γo. Then the singular

locus of X〈f〉 consists of only one point o, which is a hypersurface singularity of X〈f〉 with

non-degenerate Hessian.

We put

Ξ := α−1(Γ) \ (α−1(Γ) ∩ β−1(Γ′)) and Ξo := (τ ◦ α)−1(o) ∩ Ξ,

which are locally closed subsets of Z̃ (possibly empty). A point (o, 〈g〉, 〈f〉) of the locus

(τ ◦α)−1(o) ⊂ Z̃ is contained in Ξo if and only if X〈f〉 is singular at o and Z〈g〉 is smooth

at o. The morphism α : Z̃ → X induces a morphism α|Ξo : Ξo → Γo.

Remark 4.12. Invoking the action of PGL(n + 1) on the diagram (4.3), we can

paraphrase the second condition of Main Theorem into the condition that α|Ξo : Ξo → Γo
is dominant.

We define a linear subspace V of U = (Mb)0 ×Hom(Mb,Ma)0 by

V := (IoMb)0 ×Hom(Mb, Na)0.

We then put V ci := V ∩ U ci and

V \ := {(g, h) ∈ V ci | µ(g) /∈ D(s, n)} = {(g, h) ∈ V ci |Z〈g〉 is smooth at o}.
By definition, V \ is Zariski open in the vector space V , but may possibly be empty. Recall

that ν : U → (Ma)0 is the morphism defined by ν(g, h) = h(g). We have a morphism

ν|V : V → (IoNa)0 and ν|V \ : V \ → (IoNa)ci0 ,

which are the restrictions of ν to V and V \, respectively. By definition again, if (g, h) ∈ V \,
then

(
o, 〈g〉, 〈h(g)〉

)
∈ Ξo. Let ξ : V \ → Ξo be the morphism defined by

ξ(g, h) :=
(
o, 〈g〉, 〈h(g)〉

)
.

Then we obtain the following commutative diagram:

V \
ν|V \−→ (IoNa)ci0

ξ
y yγ

Ξo −→
α|Ξo

Γo.

(4.15)

Proposition 4.13. The morphism α|Ξo : Ξo → Γo is dominant if and only if the

morphism ν|V \ : V \ → (IoNa)ci0 is dominant.

Proof. Since γ is dominant by Proposition 4.9, the commutativity of the diagram (4.15)

implies that, if ν|V \ is dominant, then so is α|Ξo. Suppose conversely that α|Ξo is dom-

inant. Let f be a general point of (IoNa)ci0 . Since γ is dominant, (o, 〈f〉) is a general

point of Γo, and hence (o, 〈f〉) is in the image of α|Ξo. Thus there exists an element

g ∈ (IoMb)ci0 such that (o, 〈g〉, 〈f〉) ∈ Ξo, which implies that µ(g) is not contained in

D(s, n), and that there exists an element h ∈ Hom(Mb,Ma)0 that satisfies h(g) = f .

From λr(f) = 0 and η(h) · µ(g) = λ(f), the linear independence of the row vectors of

µ(g) implies that the r-th row vector of η(h) is a zero vector. Therefore h is in fact an

element of Hom(Mb, Na)0, which means (g, h) ∈ V \. Hence the general point f = h(g)

of (IoNa)ci0 is contained in the image of ν|V \.
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Proposition 4.14. Suppose that α|Ξo : Ξo → Γo is dominant. Then there exists a

unique irreducible component Ξ′o of Ξo such that the restriction α|Ξ′o : Ξ′o → Γo of α|Ξo
to Ξ′o is dominant. The closure of the image of ξ : V \ → Ξo in Ξo coincides with Ξ′o.

Proof. Since Γo is irreducible, there exists at least one irreducible component Ξ′o
of Ξo that is mapped dominantly onto Γo by α|Ξo. Let (o, 〈g〉, 〈f〉) be a general point

of Ξ′o. Then α(o, 〈g〉, 〈f〉) = (o, 〈f〉) is a general point of Γo. Since γ is dominant, we

can assume that (o, 〈f〉) is in the image of γ; that is, f is an element of (IoNa)ci0 . Let

h ∈ Hom(Mb,Ma)0 be a homomorphism satisfying h(g) = f . From µ(g) /∈ D(s, n) and

λr(f) = 0, we see that h actually is an element of Hom(Mb, Na)0. Hence (g, h) is a point

of V \, which is mapped to the general point (o, 〈g〉, 〈f〉) of Ξ′o by ξ. Therefore Ξ′o is the

closure of the image of ξ : V \ → Ξo in Ξo. Since V \ is irreducible, the uniqueness of Ξ′o,
as well as the second assertion, is proved.

For an element (g, h) of U , we define a linear map δ(g,h) : U → (Ma)0 by

δ(g,h)(G,H) := H(g) + h(G) (G ∈ (Mb)0, H ∈ Hom(Mb,Ma)0).

Under the natural isomorphisms T(g,h)U ∼= U and Tν(g,h)(Ma)0
∼= (Ma)0, the linear map

δ(g,h) is equal to

(dν)(g,h) : T(g,h)U → Tν(g,h)(Ma)0.

By definition, we have

δ(g,h)(U) = (JgMa + h(Mb))0,(4.16)

δ(g,h)(V ) = (JgNa + Ioh(Mb))0, and(4.17)

(g, h) ∈ V =⇒ δ(g,h)(U) ⊆ (Na)0, δ(g,h)(V ) ⊆ (IoNa)0.(4.18)

Proposition 4.15. Suppose ar ≥ bs. Then the following conditions on (n, a,b) are

equivalent to each other :

(i) The morphism α|Ξo : Ξo → Γo is dominant.

(ii) If (g, h) ∈ V is general, then δ(g,h)(V ) coincides with (IoNa)0.

(iii) If (g, h) ∈ V is general, then

dim(Ma/(JgMa + Ioh(Mb)))0 = n+ r − s.
(iv) There exists at least one (g, h) ∈ V such that

dim(Ma/(JgMa + Ioh(Mb)))0 ≤ n+ r − s.
Proof. First we show the following:

Claim.

(1) For any (g, h) ∈ V , dim(Ma/(JgMa+Ioh(Mb)))0 is larger than or equal to n+r−s.
(2) If (g, h) ∈ V is chosen generally, then dim(JgMa + Ioh(Mb))0 is equal to

dim(JgNa + Ioh(Mb))0 + s.

Let (g, h) be an arbitrary element of V . Then (Ioh(Mb))0 is contained in the space

(IoNa)0 = Kerλr. On the other hand, if f ∈ (JgMa)0, then the r-th component fr of f

is written as g1k1 + . . .+ gsks with kj ∈ Rar−bj , and λr(f) is equal to

k1(o)µ1(g) + . . .+ ks(o)µs(g).(4.19)
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Hence the image of (JgMa+Ioh(Mb))0 by λr is spanned by µ1(g), . . . , µs(g), and therefore

is of dimension not greater than s. On the other hand, Kerλr = (IoNa)0 is of codimension

n+ r in (Ma)0. Hence we obtain

dim(JgMa + Ioh(Mb))0 ≤ dim Kerλr + s = dim(Ma)0 − n− r + s,

which implies Claim (1).

Let (g, h) be a general element of V . Because g is general in (IoMb)0, the vec-

tors µ1(g), . . . , µs(g) are linearly independent. Let f be an element of (JgMa)0. By

the assumption ar ≥ bs, the degrees ar − bj of the polynomials kj in the expression

fr = g1k1 + . . . + gsks are non-negative for all j ≤ s. Therefore the coefficients kj(o)

in (4.19) can take any values. Hence the image of (JgMa+Ioh(Mb))0 by λr is of dimension

exactly s. Moreover, if f ∈ Kerλr, then k1(o) = . . . = ks(o) = 0. Hence Kerλr ⊆ (JgNa)0.

Because (Ioh(Mb))0 ⊆ Kerλr, we have

(JgMa + Ioh(Mb))0 ∩Kerλr = (JgNa + Ioh(Mb))0.

Therefore Claim (2) is proved.

Since dim(Ma/(JgMa + Ioh(Mb)))0 is an upper semi-continuous function of (g, h),

Claim (1) implies that conditions (iii) and (iv) are equivalent. By (4.17) and (4.18), the

following inequality holds for any (g, h) ∈ V :

dim(Ma)0/δ(g,h)(V ) = dim
(
Ma/(JgNa + Ioh(Mb))

)
0

≥ dim(Ma/IoNa)0 = n+ r.
(4.20)

Condition (ii) is satisfied if and only if the equality in (4.20) holds for a general (g, h) ∈ V .

The equivalence of conditions (ii) and (iii) now follows from Claim (2).

By Proposition 4.13, condition (i) is equivalent to the following:

(i)′ The morphism ν|V \ : V \ → (IoNa)ci0 is dominant.

On the other hand, since δ(g,h) is equal to (dν)(g,h) : T(g,h)U → Tν(g,h)(Ma)0 via the

natural identifications T(g,h)U ∼= U and Tν(g,h)(Ma)0
∼= (Ma)0, condition (ii) is equivalent

to the following:

(ii)′ The morphism ν|V : V → (IoNa)0 is dominant.

Since (IoNa)ci0 is Zariski open dense in (IoNa)0, the implication (i)⇒ (ii) is obvious.

Since V \ is Zariski open in V , the implication (ii) ⇒ (i) follows if we show that V \

is non-empty under condition (ii). Suppose that condition (ii) is fulfilled. Let (g, h) be

a general element of V . Since g is general in (IoMb)0, the ideal Jg defines a complete

intersection of multi-degree b passing through o, and µ(g) is of rank s. By (ii)′, h(g) is a

general element of (IoNa)0, and hence Jh(g) defines a complete intersection of multi-degree

a passing through o and singular at o. Thus we have (g, h) ∈ V \.

5. Proof of Main Theorem. First we prepare two easy lemmas.

Let L1 and L2 be finite-dimensional vector spaces, and let Hom(L1, L2) be the vec-

tor space of linear maps from L1 to L2. For ϕ ∈ Hom(L1, L2), we have a canonical

identification

Tϕ Hom(L1, L2) ∼= Hom(L1, L2).(5.1)
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Let Sk be the closed subscheme of Hom(L1, L2) defined as common zeros of all (k + 1)-

minors of the matrices expressing the linear maps in terms of certain bases of L1 and L2.

Lemma 5.1. Let ϕ0 be a point of Sk \ Sk−1. An element ϕ of Hom(L1, L2) is con-

tained in the subspace Tϕ0
Sk of Tϕ0

Hom(L1, L2) under the identification (5.1) if and

only if ϕ(Kerϕ0) is contained in Imϕ0.

Proof. We can choose bases of L1 and L2 in such a way that ϕ0 is expressed by

the matrix

(
Ik O

O O

)
. Suppose that ϕ is expressed by the matrix

(
A B

C D

)
under these

bases. Then ϕ is contained in Tϕ0
Sk under the identification (5.1) if and only if the matrix(

Ik + εA εB

εC εD

)
is of rank k, where ε is the dual number; ε2 = 0. This matrix is of rank k

if and only if D = 0, which is equivalent to ϕ(Kerϕ0) ⊆ Imϕ0.

Let X and Y be connected complex manifolds, Z an irreducible locally closed analytic

subspace of Y , ψ : X → Y a holomorphic map, and p a point of ψ−1(Z).

Lemma 5.2. Suppose that Z is smooth at ψ(p), and that

Tψ(p)Z ∩ Im(dψ)p = 0 and Tψ(p)Z + Im(dψ)p = Tψ(p)Y.(5.2)

Then ψ−1(Z) is smooth at p. Moreover, the dimension of ψ−1(Z) at p is equal to

dimX − dimY + dimZ.

Proof. By (5.2), we have Tpψ
−1(Z) = (dψ)−1

p (Tψ(p)Z) = Ker(dψ)p, and hence

dimTpψ
−1(Z) = dimTpX − dim Im(dψ)p = dimX − dimY + dimZ.

On the other hand, the codimension of ψ−1(Z) in X at p is less than or equal to the

codimension of Z in Y at ψ(p). Combining these facts, we get the hoped-for results.

From now on, we assume that (n, a,b) satisfies the conditions required in Main The-

orem. In particular, the morphism α|Ξo : Ξo → Γo is dominant by Remark 4.12. Let Ξ′o
be the unique irreducible component of Ξo that is mapped dominantly onto Γo by α|Ξo
(see Proposition 4.14).

Proposition 5.3. Let Q =
(
o, 〈g〉, 〈f〉

)
be a general point of Ξ′o. Then:

(1) The morphism ρ : Fb,a → Hn,a is dominant.

(2) The kernel of (dα)Q : TQZ̃ → Tα(Q)X is of dimension equal to

dimFb,a − dimHn,a −m+ 2l.

(3) The image of (dρ)π(Q) : Tπ(Q)Fb,a → T〈f〉Hn,a is of codimension 1.

Proof. First of all, note that Fb,a is non-empty because Ξo is non-empty. Note also

that V \ is non-empty by Proposition 4.13, and hence is Zariski open dense in V . By

Proposition 4.14, the general point Q of Ξ′o is the image of a general point of V \ by

ξ : V \ → Ξo. Therefore we can choose a general point (g, h) of V first, and then put

Q := ξ(g, h) =
(
o, 〈g〉, 〈h(g)〉

)
.

We start with the proof of (3). By Proposition 4.15, we have

δ(g,h)(V ) = (JgNa + Ioh(Mb))0 = (IoNa)0.(5.3)
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In particular, we have

dim
(
Ma/(JgNa + Ioh(Mb))

)
0

= n+ r.(5.4)

By Corollary 4.7 (2), to arrive at dim Coker(dρ)π(Q) = 1, all we have to show is

dim
(
Ma/(JgMa + h(Mb))

)
0

= 1,

which is equivalent to

dim δ(g,h)(U)/δ(g,h)(V ) = n+ r − 1,(5.5)

because of (4.16), (4.17) and (5.4). We define a linear map λ̃r : (Ma)0 → Cr × Cn by

λ̃r(f) :=
((
f1(o), . . . , fr(o)

)
,
( ∂fr
∂x1

(o), . . . ,
∂fr
∂xn

(o)
))
.

Then δ(g,h)(V ) = (IoNa)0 = Ker λ̃r holds from (5.3). Moreover, we have δ(g,h)(U) ⊆ (Na)0

by (4.18), and dim λ̃r((Na)0) = n + r − 1. Therefore the equality (5.5) and each of the

following two conditions are equivalent to one another:

δ(g,h)(U) = (Na)0,(5.6)

dim λ̃r(δ(g,h)(U)) ≥ n+ r − 1.(5.7)

We will prove (5.5) by showing that the inequality (5.7) holds. For ν = 1, . . . , s, we define

γ(ν) = (γ
(ν)
1 , . . . , γ

(ν)
s )T ∈ (Mb)0 and η(ν) = (η

(ν)
ij ) ∈ Hom(Mb,Ma)0 by

γ
(ν)
j :=

{
0 if j 6= ν

x
bj
0 if j = ν

and η
(ν)
ij :=

{
0 if (i, j) 6= (r, ν)

xar−bν0 if (i, j) = (r, ν).

Note that ar ≥ bν by the condition (2.2). We then define v(ν), w(ν) ∈ δ(g,h)(U) by

v(ν) := δ(g,h)(γ
(ν), 0) = h(γ(ν)),

w(ν) := δ(g,h)(0, η
(ν)) = η(ν)(g) = (0, . . . , 0, gνx

ar−bν
0 )T .

Then we have

λ̃r(v
(ν)) =

((
h1ν(o), . . . , hrν(o)

)
,
(∂hrν
∂x1

(o), . . . ,
∂hrν
∂xn

(o)
))
,

λ̃r(w
(ν)) =

(
(0, . . . , 0),

(∂gν
∂x1

(o), . . . ,
∂gν
∂xn

(o)
))
.

(5.8)

In order to prove (5.7), it is enough to show that the vectors λ̃r(v
(ν)) and λ̃r(w

(ν)) span

a hyperplane in Cr×Cn. Since (g, h) is general in V , the coefficients hiν(o), ∂hrν/∂xj(o)

and ∂gν/∂xj(o) of the homogeneous polynomials gν and hiν that appear in (5.8) are

general except for the following restrictions:

hrν(o) = 0 (1 ≤ ν ≤ s), hiν(o) = 0 if ai < bν ,

∂hrν
∂xj

(o) = 0 (1 ≤ j ≤ n) if ar = bν .

Let Λ be the 2s× (n+ r) matrix whose row vectors are λ̃r(v
(ν)) and λ̃r(w

(ν)). Then Λ is

of the shape depicted in Figure 2, in which the entries in the submatrices marked with ∗
are general, and the (ν, i)-component in the submatrix marked with ] is general except

for the restriction that it must be zero if ai < bν . Since the rank of a matrix is a lower
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semi-continuous function of entries, in order to prove that Λ is of rank n + r − 1, it is

enough to show that there exists at least one matrix of rank n + r − 1 with the shape

Figure 2. Condition (2.2) implies that r− ta ≤ s− tb holds, and that the (i, i)-component

of the submatrix ] is subject to no restrictions for i = 1, . . . , r − ta. Condition (2.3)

implies n + r < 2s and n + r + tb − ta ≤ 2s. Therefore we can define a 2s × (n + r)

matrix C of the shape Figure 2 by Table 1, where ci is the i-th column vector of C and

eµ is the column vector of dimension 2s whose ν-th component is δµν (Kronecker’s delta

symbol). It is easy to see that C is of rank n+r−1. Hence (5.7), and also (5.5) and (5.6),

are proved.

0

0 ∗ 0

] ∗ 0

∗

0

∗

tb

s − tb

r−ta ta−1 n

s

nr

}
{

{
{

{
s}{

{{

Figure 2. The shape of a 2s× (n+ r) matrix

Next we prove (1). Since both of Fb,a and Hn,a are smooth and irreducible, it is

enough to show that the morphism ρ : Fb,a → Hn,a is a submersion at a general point

of Fb,a. By Corollary 4.7 (2), it is therefore enough to prove that the following equality

holds for a general (g̃, h̃) ∈ U :

dim
(
Ma/(Jg̃Ma + h̃(Mb))

)
0

= 0.(5.9)

Since the left-hand side of (5.9) is an upper semi-continuous function of (g̃, h̃) ∈ U , it

suffices to show that there exists at least one (g̃, h̃) ∈ U for which (5.9) holds. We will find

(g̃, h̃) satisfying (5.9) in a small neighborhood of the chosen point (g, h) in U . From (5.6),

we have

dim
(
Ma/(Jg̃Ma + h̃(Mb))

)
0
≤ dim(Ma/Na)0 = 1
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When ta − 1 ≥ tb,

ci :=





ei if 1 ≤ i ≤ r − ta
es−r+1+i if r − ta < i < r

0 if i = r

ei−ta if r < i ≤ s+ 1

ei−1 if s+ 1 < i ≤ n+ r.

When ta − 1 < tb,

ci :=





ei if 1 ≤ i ≤ r − ta
es−r+1+i if r − ta < i < r

0 if i = r

ei−ta if r < i ≤ s+ ta − tb
ei+tb−ta if s+ ta − tb < i ≤ n+ r.

Table 1. Definition of C

for any (g̃, h̃) in a small neighborhood of (g, h) in U . We suppose that

δ(g̃,h̃)(U) = (Jg̃Ma + h̃(Mb))0 is of codimension 1 in (Ma)0

for any (g̃, h̃) in a small neighborhood of (g, h) in U ,

(5.10)

and will derive a contradiction. For a sequence c = (c1, . . . , cs) of complex numbers, we

define ηc = (ηcij) ∈ Hom(Mb,Ma)0 by

ηcij :=

{
0 if i < r

cjx
ar−bj
0 if i = r,

and consider the infinitesimal deformation (g, h) + ε(0, ηc) of (g, h) in U , where ε is the

dual number. Here we use the condition ar ≥ bj again. By (5.6), Lemma 5.1 and the

assumption (5.10), we have

δ(0,ηc)(Ker δ(g,h)) ⊆ Im δ(g,h) = (Na)0

for any c, which means that, if (G,H) ∈ Ker δ(g,h), then ηc(G) ∈ (Na)0 for any c. Hence

we have

(G,H) ∈ Ker δ(g,h) =⇒ G ∈ (IoMb)0.(5.11)

Because (2.3) implies 2s > n+ r, there exists a non-trivial linear relation

s∑

ν=1

αν λ̃r(v
(ν)) +

s∑

ν=1

βν λ̃r(w
(ν)) = 0 (αν , βν ∈ C)

among the vectors (5.8) in Cr ×Cn. Since g is general in (IoMb)0 and s < n, the vectors

λ̃r(w
(ν)) (ν = 1, . . . , s) are linearly independent, and hence at least one of α1, . . . , αs is
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non-zero. We put

(G1, H1) :=

( s∑

ν=1

ανγ
(ν),

s∑

ν=1

βνη
(ν)

)
∈ U.

Then we have

δ(g,h)(G1, H1) =

s∑

ν=1

ανv
(ν) +

s∑

ν=1

βνw
(ν) ∈ Ker λ̃r = (IoNa)0 = δ(g,h)(V ),

where the last equality follows from (5.3). Hence there exists (G2, H2) ∈ V such that

(G1 − G2, H1 − H2) ∈ Ker δ(g,h). On the other hand, since G2 ∈ (IoMb)0 and at least

one of α1, . . . , αs is non-zero, we have G1 − G2 /∈ (IoMb)0, which contradicts (5.11).

Hence there exists a point (g̃, h̃) ∈ U in an arbitrarily small neighborhood of (g, h) such

that (5.9) holds. Therefore ρ is dominant.

Finally we calculate dim Ker(dα)Q. By Proposition 4.8, we see that dim Ker(dα)Q is

equal to

dimFb,a − dimHn,a − s+ dim
(
Ma/(JgMa + Ioh(Mb))

)
0
.

The fourth term is equal to n+ r − s by Proposition 4.15. Since n+ r − 2s = −m+ 2l,

we complete the proof of the assertion (2).

Now we are ready to prove Main Theorem.

Proof of Main Theorem. For a locally closed analytic subspace A of Hn,a, we denote

by

Z̃A αA−→ XA
πA
y yφA
FA −→

ρA
A

the pull-back of the right square of the diagram (4.3) by A ↪→ Hn,a.

There exists a Zariski open dense subset U of Hn,a such that

Z̃U αU−→ XU
πU
y yφU
FU −→

ρU
U

is locally trivial over U in the category of topological spaces and continuous maps, that

φU is smooth, and that ρU is smooth or FU is empty. It is enough to show Fb(Xb) 6= ∅
and Imψb(Xb) ⊇ Vm(Xb,Z) for at least one point b of U , where Xb denotes the complete

intersection corresponding to a point b of U .

By Proposition 5.3 (1), Fb(Xb) is non-empty for any b ∈ U .

By the assumption of Main Theorem, the morphism α|Ξo : Ξo → Γo is dominant, and

hence, by Proposition 4.14, there exists a unique irreducible component Ξ′o of Ξo that

is mapped dominantly onto Γo by α|Ξo. Let Q :=
(
o, 〈g〉, 〈f〉

)
be a general point of Ξ′o.

Then α(Q) = (o, 〈f〉) is a general point of Γo. By Corollary 4.11, the point o is the only

singular point of X〈f〉, and it is a hypersurface singularity with non-degenerate Hessian.

In particular, the image of (dφ)α(Q) : Tα(Q)X → T〈f〉Hn,a is of codimension 1 in T〈f〉Hn,a.
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On the other hand, by Proposition 5.3 (3), the image of (dρ)π(Q) : Tπ(Q)Fb,a → T〈f〉Hn,a

is also of codimension 1 in T〈f〉Hn,a. Hence there exists a smooth curve C in Hn,a passing

through 〈f〉 that satisfies

Im(dφ)α(Q) ∩ T〈f〉C = 0, Im(dρ)π(Q) ∩ T〈f〉C = 0,(5.12)

and C ∩U 6= ∅. We choose a sufficiently small open unit disk ∆ in C with the center 〈f〉,
and consider the following diagrams:

Z̃C αC−→ XC
πC
y yφC
FC −→

ρC
C

and

Z̃∆
α∆−→ X∆

π∆

y yφ∆

F∆ −→
ρ∆

∆.

(5.13)

We can assume that ∆× := ∆\{〈f〉} is contained in U . By Lemma 5.2, the analytic space

X∆ is smooth of dimension m + 1. Moreover, the holomorphic map φ∆ : X∆ → ∆ has

only one critical point, which is the point (o, 〈f〉) on the central fiber X〈f〉, and at which

the Hessian of φ∆ is non-degenerate. We select a point b of U from ∆×. Then we have

a vanishing cycle [Σb] ∈ Hm(Xb,Z), unique up to sign, associated to the non-degenerate

critical point (o, 〈f〉) of φ∆. It is known that Vm(Xb,Z) is generated by [Σb] as a module

over the group ring Z[π1(U , b)]. (See [9].) On the other hand, the image of the cylinder

homomorphism ψb(Xb) is π1(U , b)-invariant. Therefore it is enough to show that the

image of ψb(Xb) contains [Σb].

We put

O := π(Q) ∈ Fb,a.

By Lemma 5.2 and (5.12), the scheme FC in the left diagram of (5.13) is smooth at O,

and

dimO FC = dimFb,a − dimHn,a + 1.(5.14)

From the construction of Z̃C , we see that Ker(dα)Q is contained in the subspace TQZ̃C
of TQZ̃ , and that Ker(dα)Q coincides with Ker(dαC)Q. Hence, by Proposition 5.3 (2), we

have

dim Ker(dαC)Q = dimFb,a − dimHn,a −m+ 2l.(5.15)

Since Z̃C is a closed analytic subspace of FC ×XC with πC and αC being projections, we

have

Ker(dπC)Q ∩Ker(dαC)Q = 0(5.16)

in TQZ̃C . In particular, the linear map (dπC)Q : TQZ̃C → TOFC maps Ker(dαC)Q
isomorphically to a linear subspace of TOFC . By the dimension counting (5.14) and (5.15),

this subspace

(dπC)Q
(
Ker(dαC)Q

)
⊂ TOFC

is of codimension m − 2l + 1. Hence there exists a closed subvariety F ′C of FC with

dimension m− 2l + 1 that passes through O, is smooth at O, and satisfies

TOF
′
C ∩ (dπC)Q

(
Ker(dαC)Q

)
= 0.(5.17)



254 I. SHIMADA

Let us put

F ′∆ := F ′C ∩ F∆, Z̃ ′C := π−1
C (F ′C) and Z̃ ′∆ := π−1

∆ (F ′∆),

and let

Z̃ ′C
α′C−→ XC

π′C

y yφC
F ′C −→

ρ′C
C

and

Z̃ ′∆
α′∆−→ X∆

π′∆

y yφ∆

F ′∆ −→
ρ′∆

∆

(5.18)

be the restriction of the diagrams (5.13). The right diagram of (5.18) is the pull-back of

the left diagram of (5.18) by ∆ ↪→ C.

Since the fiber of π passing through Q is smooth at Q by the definition of Ξo, the

holomorphic map π′∆ is also smooth at Q. Moreover, from (5.16) and (5.17), we have

Ker(dα′∆)Q = TQZ̃ ′∆ ∩Ker(dα∆)Q = (dπC)−1
Q (TOF

′
C) ∩Ker(dαC)Q = 0.

Therefore α′∆ is an immersion at Q. We have dimF ′∆ = m− 2l+ 1. Note that Hm(Xb,Z)

is torsion free. Hence the right diagram of (5.18) satisfies all the conditions required in

Theorem 3.1 (2). We put

F ′∆(Xb) := ρ′∆
−1

(b), Z ′∆(Xb) := π′∆
−1

(F ′∆(Xb)),

and consider the family

Z ′∆(Xb) −→ Xb
y

F ′∆(Xb)

(5.19)

of l-dimensional closed analytic subspaces of Xb. By Theorem 3.1, the image of the

cylinder homomorphism

ψ′b(Xb) : Hm−2l(F
′
∆(Xb),Z) → Hm(Xb,Z)

associated with the family (5.19) contains the vanishing cycle [Σb] ∈ Hm(Xb,Z). By the

construction, ψ′b(Xb) is the composite of the homomorphism

Hm−2l(F
′
∆(Xb),Z)→ Hm−2l(Fb(Xb),Z)

induced from the inclusion F ′∆(Xb) ↪→ Fb(Xb) and the original cylinder homomorphism

ψb(Xb). Hence the image of ψb(Xb) contains [Σb].

We put

F ′C(Xb) := ρ′C
−1

(b),

and let F ′′C(Xb) be the union of irreducible components of F ′C(Xb) with dimension m−2l.

Then F ′′C(Xb) contains an (m − 2l)-dimensional sphere representing the vanishing cycle

[σb] ∈ Hm−2l(F
′
∆(Xb),Z) associated to the non-degenerate critical point O of ρ′∆. Let T

be the Zariski closure of α′C
(
π′ −1
C (F ′′C(Xb))

)
in Xb. Then T is of dimension m − l, and

[Σb] = ±ψ′b(Xb)([σb]) is represented by a topological cycle whose support is contained

in T . Therefore we obtain the following:
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Corollary 5.4. Suppose that (n, a,b) satisfies the conditions of Main Theorem. Let

X be a general complete intersection of multi-degree a in Pn. Then every vanishing cycle

of X is represented by a topological cycle whose support is contained in a Zariski closed

subset of X with codimension l.

6. Gröbner bases method. Suppose we are given a triple (n, a,b) that satisfies

the conditions (2.2) and (2.3) of Main Theorem. We will describe a method to determine

whether this triple satisfies the second condition of Main Theorem.

First we choose a prime integer p, and put

R(p) := Fp[x0, . . . , xn].

We define graded R(p)-modules M
(p)
a , M

(p)
b , N

(p)
a , and ideals I

(p)
o , J

(p)
g of R(p) in the

same way as in Section 4 except for the coefficient field. We generate an element g =

(g1, . . . , gs)
T of (I

(p)
o M

(p)
b )0 and a homomorphism h = (hij) ∈ Hom(M

(p)
b , N

(p)
a )0 in a

random way. Then we can calculate

dimFp
(
M (p)

a /(J (p)
g M (p)

a + I(p)
o h(M

(p)
b ))

)
0

(6.1)

by means of Gröbner bases. If this dimension is not greater than n + r − s, then con-

dition (iv) of Proposition 4.15 is fulfilled, because this condition is an open condition.

Hence the morphism α|Ξo : Ξo → Γo is dominant.

7. Application of a theorem of Debarre and Manivel. From now on, we use

the following terminology. A sequence always means a finite non-decreasing sequence of

positive integers. For a sequence a, let min(a) and max(a) be the first and the last ele-

ments of a, respectively, and let |a| denote the length of a. Let a′ be another sequence.

We denote by a]a′ the sequence of length |a|+ |a′| obtained by re-arranging the conjunc-

tion (a, a′) into the non-decreasing order. For an integer a ≥ 2, we define (a)! to be the

sequence (2, . . . , a) of length a− 1, and for a sequence a = (a1, . . . , ar) with min(a) ≥ 2,

we put

a! := (a1)! ] . . . ] (ar)! .

We sometimes write a sequence by indicating the number of repetition of each integer in

the sequence by a superscript. For example, we have

(2, 3, 3, 4)! = (2, 2, 2, 2, 3, 3, 3, 4) = (24, 33, 4).

Let n and ` be positive integers, and a = (a1, . . . , ar) a sequence. According to [5],

we put

δ(n, a, `) := (`+ 1)(n− `)−
r∑

i=1

(ai + `

`

)
,

and δ−(n, a, `) := min{δ(n, a, `), n− 2`− |a|}.

Theorem 7.1 ([5], Théorème 2.1). A general complete intersection of multi-degree a

in Pn contains an `-dimensional linear subspace if and only if δ−(n, a, `) ≥ 0.
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Theorem 7.2. Let a = (a1, . . . , ar) be a sequence satisfying

min(a) ≥ 2 and
∑

ai ≤ n.
Let a′ be a sub-sequence of a such that max(a′) = max(a), and let a′′ be the complement

to a′ in a. (When a′ = a, the sequence a′′ is empty.) Suppose that a positive integer λ

satisfies :

δ−(n− |a′|, a′! , λ− 1) ≥ 0, |a′′| < λ and n− r > 2(λ− |a′′|).(7.1)

Let

b := (1n−λ) ] a′′.

Then Fb(X) is non-empty for a general complete intersection X of multi-degree a in Pn,

and the image of the cylinder homomorphism ψb(X) contains Vm(X,Z).

Proof. Note that l = n − |b| is equal to λ − |a′′|. Since max(a′) = max(a), we can

assume that ar is a member of a′. Let f = (f1, . . . , fr)
T be a general element of (IoNa)0,

and let Yi be the hypersurface of degree ai defined by fi = 0. We put

X ′ :=
⋂

ai∈a′

Yi and X ′′ :=
⋂

ai∈a′′

Yi.

By Proposition 4.9, X ′ is a general member of the family of complete intersections of

multi-degree a′ possessing a singular point at o. By means of the projection with the

center o, we see that X ′ contains a linear subspace of dimension ` > 0 that passes through

o if and only if a general complete intersection of multi-degree a′! in Pn−|a′| contains an

(`− 1)-dimensional linear subspace. By Theorem 7.1, the first condition of (7.1) implies

that X ′ contains a linear subspace Λ of dimension λ passing through o. In particular, we

have λ < n− |a′|. Using this inequality and the second and the third conditions of (7.1),

we can easily check that (n, a,b) satisfies the conditions (2.2) and (2.3) in Main Theorem.

We put

Z := Λ ∩X ′′.
Then Z is a complete intersection of multi-degree b contained in X〈f〉 = X ′ ∩ X ′′ and

passing through o. Moreover, since the polynomials fi (ai ∈ a′′) are general with respect

to Λ, the complete intersection Z is smooth. Thus the second condition of Main Theorem

is also satisfied.

8. The generalized Hodge conjecture for complete intersections. Suppose

we are given a pair (n, a) satisfying min(a) ≥ 2 and
∑
ai ≤ n. We put

k :=
[(
n−

∑
ai

)
/max(a)

]
+ 1.

The Hodge structure of the middle cohomology group Hm(X) of a general complete

intersection X of multi-degree a in Pn has the property (1.1). We will investigate the

consequence of the generalized Hodge conjecture that there should exist a Zariski closed

subset T of X with codimension k such that every element of Hm(X,Q) is represented

by a topological cycle whose support is contained in T . Note that Hm(X,Q) is generated

by vanishing cycles and, if m is even, the homology class of an intersection of X and
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n a

6 (3)

7 (3)

8 (2, 3), (3), (4)

9 (2, 3), (3), (32), (4)

10 (2, 3), (3), (32), (4)

11 (22, 3), (2, 4), (3), (32), (4), (5)

12 (22, 3), (2, 3), (2, 32), (2, 4), (3), (32), (33), (5)

13 (23, 3), (22, 4), (2, 3), (2, 32), (2, 4), (3), (32), (33), (3, 4), (5)

14 (23, 3), (22, 4), (2, 5), (3), (32), (33), (3, 4), (4), (42), (5)

15 (22, 3), (22, 32), (22, 4), (2, 3), (2, 32), (2, 33), (2, 3, 4), (2, 5), (3), (32),

(33), (34), (4), (42), (6)

16 (24, 3), (23, 4), (22, 5), (2, 3), (2, 32), (2, 33), (2, 3, 4), (2, 5), (3), (32),

(33), (34), (3, 5), (6)

17 (23, 4), (22, 5), (2, 4), (2, 42), (2, 6), (3), (32), (33), (34), (32, 4), (3, 5), (6)

18 (25, 3), (24, 4), (22, 3, 4), (22, 5), (2, 3, 5), (2, 6), (4, 5)

19 (24, 4), (23, 5), (2, 3), (2, 32), (2, 33), (2, 34), (2, 3, 5), (2, 6), (3), (32),

(33), (34), (35), (3, 6), (7)

20 (23, 3, 4), (23, 5), (22, 6), (3), (32), (33), (34), (35), (32, 5), (3, 6), (7)

21 (25, 4), (24, 5), (22, 3, 5), (22, 6), (2, 7)

22 (24, 5), (23, 6), (2, 3, 6), (2, 7)

23 (26, 4), (23, 3, 5), (23, 6), (3), (32), (33), (34), (35), (36), (3, 7), (8)

24 (25, 5), (22, 3, 6), (22, 7)

25 (24, 6)

26 (26, 5), (23, 7)

27 (25, 6)

Table 2. The 148 pairs

a linear subspace of Pn. Hence, by Corollary 5.4, this consequence is verified if we can

find b with the following properties:

l := n− |b| = k,

(n, a,b) satisfies the assumptions of Main Theorem.
(8.1)

In the following, we assume m > 2k. This inequality m > 2k fails to hold if and only if

m ≤ 2 or a = (2) or (a = (2, 2) and m even). In these cases, the Hodge conjecture has

already been proved.

Proposition 8.1 ([14], [16]). If k = 1, then b = (1n−1) satisfies condition (8.1). If

a = (2r), then b = (1n−[n/2], 2r−1) satisfies condition (8.1).

Proof. Put a′ = a in the case k = 1 and a′ = (2) in the case a = (2r), and apply

Theorem 7.2.
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n a b

10 (22, 3) (17, 2)

11 (2, 3) (17, 2)

(2, 32) (17, 2, 3)

12 (23, 3) (17, 23)

13 (22, 3) (18, 22)

(22, 32) (18, 22, 3)

14 (22, 3) (110, 2)

(22, 32) (19, 22, 3)

(2, 3) (19, 2)

(2, 32) (19, 2, 3)

(2, 33) (19, 2, 32)

n a b

15 (24, 3) (19, 24)

16 (23, 3) (110, 23)

(23, 32) (110, 23, 3)

17 (23, 3) (113, 2)

(23, 32) (111, 23, 3)

(22, 3) (111, 22)

(22, 32) (111, 22, 3)

(22, 33) (111, 22, 32)

18 (22, 3) (113, 2)

(22, 32) (113, 2, 3)

(22, 33) (113, 2, 32)

n a b

18 (2, 3) (112, 2)

(2, 32) (112, 2, 3)

(2, 33) (112, 2, 32)

(2, 34) (112, 2, 33)

19 (24, 3) (112, 24)

(24, 32) (112, 24, 3)

20 (23, 3) (113, 23)

(23, 32) (113, 23, 3)

(23, 33) (113, 23, 32)

Table 3. Examples of triples obtained by Gröbner bases method

In these cases, the consequence of the generalized Hodge conjecture is verified in any

dimension.

We have made an exhaustive search in n ≤ 40, and found 148 pairs (n, a) that are not

covered by Proposition 8.1, but for which Theorem 7.2 yields b satisfying condition (8.1)

by taking an appropriate sub-sequence a′. We list these (n, a) in Table 2. No such (n, a)

are found if n > 27. Even if (n, a) does not appear in Table 2, the calculation of the

dimension (6.1) by Gröbner bases sometimes gives us b satisfying condition (8.1). Exam-

ples of these (n, a,b) in n ≤ 20 are given in Table 3. From these results, we can find b

satisfying condition (8.1) for any (n, a) with n ≤ 9. When n = 10, a = (2, 4) and a = (5)

appear in neither Tables 2 nor 3.

As a closing remark, let us return to the classical example of cubic threefolds ([2]).

Our method shows that, not only the family of lines b = (13), but also the family of

curves with b = (12, 2) or (1, 22) or (23) give a surjective cylinder homomorphism on the

middle homology group H3(X,Z) of a general cubic threefold X.
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