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Abstract. In the paper we give an analogue of the Filippov Lemma for the fourth order
differential inclusions

Dy =y"" — (A* + B?)y" + A’B%y € F(t,y), *)
with the initial conditions
y(0) =4/ (0) = y"(0) = y""(0) = 0, (**)

where the matrices A, B € R™% are commutative and the multifunction F : [0,1] x R? ~ cl(R%)
is Lipschitz continuous in y with a ¢-independent constant I < ||A||?|| BJ|?.

MAIN THEOREM. Assume that F : [0,1] x R? ~» cl(R?) s measurable in t and integrably bounded.
Let yo € W% be an arbitrary function satisfying (**) and such that

du(Dyo(t), F(t,yo(t))) < po(t) a.e. in [0,1],

where po € L'[0,1]. Then there exists a solution y € W*' of (*) with (**) such that

IDy(t) — Dyo(t)] < po(t) +1(Ya(-, o, B) po)(t)
ly(t) — yo(t)| < (Ya(-,a, B) % po)(t) a.e. in [0,1],
where
Ya(z, a, B) = a” " sinh(ax) — 87" sinh(Bx)

— B
and «, B depend on ||A|l, ||B]| and I.
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1. Introduction. The theory of ordinary differential operators D has been developed
for many years and most of the facts are already discovered. However, the properties of
the solution sets of differential inclusions

Dy € F(t,y) (1)

in many situations have to be examined. Lately, we observe an increase of interest in
this field, especially in the field of ordinary differential inclusions of higher order. In
particular, there have been examined boundary value problems [21], [20], of the differential
inclusions of Sturm—Liouville type [3], of Schrodinger type [4], of the n-th order of the
form y(™ — \y € F(t,y) in [I1] and of the second order Dy = y" — A%y € F(t,y) [1].

In all known results concerning the existence and properties of solution sets to differ-
ential inclusions

y € F(t,y) (2)
with the Lipschitz continuous right-hand sides, analogues of the Filippov Lemma (cf. [I],
[21, [8, [@], [12], [10], [13], [14], [15], [17], [19], [22], [23], [24]) play the crucial role.
In this paper the attention is focused on the differential inclusions

Dy =y"" — (A*+ B?)y" + A’B%*y € F(t,y), (3)

where F : [0,1] x R ~» R? is a multifunction and Dy = y""” — (A? + B?)y" + A?B?y is a
matrix differential operator with nondegenerated and commutative matrices A, B € R%*¢,

For we impose the initial conditions

y(0) =4'(0) = y"(0) = y"'(0) = 0. (4)

By a solution of ([3)) with initial conditions (4]) we mean a function y € W40, 1] satisfying
and . Our considerations are quite standard and elementary and the methods used
are based on the differential equation (see [16])

Dy — y//// _ (A2 —|—B2)y” +A2B2y — f7

where f € L'(]0,1],R%). We present them in Section 2, while in Section 3 we formulate
and demonstrate an analogue of the Filippov Lemma for the IVP with .

2. An IVP for matrix fourth order ODE. Let (R% | - |) be a finite-dimensional
normed space. By L!([0,1],R¢) we mean the Banach space of Lebesgue integrable func-
tions u : [0,1] — R? with the norm |jul|; = f[o  lu(t)| dt and by

V= {yeW"([0,1,R) : y(0) = y/(0) = y"'(0) = y"'(0) = 0}

with the norm
" H 1.

lyllv = lly

Suppose we are given the function f € L'([0, 1], R%) and matrices A, B € R?. Through
our paper we shall assume that the matrices A, B € R**? are nonsingular, commutative
with nonsingular A2 — B2
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Let us consider the differential equation
Dy — y//l/ _ (A2 4 B2)y// + AQBQy _ f7 (5)
with initial conditions

y(0) =4'(0) = y"(0) = y"(0) = 0. (6)

By a solution we mean a function y € V satisfying almost everywhere (a.e.) in [0, 1].
Let

®(t) = ®(t, A, B) = (A*> — B®)"' (A" " sinh(tA) — B~ 'sinh(tB))

= t2n+1 — 2k »2 2k—2
=3 G (oA B ),

k=0

The convergence of the above series is understood in the norm

d
40 = max |3 |
=1

where the matrix A = [a;;] € R?*4,

Since
®'(t) = (A% — B*)(cosh(tA) — cosh(tB)),
®"(t) = (A? — B®)"!(Asinh(tA) — Bsinh(tB)),
"' (t) = (A% — B®)71 (A% cosh(tA) — B? cosh(tB)),
" (t) = (A* — B*)"}(A®sinh(tA) — B®sinh(tB)),
we have

" (t) — (A% + BYH®" (t) + A2B2d(t)
= (A% - B?)! (A3 sinh(tA) — B®sinh(tB) — (A2 + B2)(Asinh(tA) — Bsinh(tB))
+ A?B2(A™'sinh(tA) — B! sinh(tB))) =0.

Moreover,
®(0) = d'(0) = ®"(0) =0, ®"'(0) = 1.

Therefore the function ® is the Cauchy function for homogeneous . Using that function
we obtain the following:

ProproSITION 1. The solution of with the IC @ is in convolution form

y(t) = (RF)() = (R(A, B)f)(t) = (® = f)(t) = /O Ot —z)f(x) de.
Proof. For each function ¢ € C1([0,1],R¥*%) and f € L*([0, 1], R?) we have the formula
(o f)'(t) = (¢"* [)(t) + (0) f(£). (7)
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Thus evaluating the derivatives we obtain

y'(t) = (®'(2) * f)(t) = (A* — B*) "' ((cosh(zA) — cosh(zB)) = f)(t),

y'(t) = (®"(z) * f)(t) = (A* — B*)"'((Asinh(zA) — Bsinh(zB)) = f)(t),
y"'(t) = (®""(x) = f)(t) = (A* — B*) "' ((A® cosh(zA) — B? cosh(zB)) * f)(t)
y"(t) = (@7 (x) * [)(t) + f(?)

= (A® — B*)7'((A®’sinh(zA) — B*sinh(2B)) = f)(t) + f(t).
Hence for all ¢ € [0, 1] we get
()~ (A7 4 B2y (1) + 4By (1)
= (0""() * f)(8) + f(t) — (A% + B)(2"(x) * f)(t) + A2B*(®(x) = f)(t)
= ((2""(x) — (A® + B?)®"(z) + A2B*®(x)) * f)(t) + f(t) = f(2).
Checking the IC is straightforward. m
For d = 1 we obtain a particular case of . In this situation we have an IVP
Doy =y"" — (a® +b*)y" + (a®0*)y = f.

with
y(0) = ' (0) = 4" (0) = y""(0) = 0.

(8)

(9)

We assume that a,b # 0 and a? # b%. Extending the idea of M. Kourensky [I8] we take

principal fundamental solutions of (8] given by

71 . . 1 .
Ya(t) = Ya(t,a,b) = 2 sinh(at) — b~ sinh(bt)

a2 — b2 .
Ya(t) = Ya(t,a,b) = Y{(t) = COSh(aCZ - Z;)Sh(bt) |
Ya(t) = Ya(t,a,b) = Y]'(t) = asinh(c;tz) - Z;inh(bt) |
Yi(t) = Yi(t,a,b) = Y] (t) = a? Cosh(a(;) :zz cosh(bt) '

Observe that Yy (t) has the Taylor expansion

00 (ZZ;S a2kb2n72k72) _—
n(t):;1 CTER t >0

and the latter means that Y,(¢) is an analytic and nonnegative solution of Doy = 0

with @D Therefore the solution of with @D is
Rof = }/4 * f

Since Y;(t) = Y4(¢,a,b) is nonnegative, then the operator Rg = Ro(a,b) is positive; i.e.

Rof >0 for f > 0.

As a conclusion of the previous considerations we obtain the following properties:



FILIPPOV LEMMA 13

PROPOSITION 2. Let a = ||A|| and b = ||B||. Then for R = R(A, B) and Ry = Ro(a,b)
we have the relations:
L IRl < Rolfl <Rop for [f] < p;
2. (R )] < (Rol ) (1),
[(RA" (1) < (Rol F1)" (1),
[(RE)" ()] < (Rol f1)"(#).

Proof. Since
o n-l £2n+1

n; (kz_: A2kB2n72k—2> =i
we have
nz_:l(kz_o AQkBQn—Qk—2> m(x2n+l « ().
Therefore

RNOI< 3 m( 2 ) (Z JAI B2
= (Yax[f)(®) = (Rol f)(?).
Using the same arguments we obtain

Z _(ZA%B% 2k— 2)< " F)()

n:l =

and thus

= 1
< Al2R| B||2n—2k— 2)
<> G e (Z JA1 B

= (Yax [f)(8) = (Rolf1)'(1)-

Similar calculation yields analogous inequalities for |(Rf)”(¢)] and |(Rf)" (t)]. =

For u € L([0,1]) let us define recursively

utD) =y, w0 =GO =23
LEMMA 3. Let f € L'([0,1]) and Yi(t,a,b) = “_lsmh(‘fz?*fjf““h(bt), where a,b # 0 and
a? # b2, Then for each c € R with |c| < ab the series Y, |c[*" (Y4(*n)( - a,b)  f)(t) is

absolutely and uniformly convergent and for

Z |2 (Y™ (- a,b) = [ £1) (1)

we have a uniform estimate

2(t) < A (Ya(-, 0, ) x| fI)(2),
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where

B \/a2 + 02 4+ 2va?b? — 2 + \/(12 + b2 — 2v/a?b? — 2

= 5 ,

7\/a2+b2+2\/a2b2702—\/a2+b2—2 a?b? — 2

= 5 .
Proof. Consider for each k =1,2,... the k-th partial sum

k
=" (VI ab) = | 1) (2).
n=1

Then we have

) = (- (2}% VIOt 17D +111) )

:g@ﬂﬂmwgwm(ﬁW«%wwm+UMm
with
21(0) = 2;,(0) = 2//(0) = 2;(0) = 0.

Hence
20" (t) — (a® + b2 (t) + (a®b?) 2k (t)
= (2 = (VP (La b)) + 1) (1) < Panlt) + 2L

In other words

2" () — (0 +0) 2 (8) + (a®0* — )z (t) = g(t) < | f(1)]. (14)
Let
VARt 2 - 2+ Va + 12— 2/ath - &2
- 5 ,
5 VE LR+ VEE 2 a2+ b — P
- 2

be solutions of the system

04262 — a2b2 _ 02.

{a2 + 8% =a? + 17,
Hence can be read as
2" () = (@ + %)z () + (@®%)zi(t) = g(t) < |f(2)]-
Therefore for each £k =1,2,... we have
ar(t) = (Ya(+, 0, 8) % 9)(t) < 2 (Ya(+, 0 B) | f])(8).
Passing to the limit with £ — oo we obtain the required estimate. m

COROLLARY 4. The series Y o, ¢*™(®(-, A, B) * f) is for |c| < ||A]|||B| strongly con-
vergent in V.
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3. A Filippov Lemma. Consider an IVP problem
Dy € F(t,y), (15)
y(0) =y'(0) = y"(0) = y"(0) = 0. (16)
By a solution of with initial conditions we mean a function y € V satisfy-
ing (15]). We shall pose the following assumptions on F : [0,1] x R? ~» ¢(R?%), where ¢(R?)
stands for the family of all nonempty compact subsets of R :
CONDITION 1. For every y € R¢ the multifunction F(-,y) is Lebesque measurable in t.

CONDITION 2. The multifunction F(t, -) is Lipschitz continuous in y with a constant l,
i.e. for every y1,y2 € R™ the inequality
du (F(t,y1), F(t,y2)) < ly1 — o
holds for a.a. t € [0,1], where d (K, L) stands for the Hausdorff distance between sets
K, L € c¢(R%).
CONDITION 3. The multivalued mapping t — F(t,0) is integrably bounded by a function
v € LY0,1], i.e.
sup{|z| : z € F(t,0)} < ~(¢) a.e. in [0, 1].
The main result of the paper is the following.
THEOREM 5. Assume that F : [0,1] x R ~ ¢(RY) satisfies Conditions 1,2 and 3 with
I < ||A|I?|B||?>. Let yo € V be an arbitrary function with yo(0) = y4(0) = yi(0) =
¥y (0) = 0 such that
dist (Dyo(t), F(t,y0(t))) < po(t) a.e. in [0,1],
where pg € L[0,1]. Then there exists a solution y € V of such that

[Dy(t) — Dyo(t)] < po(t) +1(Ya(-, e, B) % po)(t) a.e. in [0,1] (17)
and
ly(t) = yo(t)] < (Ya(-, e, B) % po)(t) a.e. in [0,1], (18)
where
. \/IIAII2 +1B17 + 2/ Al21B|]* — 1 + \/IIAII2 + 1817 = 2/ AlP1B|]* — 1
B 2
(19)

. \/IIAII2 +IBI+2VI[APIB|? -1 - \/IIAII2 + B2 =2y Al?]| BI[> —
- 5 :

Proof. Recall that from [7] it follows that for any y € V the multivalued mapping
t — F(t,y(t)) is measurable with compact values and integrably bounded by ~(¢)+1|y(¢)],
ie.

sup{|z|: z € F(t,y(t))} <~(t) + U|y(t)] a.e. in [0,1]. (20)
Take any u € L'([0,1],R?) and let

where

®(t) = (A* — B*)7' (A 'sinh(tA) — B~ 'sinh(¢B)),
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be the unique solution y € V' of
Dy=u
with homogeneous initial conditions. Let
K(u) = {f € L*([0,1],RY) : f(t) € F(t,(Ru)(t)) a.e. in [0,1]}.

Since Ru € V C L([0,1],R%), by each K(u) is nonempty. Moreover, for every
u,v € L1(]0,1],R%) and any f € K(u) there is a g € K(v) such that

F(0) = g(0)] = dyg (F(t, (Ru) (1)), F (. (Rv) (1))
< U(|Ru — Ro))() < U(Ro(|IA]l | BIDlu — ol () (21)
< U(Ro(AlL | BI)po) (1) a.e. in [0,1].

In what follows we shall adopt the Filippov technique with necessary changes. Starting
with yo = Rug we can choose such u; € (ugp) that

luo(t) — u1 ()] = |(Dy1)(t) — (Dyo)(t)| < po(t) ae. in [0,1],
where y; = Ruy. Hence for all ¢ € [0, 1] we have
Yo (t) — 1 (t)] = (@ * (w0 —wn))(t)| < (Ya(-, Il [ BI)) * o) (2)-
Now the relation yields
dir ((Dy1) (), F(t,y1()) < U(Ya(+, [|A]l [|BI) % po) (t) a.e. in [0, 1].
We now may pick up ya = Rus € V such that us = Dys € K(u1) and
[(Dy2)(t) = (Dy1)(1)] < UYa(-, Al [ BI) * po) (t) a-e. in [0,1].
Therefore for all ¢ € [0, 1]
w2 (®) = (O] < UYL L AILIBID * po) ().
The latter together with yields
d (Dya) (1), F(t,y2(8))) < (Y2 (AL | B]) # po) ae. i [0,1].

Continuing this procedure by mathematical induction we can find for n = 1,2,3,...
a sequence U,+1 € K(uy,) such that for y,+1 = Rupr1 €V

[Dyns1(t) = Dyn(®)] < 1" (V4™ (-, | AIL IBII) # po) ae. i [0,1].

Hence
a1 () = ya(8)] < (YT (LN ALL IBI) * po) ace. in [0, 1]

and therefore by
it (g1 (8), F (L, (R(unt1))(1))) < YT AL B * po) ace. in [0, 1]
Let

() = (Y L IAILIBI) * po).
n=1
By Lemma [3] we have an estimate

o(t) <U(Ya(+, 0, 8) *po)(t), (22)
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where o and 8 are given by formulas . Thus ¢ is continuous and hence integrable.

Moreover, for n =10,1,2,... and m =1,2,... we have
n+m—1
*k
Dy sm () = Dya(®)] < D L A]LIBI) * po)
k=n

<STEEIECLIANLIBI * po) < po(t) + (t) ae. in [0,1]. (23)
Hence
Wnam () = ya ()] < SV AL B * po) <
k=n

Therefore the sequences {u,} C L'([0,1],R") and {y,} = {Ru,} C V are convergent
pointwisely and, by the Lebesgue Dominated Convergence Theorem, strongly. Let

#(t)

;e in [0,1]. (24)

lim Dy,, = Dy.
Thus
limy, =vy.
For eachn=10,1,2,...
(Dyns1)(t) € F(t,ya(®)) acc. in [0,1]
and each F'(t, -) is Lipschitz continuous, hence y is a solution of . We shall check

that it is the required one. Indeed, taking n = 0 in , and passing to the limit
with m — co we obtain a.e. in [0, 1]

[Py(t) = Dyo(t)] < po(t) + ¢(t)

iyt — ) < 22
Hence, by (22)), we have a.e. in [0, 1] the estimates
[Dy(t) — Dyo(t)] < polt) +1(Ya(-, o, ) po)(t) a.e. in [0,1](t)
ly(t) = yo(t)] < (Ya(-, e, B) % po) (t),

which ends the proof. m

and

References

[1]  J.-P. Aubin, A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory,
Grundlehren Math. Wiss. 264, Springer, Berlin, 1984.

[2] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, System Control Found. Appl. 2, Birk-
héuser, Boston, 1990.

[3] G. Bartuzel, A. Fryszkowski, A topological property of the solution set to the Sturm-—
Liouville differential inclusions, Demonstratio Math. 28 (1995), 903-914.

[4] G. Bartuzel, A. Fryszkowski, Stability of principal eigenvalue of the Schrédinger type prob-
lems for differential inclusions, Topol. Methods Nonlinear Anal. 16 (2000), 181-194.


http://dx.doi.org/10.1007/978-3-642-69512-4

(10]

(11]

[12]

[13]

[14]
(15]

[16]
[17]

18]
[19]
[20]
[21]
[22]
23]

24]

G. BARTUZEL AND A. FRYSZKOWSKI

G. Bartuzel, A. Fryszkowski, A class of retracts in LP with some applications to differential
inclusion, Discuss. Math. Differ. Incl. Control Optim. 22 (2001), 213-224.

G. Bartuzel, A. Fryszkowski, Pointwise comparison principle for clamped Timoshenko
beamn, Topol. Methods Nonlinear Anal. 39 (2012), 335-3509.

G. Bartuzel, A. Fryszkowski, Filippov Lemma for certain second order differential inclu-
sions, Cent. Eur. J. Math. 10 (2012), 1944-1952.

A. Bressan, A. Cellina, A. Fryszkowski, A class of absolute retracts in spaces of integrable
functions, Proc. Amer. Math. Soc. 112 (1991), 413-418.

A. Cellina, On the set of solutions to Lipschitzian differential inclusions, Differential In-
tegral Equations 1 (1988), 495-500.

A. Cellina, A. Ornelas, Representations of the attainable set for Lipschitzean differential
inclusions, Rocky Mountain J. Math. 22 (1992), 117-124.

A. Cernea, On the existence of solutions for a higher order differential inclusion without
convexity, Electron. J. Qual. Theory Differ. Equ. 2007, No. 8, 1-8;
http://www.math.u-szeged.hu/ejqtdel

R. M. Colombo, A. Fryszkowski, T. Rzezuchowski, V. Staicu, Continuous selection of
solution sets of Lipschitzean differential inclusions, Funkcial. Ekvac. 34 (1991), 321-330.
A. F. Filippov, Classical solutions of differential equations with multivalued right-hand
side, Vestnik Moskov. Univ. Ser. I Mat. Meh. 22 (1967), no. 3, 16-26; English transl.:
SIAM J. Control 5 (1967), 609-621.

A. Fryszkowski, Fized Point Theory for Decomposable Sets, Topol. Fixed Point Theory 2,
Kluwer, Dordrecht, 2004.

A. Fryszkowski, T. Rzezuchowski, Continuous version of Filippov-Wazewski relazation
theorem, J. Differential Equations 94 (1991), 254-265.

Ph. Hartman, Ordinary Differential Equations, Birkhduser, Boston, 1982.

Sh. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Math. Appl. 419,
Kluwer, Dordrecht, 1997.

M. Kourensky, Zur Lésung der Differentialgleichung der Biegung des Balkens auf elastis-
cher Unterlage, Téhoku Math. J. 39 (1934), 192-199.

O. Naselli Ricceri, A-Fized points of multivalued contractions, J. Math. Anal. Appl. 135
(1988), 406-418.

N. S. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math.
Univ. Carolin. 29 (1988), 355-363.

T. Pruszko, Some applications of the topological degree theory to multivalued boundary
value problems, Dissertationes Math. (Rozprawy Mat.) 229 (1984).

D. Repovs, P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl.
455, Kluwer, Dordrecht, 1998.

L. E. Rybinski, A fized point approach in the study of solution sets of Lipschitzean
functional-differential inclusions, J. Math. Anal. Appl. 160 (1991), 24-46.

A. A. Tolstogonov, On the structure of the solution set for differential inclusions in Banach
spaces, Mat. Sb. (N.S.) 118(160) (1982), 3-18; English transl.: Math. USSR-Sb. 46 (1983),
1-15.


http://dx.doi.org/10.7151/dmdico.1038
http://dx.doi.org/10.2478/s11533-012-0119-2
http://dx.doi.org/10.1090/S0002-9939-1991-1045587-8
http://dx.doi.org/10.1216/rmjm/1181072798
http://www.math.u-szeged.hu/ejqtde
http://dx.doi.org/10.1137/0305040
http://dx.doi.org/10.1016/0022-0396(91)90092-N
http://dx.doi.org/10.1016/0022-247X(88)90164-3
http://dx.doi.org/10.1016/0022-247X(91)90287-A
http://dx.doi.org/10.1070/SM1983v046n01ABEH002742

	Introduction
	An IVP for matrix fourth order ODE
	A Filippov Lemma

